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1 Analytical analysis of the case of very inefficient cap structure

We analyze the system of equations
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with the following assumptions on the model parameters:

k1 < kg < ko < ks; [6]F4F]0 < [405]0; [61F4F]0 < [605]0 < [405]0 (2)

First of all, notice that, generally speaking, it is not eligible to compare the some parameters k;:

k1 and k3 has —L—— dimensionality while ks and k4 are é So instead of comparing k; and k4, for

sec_moles
example, one should rather compare, for example, k;[el F4F |y and k4. To facilitate this task, we explicitly
consider that [elF4F]y is on the order of 10° in our model, [605]y is at the order of 10! and [405]y at

102.

1.1 Approximate steady state solution

From the conservation laws



[mRNA : 405] + [40S] + [AUG] + [80S] = [40S]o, (3)

[MRNA : 40S] + [e] FAF] = [e] FAF),, (4)
[605] + [80S] = [60S]o, (5)
and the steady state condition
ko - [mRN A : 40S]s = k3 - [AUG]s - [60S]s = k4 - [80S]s = k1 - [40S]s - [e] FAF]s, (6)
we can derive
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where z = %28?}; is the fraction of 60S in the free (unbound to mRNA) state.
Using (6) and (7) we obtain an equation on z:
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Having in mind k4 < k2 and assuming that [e] F4F),/[60S]p is sufficiently small, we simplify it to

B+t a+@0-1D)+@B-1)+z(—a+G—-1)(B-1)+~(1—-p5) =0, (9)

From the inequalities on the parameters of the model, we have § > 1, v < 1, the constant term
v(1 — ) of the equation (9) should be much smaller than the other polynomial coefficients, and the
equation (9) should have one solution close to zero and two others:

2o ~ 1(B-1)

—a+(B-1)(6-1)
x1:%<—(a+ﬁ—|—5)+2+\/(a+ﬁ+5)2—4ﬁé) (10)
x2:%<—(a+ﬂ+5)+2—\/(a+ﬂ+5)2—46(5)
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If k1 > k4/[e] FAF]y then we have a situation already solved in the main body of the paper. Let us
consider the opposite situation, when k1 < kyg/[e] FAF]y. In this case a > 3+ § and

Y(B—1)  kiks ki[elFAF)y
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If & > 3+ 6 then the solution of the model can be approximated by the dominant system from Fig. 5
of the main body of the paper, Stage 1:
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and [60S] = [605]o, [40S] = [40S]o. This solution is valid on the interval [0;¢'], ¢’ = kﬁikz + 10[[2051&}0 (k—lﬁ—i-

k—12) Following the recipe from the main body of the paper, after this moment it can be prolonged with
quasiequilibrium approximation:
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Formulas (12-13) completely describes the dynamics of the system in the case k1 < kq/[e] F4F)j.
However, if a = 3+ ¢ (i.e., when k1 = ky/[e] FAF]y) then an other dominant system approximates the
last stage of relaxation, when [605](¢) becomes much smaller than [AUG](t). Here the same quasi steady-
state asymptotic as in the main body of the paper (Stage 2) is valid (see formula (42-44) of the main
text). This completes the analysis of the system behaviour in the case when k; is relatively small with
respect to other parameters. On the Fig. 1 one can see the comparison of these solutions with numerical
simulations.



Non-linear Parker’'s model

Non-linear Parker’'s model
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Figure 1: a) Simulation of the non-linear protein translation model with parameters k; = 0.001, ky = 3,

ks = 50, k4 = 0.1, [40S]p = 100, [60S]o = 25, [e]F4F]y = 6. b) Same as a) but k; = 0.01. Circles
represent the numerical simulation while solid lines gives the analytical solution.



