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Abstract. In order to better understand and describe surgical procedures by 

surgical process models, the field of workflow segmentation has recently 

emerged. It aims to recognize high-level surgical tasks in the Operating Room, 

with the help of sensors or human-based systems. Our approach focused on the 

automatic recognition of surgical phases by microscope images analysis. We 

used a hybrid method that combined Support Vector Machine and discrete 

Hidden Markov Model. We first performed features extraction and selection on 

surgical microscope frames to create an image database. SVMs were trained to 

extract surgical scene information, and then outputs were used as observations 

for training a discrete HMM. Our framework was tested on pituitary surgery, 

where six phases were identified by neurosurgeons. Cross-validation studies 

permitted to find a percentage of detected phases of 93% that will allow the use 

of the system in clinical applications such as post-operative videos indexation. 
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1   Introduction 

In recent years, due to the progress of medicine and computers, there has been an 

increased use of technologies and in the Operating Room (OR). To develop computer 

assisted systems that better handle and integrate this new OR [1], a more detailed 

comprehension of the surgical workflow is needed. From this area, the challenge of 

surgical workflow recovery has emerged. Clinical applications are the evaluation of 

surgeons, OR management optimization or the creation of context-sensitive user 

interfaces. As mentioned in [2], the modelling must address behavioural, anatomical, 

pathological aspects and instruments. The concepts of Surgical Process (SP) and SP 

models (SPM) have been introduced for such purposes [2,3]. 

Related data extraction techniques can be classified according to the addressed 

level of granularity where the surgery is studied. These approaches yield to various 

methods used for data acquisition: patient specific procedures description [2,3], 
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interview of surgeons [4], sensor-based methods [5-14], using fixed protocols created 

by expert surgeons [15], or combination between them [16]. Within sensor-based 

methods, an approach for finer classification is to differentiate materials used: such as 

a robot-simulator in virtual environments [5], using existing or additional materials. 

Most of studies used sensors additionally installed. Padoy et al. [6] positioned 

sensors on instruments, and the workflow was segmented using Dynamic Time 

Warping (DTW) and Hidden Markov Model (HMM). Similarly, mechanisms for 

dataset pre-processing using Bayesian network before HMM training were presented 

in [7]. In both works, data acquisition was performed manually. Accelerometers 

placed on the operator were used in [8] to identify alphabets of activity. James et al. 

[9] installed an eye-gaze tracking system on surgeons combined with visual features 

to detect one important phase. Nara et al. [10] introduced an ultrasonic location aware 

system that tracks 3-D positions of the staff for the identification of surgical events. 

From existing sensors within the OR, videos are a rich source of information, as 

demonstrated on laparoscopy [11]. A situation recognition process was created based 

on augmented reality and computer vision techniques. Helpful information such as 3D 

map were also extracted from laparoscopic videos in [12]. Bhatia et al. [13] analyzed 

global view videos for better OR management. Finally, Xiao et al. [14] implemented a 

system that record patient vital signs to situate the intervention process.  

Our project focused on the extraction of information from microscope videos for 

high-level tasks recognition. Compare to other techniques, it permits not only to avoid 

the installation of materials, but also to have a source of information that has not to be 

controlled by human. Even if the approach and the application differ, we followed a 

methodology similar to the one described in [13] along with results of our previous 

work [17], where we presented in detail the image feature extraction process and 

performed studies on machine learning algorithms. Here the goal was to add a 

temporal reasoning for better detection. That’s why we first took advantage of the 

ability of SVMs as binary classifiers to extract scene information from frames. Then 

outputs of the classification were treated as observations to train a HMM. This 

combination permitted to take into account the sequential nature of high-level tasks 

for accurate recognition. We focused in this paper on the detection of surgical phases 

and validated our methodology with a specific type of neurosurgical interventions: the 

pituitary surgeries. 

2   Materials and Methods 

The process for automatic recognition is introduced here: frames were first extracted 

from microscope videos, and reduced with spatio-temporal downsampling to perform 

feature extraction. Image signatures were composed of 185 features, in which 

discriminant ones were chosen with a specific feature selection. SVMs were then used 

to classify relevant surgical scene information. These results alone were not enough 

informative to correctly classify surgical phases, so a HMM has then been trained, 

taking as observations the outputs of the SVMs and as hidden states the surgical 

phases. The Viterbi decoder finally permitted to find the optimal path for a given 

observation sequence. We assessed this process with cross-validation studies. 



2.1  Data-set 

We evaluated our algorithm on pituitary surgeries [18], presented in [17]. Pituitary 

adenomas are tumors that occur in the pituitary gland, where neurosurgeons use a 

trans-nasal approach with an incision in the back wall of the nose. The anonymous 

data set was composed of 16 pituitary surgeries (mean time: 40min), all performed in 

the neurosurgical department of Rennes University Hospital by three expert surgeons. 

Videos focused on the operative field of view and were recorded using the surgical 

microscope OPMI Pentero (Carl Zeiss) (Videos: 768 x 576 pixels at 33 frames per 

second). The labeling of surgical phases was manually performed by surgeons (Fig. 

1.).  

 

 
 

Fig. 1. Example of typical digital microscope images for the six phases: 1) nasal incision, 2) 

nose retractors installation, 3) access to the tumor along with tumor removal, 4) column of nose 

replacement, 5) suturing, 6) nose compress installation.  

 

Original frames were first spatially downsampled by a factor of 8 with a 5-by-5 

Gaussian kernel (internal studies have shown that it had no impact on accuracy) and 

then downsampled to 1 frame every 2s (0.5Hz). We performed a statistical intensity 

normalization of images, where data closely followed a normal distribution. 

2.2  Feature extraction and selection 

From these videos, we randomly extracted 500 frames which were supposed to 

correctly represent the six phases of a common pituitary surgery. We defined for each 

frame a feature vector, representing a signature. Signatures are composed of three 

main information that usually describe an image: the color, the texture and the form.  

The color has been extracted with two complementary spaces [19]: RGB space (3 x 

16 bins) along with Hue (32 bins) and Saturation (32 bins) from HSV space. The 

texture has been extracted with the co-occurrence matrix along with Haralick 

descriptors [20]. The form was represented with spatial moments [21], and we also 

computed the Discrete Cosine Transform (DCT) [22] coefficients. Each signature was 

finally composed of 185 complementary features. 



The main goal of feature selection is to remove redundancy information and to 

keep essential ones. Feature selection methods can be divided into two groups [23]: 

the filter and the wrapper approach. We fused them using the method described by 

Mak and Kung [24], where they argued that both methods are complementary to each 

other. Algorithms were first independently applied to find two feature subsets. They 

were then merged by selecting one feature at a time from the two subsets, starting 

from the highest rank. The Recursive Feature Elimination (RFE) SVM [25] was 

chosen for wrapper method. The principle is to generate the ranking using backward 

feature elimination. The mutual information (MI) [26] was chosen for the filter 

method, where a feature is more important if the MI between the target and the 

feature distributions is larger. In order to a have a good compromise between 

computation time and accuracy, we kept the 40 first features. 

2.3  Supervised classification 

Based on our last work [17], multiclass SVMs [27] have been found to be effective 

for microscope images classification. We decided to use binary SVMs for scene 

information extraction. SVMs are supervised learning algorithms used for 

classification and regression. Mathematically, given training data 

  nxx ...1
where dx  and their labels   nyy ...1

where   11,y . The goal is to 

find the optimal hyperplane 0. =b+xw  that separates the data into two categories. 

The idea is to maximize the margin between the positive and negative examples. The 

parameter pair  bw; is finally the solution to the optimization problem: 
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following constraints:  

 

ib)+w(xy ii  0,1.           (2) 

 

Four discriminant scene information were defined: global-zoom views, presence-

absence of nose retractors, of the column of nose and of compress. Combinations of 

these 4 binary outputs resulted in 16 possible observations for the HMM.  

2.4  HMM 

HMMs [28] are statistical models used for modeling of non-stationary vector times-

series. An HMM is formally defined by a five-tuple  BA,Π,O,S, , where 

  Nss=S ...1
 is a finite set of N states,   Moo=O ...1

 is a set of M symbols in a 

vocabulary,   iπ=Π  are the initial state probabilities,   ija=A  the state transition 

probabilities and   k)(ob=B i
the output probabilities. Here, outputs of SVMs were 



treated as observations for the HMM. States were represented by the surgical phases 

that generated a left-right HMM (Fig. 2.). The transition probabilities were low 

because of the sampling rate of frames (0.5Hz). We set two probabilities for the 

transition from one state to its consecutive state: 005.0α  for state n°3, 01.0β for 

the others. The probability of remaining in the same state is then: α1 or β1 . The 

outputs probabilities were obtained from SVMs results. They were computed as the 

probability of having an observation in a specific state. Videos were applied to SVMs 

and observation probabilities were manually computed. All these probability 

computations were part of the training process of our framework, and were therefore 

obtained only from the training sample of the cross-validation. Furthermore, the 

Baum-Welch algorithm has not been used for the training because of the limited size 

of the training sample.  

Lastly, given observations and the HMM structure, the Viterbi algorithm [29] find 

the most likely sequence of states. 

 

1 2 3 4 5 6

 
 

Fig. 2. Left-right HMM, where each state corresponds to one surgical phase 

2.5  Cross-validation 

SVM classifiers and HMM were both evaluated with a random 10-fold cross-

validation study. The image database and videos were divided into 10 random 

subsets. Nine were used for training while the prediction was made on the 10
th

 subset. 

This procedure was repeated 10 times and results were averaged. We computed the 

correct classification rate for SVMs evaluation and the percentage of phases 

misclassified, namely the Frequency Error Rate (FER), for HMM assessment. In 

addition, the confusion matrix was extracted, showing exactly where states were 

misclassified. 

3   Results 

Statistical results of the cross-validation study for the SVMs (Tab. 1.) showed that 

very good detections (~88%) along with low standard deviations (max=2.5%) were 

obtained, getting a maximum accuracy of 94.6% for the column of nose detection.  

Table 1. Mean accuracy and standard deviation (Std) of the 4 scene information recognition 

 
Global-zoom 

view 

Presence-absence    

of nose retractors 

Presence-absence  

of column of nose 

Presence-absence    

of compress 

Accuracy (%) 87.6 88.0 94.6 87.4 

Std (%) 2.4 2.2 1.6 2.5 



 

The HMM study showed a mean FER of 7.1 +/- 5.3%, with a min of 2.5% and a 

max of 15.2%. This error rate is low, but values are very scattered (resulting in a high 

standard deviation). A recognized sequence compare to the true one is shown on Fig. 

3. On this particular example, each state is correctly classified with a maximum delay 

of 40s. 

 

 
 

 
Fig. 3. Phases recognition of one video made by the HMM compared to the ground truth 

 

From Tab. 2., we see that state n°3 contains the bigger number of frames, and all 

confusions are always between neighbouring states. The most significant error is for 

state n°5, where the detection is around 75%. The highest accuracy (excluding the 

first and the last state) is for state n°4, where the detection reaches 95%. 

Table 2.  Confusion matrix for the surgical phases detection with the Viterbi decoder. Rows indicate the 
recognized surgical steps and columns the ground truth.  

 1 2 3 4 5 6 

1 5.68 0.97 0 0 0 0 

2 0 4.68 4.09 0 0 0 

3 0 0 72.99 0.12 0 0 

4 0 0 0.45 3.12 0.07 0 

5 0 0 0 0.04 3.31 0 

6 0 0 0 0 0.99 3.49 

4   Discussion 

In this paper, we proposed a framework that automatically recognizes surgical phases 

from microscope videos. The combination of SVMs and HMM showed a total 

accuracy of 93% of detected phases. 



4.1  Microscope video data 

As mentioned in [13], the information extracted from the OR must be discriminant, 

invariant to task distortion, compact in size and easy to monitor. Microscope video 

data meet all of these constraints. Image features are first very discriminant for scene 

information extraction, as the SVMs validation indicated. Secondly, within a same 

surgical environment, procedures are reproducible and image features are thus 

invariant to task distortion. This constraint addresses the issue of the adaptability of 

the system. Due to the different equipments in each department, the system could be 

not flexible. The solution would be to train dedicated image databases for each 

department which would be adapted to the corresponding surgical environment and 

microscope scene layout. The idea would also be to have several models for each type 

of procedure, adapting the scene information to be extracted and optimising the 

HMM. The third crucial parameter is the sample size which must be compact. Image 

signatures are composed of 40 features and are thus reduced. Finally, the real added 

value is the use of microscope videos. This device is not only already installed in the 

OR, but it has also not to be monitored by the staff. 

4.2  Accuracy of the detection 

We decided to use frames in a static way (without motion), and deliberately remained 

at a high level of granularity with the detection of phases. The recognition of lower 

level information, such as gestures, is difficult with microscope videos only. Spatio-

temporal features will have to be inserted for the segmentation of such information. 

The possible phases ―access to the tumor‖ and ―tumor removal‖ were fused 

because the transition between both was not clear due to similar tools and zooms. The 

confusion matrix showed that there was no main confusion and that the HMM was 

helpful for separating phases with same image features (like phase n°1 and n°5). 

The high recognition rates of binary SVMs, associated with their small standard 

deviations, indicates that they are very robust for images classification. Then 

graphical probabilistic models allow an efficient representation of the problem by 

modelling time varying data. This association permitted to obtain good detection 

accuracy.  

4.3  Clinical applications 

Workflow recovery might be helpful for various applications. Purposes are generally 

to bring a plus-value to the surgery or to the OR management. This work could be 

integrated in an architecture that would extract microscope frames and transform it 

into information helping the decision making process. For now, even with a low 

computation time (feature extraction/selection + classification < 0.5s), accuracy must 

definitively be higher than our results before establishing on-line surgical phase 

detection. 

However, the system could be introduced for video indexation. Surgical videos are 

very useful for learning and teaching purposes, but surgeons often don't use them 



because of the huge amount of surgical videos. The data-base would contain relevant 

surgical phases of each procedure for easy browsing. Moreover, we could imagine the 

creation of pre-filled reports that will have to be completed by surgeons. For such 

applications, even with few errors, the automatic indexation would be helpful, as there 

is no need of perfect detection and it has no impact on the surgery. 

5   Conclusion 

Using the proposed framework, we are now able to recognize the major surgical 

phases of every new procedure, by computing frames signatures, classifying scene 

information, and decoding SVMs outputs with the Viterbi algorithm. Thanks to this 

combination, we obtained high detection accuracy. We have validated this framework 

with pituitary surgeries. Six phases were defined by an expert, and we found a global 

accuracy of 93% of detected phases. This recognition process is a first step toward the 

construction of context-aware surgical systems. Currently, it could be used for post-

operative video indexation or reports generation. In future works, spatial image 

features will have to be mixed with other information (such as spatio-temporal 

features) to generate a more robust system. 
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