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Directed Differential Connectivity Graph of
Interictal Epileptiform Discharges

L. Amini, Member, IEEE, C. Jutten, Fellow, IEEE, S. Achard, O. David, H. Soltanian-Zadeh, Senior

Member, IEEE, G.A. Hossein-Zadeh, P. Kahane, L. Minotti, and L. Vercueil

Abstract—In this paper, we study temporal couplings between
interictal events of spatially remote regions in order to localize
the leading epileptic regions from intracerebral electroencephalo-
gram (iEEG). We aim to assess whether quantitative epileptic
graph analysis during interictal period may be helpful to predict
the seizure onset zone of ictal iEEG. Using wavelet transform,
cross-correlation coefficient, and multiple hypothesis test, we
propose a differential connectivity graph (DCG) to represent
the connections that change significantly between epileptic and
non-epileptic states as defined by the interictal events. Post-
processings based on mutual information and multi-objective
optimization are proposed to localize the leading epileptic regions
through DCG. The suggested approach is applied on iEEG
recordings of five patients suffering from focal epilepsy. Quanti-
tative comparisons of the proposed epileptic regions within ictal
onset zones detected by visual inspection and using electrically
stimulated seizures, reveal good performance of the present
method.

Index Terms—Epilepsy, functional connectivity graph, intrac-
erebral EEG, permutation-based multiple hypothesis test, wavelet
cross-correlation coefficient.

I. INTRODUCTION

Epilepsy is defined by the recurrence of epileptic seizures

associated with transient increase of hypersynchronous elec-

trical activity within relatively large neuronal networks which

may induce disruption of normal brain functioning. Patients

with epilepsy are usually considered to have two main brain

states: 1) the ictal state, of short duration, defined by epileptic

seizures, 2) the interictal state, representing the vast major-

ity of time, in the interval between two seizures. Several

dysfunctional regions are identified for epileptic patients: the

“irritative zone” (IZ) is the site responsible for interictal

epileptiform discharges (IEDs) generation and the “seizure
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onset zone” (SOZ) is the region where the first electrophysio-

logical changes are detected at ictal onset. Patients with drug-

resistant focal epilepsy can be considered for the resective

surgery. This surgical procedure is aimed at removing the

SOZ without creating neurological deficits. The best way

to delineate SOZ is to record seizures by using implanted

intracerebral depth electrodes providing intracerebral EEG

(iEEG). However, during iEEG recording, the number of

seizures is very limited and obtaining statistically reliable

results from studying seizure time intervals could be difficult.

Consequently, other complementary approaches like interictal

analysis to the SOZ localization remain warranted.

Relationship between SOZ and IZ has been the subject of

numerous studies [1]. There are several studies wondering

if quantitative analysis of interictal discharges can be used

to guide the surgical resection decision in addition to other

imaging and clinical information [2]–[9]. In most methods of

SOZ detection through the interictal brain connectivity, the

time periods involving IEDs are analyzed [5]–[7]. However,

a brain connectivity graph involved during an IED time

interval from high-density electrode array of iEEG recording is

very complicated to be interpreted. Conversely, searching for

discriminated connections between IED and non-IED states

may provide simpler interpretation of these complex graphs

and may focus on the nodes associated with epilepsy zone

(dysfunctional regions like IZ). Therefore, we focused on

the discrimination between IED and non-IED time intervals.

In this manuscript, we study the two following questions.

What are statistically significant brain connections differing

between IED and non-IED states, based on analyzing long

and high-density electrode array of iEEG recordings? Is there

any relationship between leading IED regions and SOZ?

A local increase of several connectivity measures during the

interictal period is reported in the literature [5], [10]. In this

paper, we hypothesize that the functional brain connectivity is

changing between IED and non-IED periods. For identification

of these discriminated connections between IED and non-

IED states, differential connectivity graph (DCG) is developed.

Assuming the leading IED regions (sources) be more impor-

tant than propagated IED regions (sinks) in SOZ detection

[2], [3], we study the directions of the DCG connections.

Directed DCGs (dDCG) related to different frequency bands

are calculated and characterized by an introduced emittance

measure. To identify the leading IED regions, a multi-objective

optimization method [11] is applied on the emittance values of

all of the dDCG nodes in all of the frequency bands studied.
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Results are quantitatively compared with SOZ visually defined

by epileptologists, and with SOZ reported by [12].

Rest of the paper is organized as follows. In Section II, we

describe different steps of the proposed method. Section III is

devoted to the data protocol, and experimental results of the

proposed method. The discussion is brought in Section IV.

Concluding remarks are presented in Section V.
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Figure 1. The main steps of the proposed method for the iEEG analysis.

II. METHODS

The steps of the method are as follows (Figure 1):

Step 1) DCG calculation;

Step 2) dDCG computation;

Step 3) dDCG characterization;

Step 4) Multiple graph analysis.

Below, we describe in more detail each step of the method.

A. Step 1: DCG calculation

Identification of discriminated connections from two sep-

arated IED and non-IED connectivity graphs is challenging

due to the following problems. Firstly, the classic method to

interpret the coupling results and define graph edges involves

comparison of coupling strength with a threshold value. The

resulting graph critically depends on the choice of threshold

[13]. Such graphs are not stable for IED or non-IED time

intervals (threshold may depend on the underlying observed

time interval) and their comparison with different thresholds

may not provide significant results. Secondly, comparing two

complex graphs of IED and non-IED time intervals to dis-

tinguish the discriminated connections is difficult. Thirdly,

the coupling between iEEG signals recorded from spatially

distributed regions during IED or non-IED periods may vary

in time and frequency [8], [14].

DCG is designed to solve these problems. Firstly instead

of analyzing each time interval separately, DCG searches for

statistically significant connections among large number of

IED and non-IED time intervals. Secondly instead of com-

paring two complex graphs to identify discriminated connec-

tions, DCG selects the connections whose coupling measures

change significantly between IED and non-IED states and

decreases the effect of common information in these states

like background activity. Thirdly by using permutation-based

multiple testing [15], the distribution of a test statistic related

Figure 2. Typical IED and non-IED time intervals from iEEG recordings.

to the coupling measure from different IED and non-IED

time intervals is estimated under null hypothesis to choose the

statistically significant connections for each related frequency

band. DCG calculation consists of three stages: IED identifi-

cation, coupling measure computation, and DCG construction.

1) IED identification: The IED and non-IED time intervals

are identified from the common sessions of iEEG recordings.

This is done manually by the epileptologist for each patient

considering all of iEEG channels. An IED period is a time

interval including one single IED or burst of IEDs. A non-IED

period is a time interval without any IED or abnormal event.

Two typical IED and non-IED time intervals are depicted in

Figure 2. There is a great overlap of physiological states for

IED and non-IED time intervals to decrease the probability of

detecting the discriminations in functional connectivity related

to the changes in physiological states. The mean of minimum

and maximum length of IED time intervals over patients are

equal to 460 msec and 6.4 sec, respectively. The number of

IED and non-IED periods are on average 304 and 174 per

patient, respectively, which provides statistically significant

results.

2) Coupling measure computation: Different linear, non-

linear or directed coupling measures [16] may be selected

between pairs of time series like wavelet correlation coefficient

[17]–[19], phase synchrony [20]–[22], and transfer entropy

[23]. In this paper, we focus on linear coupling and directional

properties are estimated by the estimation of the time delays.

We chose linear coupling since several studies indicate no

preference of nonlinear coupling measures over linear ones

during interictal period of EEG analysis [4], [5], [24]. We also

tested wavelet-Hilbert synchrony (nonlinear coupling) [22]

and found almost similar final results (leading IED regions)

confirming the latter studies. This result is not shown in

this paper. The frequency contribution of IED time intervals

is mostly in the range [2 60] Hz. In this range the fre-

quency contribution of IED time intervals is greater for lower

frequencies. Wavelet transforms which are are well-known

for analyzing non-stationary EEG signals [25], [26], provide

automatic frequency band selection which adapts narrower

bands for lower frequencies and larger bands for higher

frequencies. Furthermore, mother wavelets like Daubechies are

a proper choice for filtering IED signals due to the shape of
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the filter [26]. Consequently, although there are other possible

methods like filter banks, in this paper we prefer to use wavelet

transforms.

Here, our formal coupling measure is maximum wavelet

correlation-coefficient [18], [27] using the maximal overlap

discrete wavelet transform (MODWT) [17]. MODWT is a non-

decimated version of orthonormal discrete wavelet transform

(DWT) that relaxes orthogonality to gain properties like the

translation invariance. In contrast to DWT, the MODWT

coefficients are associated with zero phase filters that provide

consistent time-shift of MODWT coefficients with temporal

signals. In MODWT, the set of coefficients in each level

of decomposition includes the same number of samples as

the temporal signal minus the samples affected by boundary

effect. The start and end time points of IED and non-IED time

intervals in temporal signal are consistent with the MODWT

coefficients and these coefficients can be segmented according

to temporal labeling. This property does not hold for the DWT.

We assume N -dimensional observations X = [x1 . . . xN ],
where xi = [xi[1] . . . xi[T ]]

T
, the ith column of matrix

X ∈ R
T×N , contains T samples of the signal recorded

from the ith channel, and N is the number of channels

associated with bipolar iEEG electrode leads (see Section

III-A). h and g are respectively scaling and wavelet filters

of an orthonormal wavelet transform. The J-level MODWT

of xi is W J
i = MODWTJ [xi] = [cJ

i dJ
i . . . d1

i ] (c
j
i and d

j
i

are the approximate (scaling) and detailed (wavelet) coefficient

sequences) such that

∥∥W J
i

∥∥2
=

∥∥cJ
i

∥∥2
+

J∑

j=1

∥∥∥d
j
i

∥∥∥
2

(1)

W J
i is calculated recursively as:

c
j+1
i [k] = hj [−k] ∗ c

j
i [k], j = 0, . . . , J − 1 (2)

d
j+1
i [k] = gj [−k] ∗ c

j
i [k], j = 0, . . . , J − 1 (3)

where h0 = h, g0 = g, c0
i = xi, and * denotes convolution.

The MODWT scaling filter of level (j + 1) is the up-sampled

versions of the previous level:

hj+1[k] =

{
hj [k

2 ], k even

0, k odd
(4)

Wavelet coefficients of level j are associated with frequency

interval [ fs

2j+1 , fs

2j ], where fs is the sampling rate (Hz).

MODWT is applied on the whole processed signal for J

frequency bands providing wavelet coefficients, denoted as

J matrices M
j
X, j = 1, . . . , J (Figure 3). Then columns of

each matrix M
j
X are segmented into L1 IED and L2 non-

IED time intervals (Section II-A1) called segments. The N -

dimensional IED or non-IED segment m is denoted as Sl
m =[

sl
1m . . . sl

Nm

]
, m = 1, . . . , Ll. Ll and T l

m are the number

of time intervals or segments and the sample number of each

segment m, respectively. sl
im =

[
sl

im[1] . . . sl
im[T l

m]
]T

is

the ith column of matrix Sl
m ∈ R

T l
m×N that contains T l

m

samples of wavelet coefficients at a given frequency level

during IED or non-IED segment m. Figure 3 shows how to

extract Sl
m from X. In the following, the upper index l denotes

X

N

Txi

iEEG signals

wavelet M
j
X

N

T

j
=

1
.
.
.

J

d
j
i

J wavelet

coefficient matrices

sl
imT l

m

S1
m

N

T
1

m

m
=

1
.
.
.
L
1

s1im

S2
m

N

T
2

m

m
=

1
.
.
.
L
2

s2im

IED and non-IED

segment matrices

Figure 3. IED and non-IED segment matrices. The MODWT transform
is applied on the T samples of N -dimensional iEEG recordings, X, for the

J frequency levels providing J matrices denoted as M
j
X

, j = 1, . . . , J . xi

and d
j
i are the ith columns of matrices X and M

j
X

, respectively. d
j
i contains

wavelet coefficients of xi at frequency level j. Columns of each matrix M
j
X

(at each given level j) are segmented according to IED and non-IED time
intervals providing L1 and L2 matrices denoted as S1

m and S2
m, respectively.

T l
m is the number of rows of matrix Sl

m which is equal to the length of
each IED or non-IED segment m denoted as sl

im, where i = 1, . . . , N is the
channel index.

the IED (l=1) or non-IED (l=2) variable. The MODWT cross-

correlation coefficients [17] are estimated for each channel

pair (i, j) ∈ {1, . . . , N}
2
, i 6= j and during IED and non-IED

segments in terms of different time lags (τ ):

ρ̂l
m

(
sl
im, sl

jm, τ
)

=
ĉov

{
sl

im[k], sl
jm[k − τ ]

}
√

v̂ar(sl
im[k])v̂ar(sl

jm[k − τ ])
(5)

where ĉov and v̂ar [17] are estimated covariance and variance

(by empirical average), respectively. For each channel pair and

IED or non-IED segment, the maximum of MODWT cross-

correlation (5) is obtained as:

τ∗
ij = arg maxτ (

∣∣ρ̂l
m(sl

im, sl
jm, τ)

∣∣)
ρ̂lmax

m

(
sl
im, sl

jm

)
= ρ̂l

m(sl
im, sl

jm, τ∗
ij)

(6)

where ρ̂lmax
m , the maximal MODWT cross-correlation

(MMCC), is considered as our formal coupling measure. The

time causality, τ∗
ij between sl

im and sl
jm is the time lag in

which the maximum of the absolute value of ρ̂l
m

(
sl
im, sl

jm, τ
)

occurs. For non-stationary fractionally differenced signals (the

definition is given in [17]), the confidence interval of MODWT

cross-correlations can be approximated based on [17]. Here,

the non-stationary time series do not hold this particular

property, thus a permutation method is used as explained in

Section II-A3.

For each Sl
m, the coupling measure (MMCC), ρ̂lmax

m , cal-

culated for each channel pair (i, j) ∈ {1, . . . , N}
2
, provides a

square symmetric N × N matrix, Γl
m =

[
γl

m[i, j]
]
, where

γl
m[i, j] = ρ̂lmax

m

(
sl
im, sl

jm

)
. Due to the symmetry, only

entries of the upper triangle of matrix Γl
m are considered. We

build vector cl
m: as the concatenation of the upper triangle
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columns of Γl
m. cl

m: includes the MMCC between all of

channel pairs during IED or non-IED time interval m (Fig.

4). Length of cl
m: is the number of possible connections that

is Nc = N2−N
2 .

S1
m

N

T
1

m

m
=

1
.
.
.
L
1

Γ1
m

N

N

m
=

1
. . .

L 1

C1

Nc

L
1

S2
m

N

T
2

m

m
=

1
.
.
.
L
2

Γ2
m

N

N

m
=

1
. . .

L 2

C2

Nc

L
2

multiple testing DCG

Figure 4. DCG Construction at a given frequency band. Each wavelet
coefficient matrix of IED or non-IED segment m (m = 1, . . . , Ll), Sl

m ∈

R
T l

m×N provides one symmetric N×N coupling measure matrix, Γl
m. Each

Γl
m builds the mth row of the matrix Cl ∈ RLl

×Nc , which contains all of
the information concerning couplings between all of the possible connections
at each frequency level. The DCG connections are identified by comparing
C1 and C2, using multiple testing.

3) DCG construction [19], [28]: The scheme depicted in

Figure 4 demonstrates how to construct the DCG for a given

frequency band. We denote Cl = [cl
mn], m = 1, . . . , Ll, n =

1, . . . , Nc. Cl includes MMCC between activities recorded

from all of channels in the columns and during all of IED

or non-IED time intervals (temporal epileptic activities) in the

rows. C1 and C2 are served to a multiple hypothesis test for

testing whether or not to assign a connection between channels

i and j, (i, j) ∈ {1, . . . , N}
2

(denoted as connection n for

simplicity). We test the null hypothesis that the connection

n is unchanged under IED and non-IED states against the

alternative that their connection changes such that:
{

Hn
0 : µ1

n = µ2
n

Hn
1 : µ1

n 6= µ2
n

(7)

where µl
n is the average of cl

:n, which is the nth column of

matrix Cl. The test statistic tn for each connection n between

pair of nodes i and j is defined as:

tn =
µ̂1

n − µ̂2
n√

(bσ1
n)2

L1 +
(bσ2

n)2

L2

(8)

where µ̂l
n and

(
σ̂l

n

)2
are the empirical estimated mean and

variance of cl
:n, respectively. The simple and ideal method to

do each connection test is to assume a theoretical distribution

for the test statistic under null hypothesis. Since we do not

know the distribution of tn, we use permutation tests, which

require fewer assumptions about the data, thereby yielding

more reliable procedures by using data-based distributional

characteristics [15], [29].

We permute Np (number of permutations) times the cou-

pling measures computed for IED and non-IED groups. More

precisely, for each connection n, we permute Np times the

L1 + L2 entries of c1
:n and c2

:n, then regroup the first L1

and L2 entries as IED and non-IED groups, respectively. For

each permutation we calculate the test statistic tn according

to (8). The Np values of tn form a “permutation” distribution

to which we compare the observed tn of the original data

and estimate a raw p-value. The raw p-value is estimated as

the number of permutations which the absolute value of their

corresponding tn exceeds the absolute value of the observed

tn (calculated from the original data) divided by Np. Large

number of permutations (Np is experimentally chosen equal

to one million for about 5000 connections) may provide

better estimation of p-values. The total number of possible

permutations for L1 + L2 samples, with L1 and L2 samples

of each group is
(L1+L2)!

L1!L2! , i.e. in our experiment over 1050.

The Np permuted sets are chosen randomly from the sets of

possible permutations.

Permutation test relies on the assumption that the distribu-

tion of observations does not change by permutation under the

null hypothesis [29]. The permutation-based null distribution

can be correctly estimated when the number of IED and non-

IED time intervals are equal (balanced sample sizes) [15].

However, unbalanced number of samples can be problematic

when the sample size is small. Here, the number of time

intervals is unbalanced, but large (Table I). The permutation

tests computed for large unbalanced and balanced number

of samples show that the performance of the method is

comparable according to high similarity percentages between

the DCGs based on these two conditions. Similarity percentage

is defined as the normalized sum of common number of

significant or non-significant t-values over number of possible

connections.

For multiple testing, we need to control the abundance of

false positives [15] (significance level or type I error). Since

the probability of making type I error increases in multiple

testing, we adjust raw p-values in order to keep the probability

of making at least one type I error for the whole family of Nc

tests (family wise error rate) equal to α. Here, we focus on

adjusted p-values by Sidak step down method for controlling

family wise error rate [15]. For connection n, we reject the

null hypothesis in the test (7) when its related adjusted p-value

is less than or equal to α. The DCG is constructed by keeping

the connections whose MMCC values significantly change

between IED and non-IED time intervals. In the following, the

significant connections which
∣∣µ̂1

n

∣∣ >
∣∣µ̂2

n

∣∣ or
∣∣µ̂2

n

∣∣ >
∣∣µ̂1

n

∣∣ are

called positive or negative connections, respectively. A positive

or negative connection demonstrates respectively a significant

increase or decrease of coupling between channel pair (i, j)
(connection n) during IED state. For each interested frequency

band, a DCG is computed.

B. Step 2: Directed DCG (dDCG) computation

Here, we describe a simple method [19], [30] to estimate

the drive-response relationship between signals observed at the

nodes of DCG=(V,E). V and E represent the set of DCG
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vertices (or nodes associated with iEEG bipolar channels)

and edges (or connections), respectively. Let dj
a[k] and d

j
b[k]

denote the jth level MODWT coefficients (1)-(3) of signals

xa and xb observed at nodes a and b (a, b ∈ V ), where

k = 1, . . . , T , and T is the number of samples of the whole

processed iEEG recording.

We estimate the drive-response relationship between dj
a and

d
j
b signals assuming dj

a and d
j
b include sufficient large number

of samples. We presume dj
a causes d

j
b, if d

j
b follows the activity

of dj
a with a positive time delay. For each pair (a, b), we

compute τ
∗j
ab , the time delay between dj

a and d
j
b in which the

maximum of the absolute value of ρ̂(dj
a, d

j
b, τ) (5) occurs.

For each level j, dj
a (associated with xa) causes d

j
b (asso-

ciated with xb) if the time causality (τ
∗j
ab ) between dj

a and d
j
b

is negative. In this paper, we do not assume that the “transfer

function” between two signals emitted by two brain areas is

represented by pure delay, therefore we do not confine the

time causality to be the same for all of the frequency bands.

The time causality is used to estimate the direction of DCG

connections and calculate the emittance measure which is

described in the next step. For simplicity in the following,

we mark dj
a, d

j
b, and τ

∗j
ab as da and db, and τ∗

ab respectively.

C. Step 3: Characterization of dDCG

Nodes of dDCG are related to IED events including source

and sink nodes. In this step, we aim to characterize the dDCG

to identify the source nodes. To this end, we propose an

index called local information (LI) to measure the amount

of information that passes through each node locally. LI of

each node depends on (1) outgoing and incoming connections

incident the node (dDCG structure) and (2) the amount of in-

formation which is carried by each of these connections. This

information is calculated based on lagged mutual information

(MI) between the signal pairs observed at the two ends of the

connection.

Let Da and Db be two random variables with probability

density functions (PDF) pa(u), pb(v) and joint PDF pab(u, v).
The MI between Da and Db is defined as:

MI(Da, Db) =

∫ ∫
dudvpab(u, v) log

pab(u, v)

pa(u)pb(v)
. (9)

We assume samples of time series da = [da[1] . . . da[T ]]
T

and db = [db[1] . . . db[T ]]
T

as the observations of Da and

Db. By partitioning the supports of da and db into bins of finite

size and assuming ergodicity, MI (9) can be approximated as

the finite sum:

MI(Da, Db) ≈ MIbinned(da, db) ≡
∑

ij

p̂ab(i, j)log
p̂ab(i, j)

p̂a(i)p̂b(j)

(10)

where p̂a(i), p̂b(j), and p̂ab(i, j) are estimated densi-

ties obtained by relative frequencies. In the following

MIbinned(da, db) is simplified by MI(da[k], db[k − τ∗
ab]),

which emphasizes on the shift τ∗
ab between the two

time series da = [da[k + 1] . . . da[k + T ]]
T

and db =

[db[k + 1 − τ∗
ab] . . . db[k + T − τ∗

ab]]
T

. The local informa-

tion of node a ∈ V , denoted as LI[a], is then defined as:

LI[a] =
∑

Va→b

MI(da[k], db[k−τ∗
ab])−

∑

Vb→a

MI(da[k], db[k−τ∗
ab])

(11)

where Va→b = {b ∈ V − {a} | τ∗
ab < 0}. In theory, LI of the

source or sink nodes are positive or negative, respectively and

greater positive values demonstrate higher emittance contribu-

tion or greater strength of a source node. LI is zero when in

and out information flows are equal.

To know the accuracy of LI estimation, its variance is

estimated by jackknife resampling method. For each connected

node of dDCG, we calculate the LI (11) for Nw windows.

Let W be the window length and T the number of samples

of the whole processed signal. The start time of each window

is a random number in the range [1, T − W ]. The standard

deviation of LI for each connected node is approximated as

the standard deviation of Nw recomputed LI values.

D. Step 4: Multiple graph analysis

Using LI measure (11), the nodes of dDCG related to

each frequency level j can be quantified according to their

emittance contribution to the rest of graph. So far, we have

summarized the multivariate time-frequency knowledge of all

of the recorded spatial locations (nodes) into a univariate

index in each frequency band. Now, we ask whether a set

of optimum nodes can be selected considering the multi-

frequency local information. Since no preference is known

about the frequency bands, there is no unique solution, and

instead a set of solutions can be provided using multi-objective

optimization method (in the following we recall it Pareto

method) [11], [31]. This set of solutions is known as Pareto

front.

The information measure (11) is calculated for the con-

nected dDCG nodes of all of frequency levels, forming a

matrix LI = [LIj [n]] ∈ RN×J , n = 1, . . . , N , j = 1, . . . , J .

We denote LIj [:] the jth column of matrix LI including the

LI values of all of the nodes in the frequency level j. The

row n of the matrix LI, denoted LI:[n] is a J − dimensional

feature vector including the local information values of node

n in all of J frequency levels. The vector LI:[n] belongs to

the search space P ⊂ RJ . Roughly speaking, a Pareto optimal

set is a subset of N nodes whose LI:[n] is significantly large.

More precisely the Pareto optimal set denoted as D(P ) can

be obtained with the following algorithm. Let consider N J-

dimensional vectors, LI:[n] as N nodes in search space P .

1) initialize D(P ) with LI:[n0], n0 can be any node.

2) compare LI:[n] ∈ P , n 6= n0 with the members of D(P )
using the following conditions. In the first iteration the

only member of D(P ) is node n0.

a) if LI:[n] ≥ LI:[n0] for all of j levels, and LI:[n] >

LI:[n0] for at least one level j, then LI:[n0] is replaced

with LI:[n], since node n dominates node n0.

b) else if LI:[n] > LI:[n0] for at least one level j, then

LI:[n] is added to D(P ), since there is no preference

between nodes n and n0.
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3) increment n and go to previous step till n reaches to N .

4) the members of D(P ) are the Pareto optimal solutions

denoted as LI:[n∗] which build the Pareto front or esti-

mated leading IED (ℓIED) nodes.

There is no preference between the Pareto front solutions.

In order to rank these solutions, we focus on two techniques

[11]. In the first method, we select a solution from Pareto front

which locates closer to an ideal point. The ideal point, z =
[z1, . . . , zJ ] is compromised of the individual best values of

each dimension that is usually infeasible solution, and defined

as:
zj = maxn∈N∗(LIj [n])
N∗ = {n|LI:[n] ∈ D(P )}

(12)

Then we rank LI:[n∗] according to their increasing Euclidean

distance to z:

d(LI:[n∗], z) = (

J∑

j=1

∣∣LIj [n∗] − zj

∣∣2) 1
2 . (13)

The Pareto front solution with smaller value of d(LI:[n∗], z)
is preferred. The second method uses a utility function

U(LI:[n∗]) which allows to rank the LI:[n∗] vectors by

comparing their norms, e.g.

U1(LI:[n∗]) = ‖LI:[n∗]‖1 =
∑J

j=1 LIj [n∗]

U2(LI:[n∗]) = ‖LI:[n∗]‖∞ = max1≤j≤J(LIj [n∗])
(14)

The solution with greater utility function (norm) value de-

serves greater attention.

III. DATA AND RESULTS

A. Data

The iEEG recordings were obtained from five patients

suffering from focal epilepsy. The patients underwent pre-

surgery evaluations with the iEEG recordings. They are seizure

free after resective surgery. Eleven to fifteen semi-rigid multi-

lead intracerebral electrodes with 0.8 mm diameter were bilat-

erally implanted in suspected seizure origins based on clinical

considerations. The multi-lead electrodes (Dixi, Besançon,

France) include 5, 10, 15 or 18 leads. Each lead has 2 mm

length and is evenly spaced with inter-space of 1.5 mm. The

iEEG were recorded with an audio-video-EEG monitoring

system (Micromed, Treviso, Italy) with a maximum of 128

channels and digitized at 512 Hz. The electrode leads were

recognized on the patient’s implantation scheme, and localized

in the Montreal Neurological Institute (MNI) atlas. Bipolar

derivations were considered between adjacent leads within

each electrode. For simplicity, these adjacent bivariate deriva-

tions are represented as ei instead of ei+1 − ei. The 50 Hz is

removed by a 5-order notch Butterworth filter with 3dB cut-off

frequencies equal to 48 Hz, and 52 Hz.

B. Results

1) Directed DCG: The parameters of the patients’ iEEG

and method are reported in Tables I and II, respectively. Here,

we report the results of the proposed method in steps 1 and

2. The dDCGs are calculated for the frequency bands with

high contribution during IED and non-IED time intervals. We

Table I
PARAMETERS OF THE PATIENTS’ IEEG. N : NUMBER OF THE BIPOLAR

CHANNELS; T : LENGTH OF THE ORIGINAL (NON SEGMENTED) IEEG
SIGNAL (MINUTES); Nc : NUMBER OF POSSIBLE CONNECTIONS; Ll :

NUMBER OF IED OR NON-IED TIME INTERVALS.

P1 P2 P3 P4 P5 mean
N 104 105 111 109 100 106
T (minutes) 61 56 42 90 66 55.44
Nc 5356 5460 6105 5886 4950 5551
L1 298 614 223 160 223 304
L2 143 200 195 183 148 174

Table II
PARAMETERS OF THE METHOD. τmax : MAXIMUM NUMBER OF TIME LAGS

(SAMPLES) IN CROSS-CORRELATION ANALYSIS; fs : SAMPLING RATE; Np :
NUMBER OF PERMUTATIONS; Nw : NUMBER OF WINDOWS; W LENGTH OF

EACH WINDOW (MINUTES); Nb : NUMBER OF BOOTSTRAP REPETITIONS.

Method parameter
Wavelet filter ‘la8’ fs (Hz) 512
Number of wavelet levels 5 Np 106

False positive rate (α) 0.05 Nw 100
τmax in step 1 27 W in step 3 33
τmax in step 2 100 Nb 104

analyze the data from 2-64 Hz in five frequency bands: 2-4,

4-8, 8-16, 16-32, and 32-64 Hz. These frequency bands can be

assigned to EEG rhythms as following: 2-4 Hz: delta, 4-8 Hz:

theta, 8-16 Hz: alpha, 16-32 Hz: beta, and 32-64 Hz: gamma.

The related dDCGs are shown in Figure 5 for iEEG analysis

of patient 2 (P2). The nodes are iEEG channels related to

bivariate derivations of the leads of each electrode and edges

represent connections between nodes. The solid and dashed

lines show the positive and negative connections, respectively.

The effect of large balanced and unbalanced (Section II-A3)

number of time intervals (L1 and L2) in multiple testing is

verified by comparing the DCG constructed with unbalanced

number of time intervals and ten (an arbitrary choice) DCGs

with random balanced number of time intervals. The bal-

anced number of time intervals is fixed equal to the smaller

number of IED and non-IED time intervals (min(L1, L2)).
Say L2 = min(L1, L2), therefore L2 IED time intervals

are chosen randomly among L1 IED time intervals and the

related DCG is constructed. We repeated this procedure ten

times. The similarity percentage (Section II-A3) is calculated

between the original DCG-based unbalanced number of time

intervals and ten recalculated DCG-based balanced number of

time intervals. The mean of these ten percentages for P1 at

frequency band equal to 4-8 Hz is 97.2%± 0.3. This result

shows that the large unbalanced number of time intervals is

not problematic for the permutation test [15]. To verify the

reliability of DCGs for different random sets of IED time

intervals, the similarity percentage between each pairs of ten

recalculated DCGs is obtained. The mean of these 45 ( 102−10
2 )

similarity percentages for the same patient and frequency band

is 96.9%± 0.25.

2) ℓIED regions: The LI measure (11) is calculated for the

dDCG nodes of all of the frequency bands studied. Nodes with

negative LI values are discarded since we are not interested

in target (sink) nodes [2]. The multi-objective optimization

method is applied on normalized LI measurements ([0, 1]) to

obtain the Pareto front or estimated ℓIED nodes. The LI values
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(a) (b) (c)

(d) (e) (f)

Figure 5. Results of the proposed method for P2. (a)-(e) dDCG (steps 1 and 2) of different frequency bands from 2-64 Hz. These dDCGs are quantified
by LI measure (11) in step 3. A multi-object optimization method in step 4 optimizes these LI measure values to estimate the ℓIED regions. (f) Web plot
of estimated ℓIED nodes for P2: nodes 70, 71 and 72 located in left anterior hippocampus. The three related pentagons of LI:[70], LI:[71], and LI:[72] are
depicted in solid, dashed, and dotted lines, respectively.

of a node for five frequency bands can be considered as a five-

dimensional vector (LI:[n]), which can be demonstrated with

a pentagon in two-dimensional space in a web plot. For the

iEEG analysis of P2, three nodes: 70, 71, and 72 located in left

anterior hippocampus are obtained as the optimum solutions

(LI:[n∗]) and their pentagons are depicted with solid, dashed,

and dotted lines, respectively in Figure 5(f). The values of

LI:[70], LI:[71], and LI:[72] are reported in Table III.

To rank the estimated ℓIED nodes, three indices are cal-

culated (Section II-D). The values of these three indices are

reported for the Pareto front of the iEEG analysis of P2

in Table IV. The reported normalized LI values reveal the

importance of nodes 71 and 72 rather than 70. Nodes 71

and 72 have greater contributions in lower frequencies, while

node 70 is mostly active in higher frequencies (Table III). In

this patient (P2), all of the Pareto front nodes belong to one

brain region. Conversely, the Pareto front of other patients

(P3 and P4) include different brain regions (Table V) which

the rank of estimated ℓIED regions reveals more challenging

knowledge. Sorting the estimated ℓIED regions may provide

valuable information to the epileptologist toward reducing the

brain regions that are resected in resective surgery.

The estimated ℓIED regions are almost insensitive to the

different parameter settings like different values of maximum

time lags in DCG calculation. Accordingly, the ℓIED regions

based on DCGs with large balanced, or unbalanced number of

time intervals are almost similar. The probable minor changes

in the set of ℓIED regions belong to the least priority regions.

3) Comparison between SOZ defined by visual inspection,

the method proposed in [12], and estimated ℓIED regions for

P1 to P5: The quantitative comparison of results between

SOZ defined visually (vSOZ) by epileptologist and estimated

ℓIED regions computed by our method are brought in Table

V for the five patients (P1 to P5). The different quantitative

measures are as follows. First, dis (mm) is the average of

minimum distances between ℓIED and vSOZ nodes, in which

the proximity of the ℓIED nodes to vSOZ nodes is measured.

The average of dis over five patients is 6.4 mm. This indicates

the accuracy of agreement between vSOZ and estimated ℓIED

regions. Second, ovp (%) is the average percentage of number

of ℓIED nodes which are in the neighborhood (≤ 1.5 cm)

of at least one of the vSOZ nodes. The large percentage of

ovp reveals that a large number of ℓIED nodes are in the

neighbourhood of at least one of vSOZ nodes. Third, ovp2
(%) shows a similar percentage as ovp except ovp2 considers

the vSOZ nodes which are in the neighborhood of at least

one of the ℓIED nodes. We found an average of 84.4% and

84.8% over patients for ovp and ovp2, respectively. Removed

regions during resective surgery are reported for P1 to P5 in

Table V. All of the five patients are completely seizure-free

after surgery and the estimated ℓIED regions are included in

the resected regions for all of the patients. This result confirms

that ℓIED regions can be valuable in pre-surgery evaluations

while regions related to secondary propagated activity (sink
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nodes) might not be necessary to be removed [2], [3], [6].

To investigate the performance of our proposed method, we

compare the ℓIED regions estimated from interictal periods

with SOZ proposed by [12] from induced ictal periods by

electrical stimuli (eSOZ) of iEEG recordings (Table V). The

results are compared for three common patients (P1 to P3).

There are more common regions between estimated ℓIED

regions and vSOZ than between vSOZ and eSOZ. For two

other patients, P4 and P5, this comparison was not possible. P4

recently underwent surgery and eSOZ results were not avail-

able. The SOZ of P5 cannot be defined by the eSOZ method

since no seizure occurred by stimuli during iEEG recordings.

Conversely, our method estimates the vSOZ correctly (middle

short gyrus of insula) without using seizure periods, instead

using IED and non-IED time intervals. This patient (P5) has

the most focused vSOZ and resected region among all of the

patients.

The proposed method estimates the ℓIED regions, congruent

with vSOZ, requiring simpler, faster, and less expensive iEEG

recording comparing to eSOZ method which requires induced

seizure periods. For the patients in whom no seizure occurs

during the stimuli, the estimated ℓIED regions can be valuable.

Table III
NORMALIZED LI MEASURE VALUES FOR PARETO FRONT NODES OF P2.

Pareto front 2-4 4-8 8-16 16-32 32-64
70 0 0 0 0.08 0.09
71 1 0.26 0 0.1 0
72 0.7 0.48 0.27 0.04 0

Table IV
RANKED PARETO FRONT NODES FOR P2. FIRST AND SECOND COLUMN

VALUES ARE NORMALIZED TO THEIR MAXIMUM VALUE.

Pareto front d(LI:[n∗], z) ‖LI:[n∗]‖1 ‖LI:[n∗]‖∞
source1 72 0.28 72 1 71 1
source2 71 0.32 71 0.91 72 0.7
source3 70 1 70 0.12 70 0.09

IV. DISCUSSION

A. Maximum of cross-correlation function

The variation of calculated MMCC (5)-(6) for different

time windows (IED or non-IED time intervals) can be due

to the estimation error and to the variability of the signal pair

couplings between two brain regions in time and frequency.

Since our signals are non-stationary, the estimation of the

variance of MMCC is very complicated. To overcome this

difficulty, we used multiple testing based on permutation

to estimate the distribution of the test statistic (8) related

to MMCC providing a reliable procedure for detecting the

statistically significant connections (Section II-A3).

For a better estimation of MMCC, we studied experimen-

tally the effect of the different parameters on the variance of

MMCC estimation. Here, we explain the effect of maximum

number of time lags (τmax ≥ |τ |) in cross-correlation estima-

tion [32], [33], and how τmax is chosen experimentally for

different steps of the method. Generally, in cross-correlation

computation (5), τmax is suggested to be large enough to in-

clude the true lag between a signal pair. Conversely, increasing

the number of time shifts (τmax) inflates the confidence in-

terval of correlation estimation for non-stationary fractionally

differenced signals [17]. Although our non-stationary signals

do not hold this particular property, our experimental results

for MMCC estimation confirmed the above statement, i.e.

increase of maximum number of time lags, and decrease of

number of samples may increase the variance of MMCC

estimation. Here we explain our experimental results for non-

stationary signals. The similarity percentage (Section II-A3)

between DCGs based on τmax = 27 and 100 samples (the

reason of these choices are explained later in this Section)

are compared for two patients (P1 and P2). The similarity

percentage decreases in lower frequencies for both patients.

Contrary to τmax = 100, less empirical variance of MMCC

and more number of connections is provided by τmax = 27,

especially for lower frequencies. The empirical variance is the

variance of estimated MMCC of different IED or non-IED

time intervals along the processed time signal. One reason for

increase of variance can be the decrease of the number of

samples especially in lower frequencies where the number of

independent samples decreases.

Eventually a proper selection of τmax can be the smallest

maximum number of time lags examined in cross-correlation

analysis including the true lag [32]. Satisfying this condition

requires the physiological knowledge about the time lags

between interictal events recorded from different recording

electrode leads [34]. This physiological lag can be at most

100-200 msec i.e. about 50-100 samples with fs = 512 Hz,

typically less than 50 msec i.e. about 25 samples [2].

In the first step of our method, the aim is to estimate the

maximum coupling between each signal pair during IED and

non-IED time intervals. In this step, the smallest maximum

number of time lags examined in cross-correlation analysis

including the assumed true lag (about 25 samples) [2] is

selected equal to 27 samples. Although we observe high sim-

ilarity percentages between DCGs-based 27 and 100 samples

and almost similar final results (estimated ℓIED regions), we

prefer τmax = 27. Using τmax = 27 provides more proba-

ble connections (less conservative) and less time consuming

procedure in the first step. We prefer to be less conservative

and more powerful in the first step to identify as many

discriminated connections as possible. Once such connections

are found, a higher level processing (steps 2 to 4) is adopted

to extract nodes with optimum emittance contribution.

B. Time causality

In the second step, large number of samples, T (Table I) is

selected for better estimation of MMCC. By using τmax = 27
samples, we cannot determine the time causality for a part of

the edges of DCG especially in low frequencies (no maximum

cross-correlation can be found in the range [−τmax τmax]),
therefore the estimation of ℓIED regions would be based on

the rest of the edges of DCG. In other words dDCG based

on τmax = 100 samples has more common number of edges

with DCG compared to τmax = 27 samples. Consequently, in
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Table V
COMPARISON BETWEEN ℓIED REGIONS ESTIMATED BY OUR METHOD, SOZ DETECTED BY USING INDUCED SEIZURE PERIODS BY ELECTRICAL STIMULI

(ESOZ) FOLLOWING [12] AND VISUALLY INSPECTED SOZ (VSOZ) BY EPILEPTOLOGIST. dis (MM): THE AVERAGE OF MINIMUM DISTANCES BETWEEN

ℓIED AND VSOZ NODES; ovp: THE AVERAGE PERCENTAGE OF NUMBER OF ℓIED NODES WHICH ARE IN THE NEIGHBORHOOD (≤ 1.5 CM) OF AT LEAST

ONE OF THE VSOZ NODES. ovp2: THE AVERAGE PERCENTAGE OF NUMBER OF VSOZ NODES THAT ARE IN THE NEIGHBORHOOD (≤ 1.5 CM) OF AT

LEAST ONE OF THE ℓIED NODES; BOLD REGIONS DEMONSTRATE THE UNCOMMON REGIONS BETWEEN VSOZ AND ℓIED REGIONS. REMR: REMOVED

REGIONS DURING RESECTIVE SURGERY; NA: NOT APPLICABLE; AMYG: AMYGDALA; ANT/POST/INT/SUP: ANTERIOR/POSTERIOR/INTERNAL/SUPERIOR;
ENTC: ENTORHINAL CORTEX ; HC: HIPPOCAMPUS; PHCG: PARAHIPPOCAMPAL GYRUS; T: TEMPORAL; TP: TEMPORAL POLE; M: MESIAL; G: GYRUS;

MIDINSG: MIDDLE SHORT GYRUS OF INSULA.

ℓIED vSOZ eSOZ remR dis %ovp %ovp2
P1 antHC pHcG amyg ant/postHC pHcG amyg mTP postHC ant/postHC pHcG amyg TP antsupTG 9.57 60 60
P2 antHC ant/postHC pHcG amyg ant/postHC ant/postHC pHcG amyg TP 0 100 85
P3 ant/postHC ant/postHC pHcG antHC ant/postHC pHcG TP 4 100 100
P4 ant/postHC amyg entC ant/postHC amyg mTP entC - ant/postHC amyg TP entC 12.91 62 79
P5 midInsG midInsG NA midInsG 5.32 100 100

mean 6.4 84.4 84.8

this step we chose τmax = 100 samples that is the upper limit

of physiological time lag [2].

C. Reliability of the time causality

To test the reliability of time causality calculated in (6)

a statistical jackknife method is used as computed for the

accuracy of LI in Section II-C. All of the parameters are

the same (Table II) except W that is equal to 20 minutes.

The window length W is considered large enough to include

large number of IED time intervals. The time causality (6)

is estimated for each of randomly chosen windows providing

Nw time lag values, which form a histogram-based probability

distribution. For each edge of DCG between node pairs (a, b),
this histogram is estimated and the time lag, τ̄∗

ab which has

the greatest probability is chosen. For each edge, we test if

the Nw time lag values are significantly non-equal to zero.

If the time lag values are significantly equal to zero then τ̄∗
ab

is set to zero, i.e. the direction of the edge between node

pairs (a, b) could not be estimated. For the statistical test a

bootstrap method with Nb repetitions and false positive error

α is used (Table II). We compare the τ̄∗
ab values with the τ∗

ab

estimated (6) between the signals of length T . The percentage

of similar time lags (τ̄∗
ab × τ∗

ab > 0) over number of edges of

DCG is in the range [78 95]% for different frequency bands.

Consequently, (6) can provide reliable estimation of the most

probable time lag between signal pairs of DCG edges if it

is calculated for long enough signals and if τmax is selected

properly.

D. Directed graph characterization

LI measure is introduced to define source and sink nodes

of a directed graph based on in and out information flow of

each node. The classic graph measures like local efficiency,

global efficiency, and node degree [19], [28], [35] are not as

informative as LI for the definition of source and sink nodes of

directed graphs. The main advantage of LI over these classic

measures is that first it considers the incoming connections to

the node in addition to outgoing ones, second it considers the

information which is carried by each of these connections. A

quantitative comparison between LI and classic graph mea-

sures is investigated in [36].
The conditional mutual information (CMI) was used in [23]

to calculate the directional coupling measure between signal

pairs (transfer entropy). Here CMI cannot be used since we

are interested in measuring the information passing through

each node, which is computed by LI .

E. Multiple graph analysis

dDCG provides sparser graph comparing to separated IED

and non-IED complex graphs and may provide simpler inter-

pretation, but still concluding to ℓIED regions from the dDCGs

of different frequency bands needs careful analysis. Proposed

LI measure characterizes the dDCG nodes related to differ-

ent frequency bands. To summarize these multi-frequency in-

formation, an optimization method to introduce the optimum

nodes based on their LI values is helpful. Since the preference

between frequency bands is unknown, a multi-objective opti-

mization method [11], [31] is well-suited to find the optimum

nodes, i.e. a subset of nodes with greater LI values in at least

one of the frequency bands. Using multi-objective optimization

method, the optimum source nodes or ℓIED regions are de-

duced from multiple (multi-frequency) dDCGs. In general we

found multi-objective optimization method very helpful for the

interpretation of multiple graphs. The optimization method can

be applied on any feature extracted from the graphs depending

on the application.

V. CONCLUSION

In this paper, we aim to localize SOZ by estimating the

leading brain regions involved in the generation of transient

epileptic events considering both IED and non-IED time in-

tervals, i.e. even if seizures are not present. For this purpose,

we propose a new tool: directed differential connectivity graph

(dDCG) to identify the discriminated connections between the

IED and non-IED states. The dDCG is statistically reliable due

to the permutation resampling method [15] and large number

of IED and non-IED time intervals. To determine source and

sink nodes of dDCG, we introduced a local information mea-

sure LI . The LI information of dDCGs related to different

frequency bands is summarized by multiple graph analysis to

estimate the leading IED regions.

The proposed method is applied on iEEG recording of five

epileptic patients and compared with visually inspected SOZ

by the epileptologist and also with SOZ reported by [12] from

induced ictal periods by electrical stimuli of iEEG recordings
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of the same patients. We obtained congruent results between

estimated ℓIED regions and SOZs. Moreover, estimated ℓIED

regions are included in the removed regions (column remR of

Table V) during resective surgery. All of the patients being

seizure free after resective surgery, one can conclude that es-

timated ℓIED regions may present reliable information for the

surgeon which should be useful for presurgical evaluations.

Thus, the proposed method can provide efficient and repeat-

able analysis from iEEG recordings of epileptic patients.

A first perspective which leads to a fully automatic method

is to replace the visual IED and non-IED labeling with au-

tomatic methods. Secondly, we are interested in considering

large number of patients including the patients with primary

failure surgery results and secondary seizure-free surgery out-

put to test the performance of the method for difficult cases.

Finally, in the present method we are able to study the re-

gions which the iEEG electrodes cover. Due to the difficulties

of invasive electrodes, only limited suspected epileptic zones

can be studied [1]. A very challenging perspective is to use

an inverse model for localizing epileptic regions from non-

invasive scalp EEG recordings.
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