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Abstract  

Subcortical-cortical interactions in the language network were investigated using dynamic 

causal modeling of MEG data recorded during auditory comprehension. Participants heard 

sentences which were either correct or contained violations. Sentences containing violations 

had syntactic or prosodic violations or both. We show that a hidden source, modeling 

magnetically silent deep nuclei, is required to explain the data best. This is in line with recent 

brain imaging studies and intracranial recordings suggesting an involvement of subcortical 

structures in language processing. Here, the processing of syntactic and prosodic violations 

elicited a global increase in the amplitude of evoked responses, both at the cortical and 

subcortical levels. As estimated by Bayesian model averaging, this was accompanied by 

various changes in cortical-cortical and subcortical-cortical connectivity. The most consistent 

findings in relation to violations were a decrease of reentrant inputs to Heschl’s gyrus and of 

intercallosal lateral connections. These results suggest that in conditions where one 

hemisphere detects a violation, possibly via fast thalamo-cortical (HG) loops, the intercollosal 

connectivity is reduced to allow independent processing of syntax (left hemisphere) and of 

prosody (right hemisphere). This study is the first demonstration in cognitive neuroscience 

that subcortical-cortical loops can be empirically investigated using noninvasive 

electrophysiological recordings. 
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Introduction 

The neural basis of language comprehension, taken to comprise Broca's area in the left 

inferior frontal gyrus (IFG) and Wernicke's area in the left superior temporal gyrus (STG), has 

been modeled mostly without considering deeper, subcortical structures (Friederici, 2002; 

Hickok & Poeppel, 2007). An exception is the study by Ullman (2004), which considers the 

involvement of the basal ganglia (BG). From patient studies (Raymer et al., 1997; Metz-Lutz 

et al., 2000) and functional magnetic resonance imaging (fMRI) studies (Fiebach et al., 2004; 

Mestres-Misse et al., 2008), it is clear that subcortical structures such as the BG and the 

thalamus also play a crucial role in language processing. The BG and the thalamus interact 

with cortical regions through many loops, including prefrontal, premotor, parietal and 

temporal cortices (Crosson et al., 1997). While the role of the caudate as part of the BG is 

seen in language control (Crinion et al., 2006), intracranial recordings have identified the 

thalamus as being engaged in the detection of syntactic and semantic violations in spoken 

sentences (Wahl et al., 2008). This suggests that an adequate model of language 

comprehension should consider subcortical contributions.  

In electroencephalography (EEG) or magnetoencephalography (MEG), it is impossible to 

reconstruct the allocation, orientation and — without taking into account interactions between 

brain regions — activity of a source that has no direct impact on the scalp sensors (i.e., most 

deep brain structures). Here, we profit from the latest advances in modeling of MEG evoked 

responses using neural mass models to estimate the activity, topology and effective 

connectivity of cortico-subcortical loops during auditory speech comprehension. 

Dynamic causal modeling (DCM) for MEG evoked responses (Kiebel et al., 2006) uses 

interacting neuronal populations to reproduce the activity of brain regions. Neuronal current 

densities are projected into the MEG channel space using a source and a head model. This 

combined model is then inverted to reconstruct brain dynamics with biological constraints 
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explaining the measurement. Most importantly here, we investigate the feasibility of the DCM 

method to estimate hidden source activity. First, using simulations, we show that DCM 

distinguishes correctly between situations where no hidden source was present and situations 

where a hidden source relayed relevant information between cortical regions. DCM can thus 

be used to detect the presence of hidden sources. Second, we study actual MEG evoked 

responses during language processing with DCMs which either include an assumed hidden 

source, or not. The hidden source is assumed to correspond to the thalamus and the respective 

thalamocortical loops based on data from intracranical recordings with similar language 

material (Wahl et al., 2008). Using model comparison, we demonstrate from the MEG data 

that a deep source is a crucial part within the language network, probably as a moderator 

between the other cortical regions. 

Materials & Methods 

Stimuli 

The study involved four crucial experimental conditions crossing the factors syntax and 

prosody: (1) CC, prosody correct and syntax correct, (2) CS, prosody correct and syntax 

incorrect, (3) PC, prosody incorrect and syntax correct, (4) PS, prosody incorrect and syntax 

incorrect. Each condition contained 48 sentences. Each sentence consisted of a proper name 

(e.g., Maria) and the verb weiß [knows] comprising the matrix clause. Then, a subordinate 

clause was attached that was always introduced by the complementizer dass [that] and 

followed by the subject (e.g., der Rentner [the pensioner]) of the subordinate clause. The 

penultimate constituent of the subordinate clause was always a prepositional phrase (PP) 

consisting of a preposition (e.g., im [in–the]) and the critical word (e.g., Alter [seniority]), 

followed by the verb of the subordinate clause (e.g., kränkelt [ails]) at clause-final position. 

German words which are ambiguous regarding word category until their ending (either verbal 



 5 

suffix or nominal suffix) served as critical words. A nominal suffix (suffix –r) was highly 

expected due to the preceding preposition (im [in–the]) (requiring a noun) and a frequency-

based bias of the critical word-stems towards the usage as a noun. Nevertheless, given that 

there was an equal probability of occurrence for both suffix types in the present experiment, a 

final successful determination of word category could not be achieved until the suffix of the 

critical word was encountered. Therefore, at the suffix, the critical word was disambiguated 

towards being a noun (e.g., marked by the suffix –r), making a syntactically correct 

continuation of the PP (syntax correct), or towards being an inflected verb (e.g., suffix –rt), 

which would lead to a word category violation (syntax incorrect) because a preposition must 

be followed by a noun. 

To avoid possible strategic effects resulting from the fact that the occurrence of the critical 

stem with verb suffix always coincided with a syntactical error in the two experimental 

conditions, we included two syntactically congruent filler conditions in which the critical 

word stem occurred together with a verb-suffix in the correct context (e.g., Filler 1: Maria 

weiß, dass der Rentner im Rollstuhl altert. [Maria knows that the pensioner in the wheelchair 

grows-old], Filler 2: Maria weiß, dass der Rentner altert. [Maria knows that the pensioner 

grows-old]). All critical words were disyllabic, carrying the default (trochaic) stress pattern. 

Both filler conditions were naturally recorded. In order to create the sentences for the four 

experimental conditions, we recorded the required words in different source sentences (for 

details see Eckstein & Friederici; 2006). The same splicing procedure was used to create the 

correct and incorrect sentences to avoid a general effect of the splicing itself. The first part of 

the sentence (e.g., Maria weiß, dass der Rentner im [Maria knows that the pensioner in-the]) 

preceding the critical region as well as the sentence-final verb (e.g., kränkelt. [ails.]) was 

identical for all four experimental conditions. The number of splicing points and their 

positions were also identical between the four experimental conditions. 
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For the acoustical characterization of the stimuli, we decided to examine fundamental 

frequency and word durations for each sentence and condition; see Eckstein & Friederici 

(2006) for details. Descriptively, the f0-contour for critical words in the prosodically correct 

conditions marked for sentence continuation (CC and CS) showed a rise–fall pattern (see 

online Supplementary Materials Figure S1). Prosodic violations (PC and PS) showed the 

reverse fall-rise pattern. 

Participants 

We tested eleven participants (mean age 26 years; range from 20 to 31 years of age; four 

women) after they had given informed consent. All were right-handed and reported no 

neurological, hearing or language impairments. Participants were paid 7 Euro/hr. Participants 

listened to the sentences had to judge the grammaticality of each them. Answers were given 

by button presses 1500ms after the end of the sentences. Button answer assignments were 

randomly varied by presenting two pictures with equal probability each. One had a smiley at 

the right hand side and subjects had to press the right button to mark a correct sentence – the 

other picture had the smiley at the left hand side. 

MEG data recording 

Measurements were conducted using a Vectorview MEG device (Elekta-Neuromag Oy, 

Helsinki, Finland). Data were first cleaned of interference and transformed into a fixed head 

position via MaxMove-Software © Elekta-Neuromag. Trial-based epochs exceeding 80 µV 

(EOG), 4 pT (MEG) or 200 fT/cm amplitude variation within the epoch from -200 ms to 

800 ms were excluded from further analysis. Subsequently, data were band-pass filtered from 

0.8 to 5 Hz. Averages time-locked to the onset of the critical word's suffix were computed for 

each subject and the four conditions.  
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DCM specification 

Elaborating on the work of Wahl et al. (2008), we studied language processing DCMs which 

either include or do not include a deep source possibly representing the thalamus and the 

respective cortico-subcortical loops (Figure 1). The cortical areas considered are Heschl's 

gyrus (HG, primary auditory cortex), the mid-to-anterior superior temporal gyrus (STG) and 

the opercular structure in the IFG because they were identified using a cortically distributed 

source reconstruction (Maess et al., 2010) (see online Supplementary Materials Figure S2). 

As a control of DCM model complexity that may facilitate data fitting when a hidden source 

is used, we also investigated the consequence on model evidence of using, instead of the deep 

source, an additional cortical source that was not primarily identified using source 

reconstruction. We used the anterior cingulate cortex (CG) for that purpose. The cortical 

interconnections were based on the following findings: (i) A large number of sentence 

comprehension studies specified the inferior portion of pars opercularis/frontal operculum 

(FOP) and STG bilaterally to be involved in the processing of syntactic violations (Friederici, 

2002); (ii) Structural and effective connectivity data have demonstrated that HG connects to 

the lateral planum polare and the STG as well as to the planum temporale and the posterior 

STG (Upadhyay et al., 2008) and the STG connects to the FOP (Friederici et al., 2006). The 

respective areas (HG, STG, FOP) of the left hemisphere (LH) and right hemisphere (RH) are 

connected via the corpus callosum (Huang, 2005), which was shown to be responsible for the 

functional interplay of the two hemispheres during auditory sentence comprehension 

(Friederici et al., 2007). 

DCM analyses focused on slow evoked components, occurring between 0 and 500 ms peri-

stimulus time, which compose the ELAN waveform as suggested by data from Wahl et al. 

(2008). Six regions were modeled using an equivalent current dipole (ECD) a priori 

positioned using MNI coordinates: Heschl’s gyrus [-/+ 48;-9;7]; anterior superior temporal 
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gyrus [-/+ 35;0;3]; frontal operculum [-/+ 54;16;-4]. The hidden source was simply modeled 

using an ECD, positioned at [0;0;0] so that it did not project to the scalp assuming a spherical 

head model. Alternatively, as a control of DCM overfitting, the hidden source was replaced 

by CG [0;36;28]. Regions were interconnected with forward, backward and lateral 

connections as described in David et al. (2005, 2006). 

Other DCM parameters were: eight modes for data selection, one discrete cosine transform 

(DCT) component to remove slow drift, Hanning windowing to remove the effect of very late 

responses, a downsampling of 2 to speed up computations, no constraint of symmetry on the 

orientation of ECD, no modulation of intrinsic connections. DCM parameters were fitted on 

the four conditions at once (CC, CS, PC, PS). Differences between conditions were obtained 

by allowing all extrinsic connections to be modulated. Extrinsic connections were modified 

between the different models but respected some basic features (Figure 2): (i) all models were 

LH-RH symmetric and the auditory stimulus input, whose estimated parameters model first 

relays within inferior colliculus and medial geniculate nuclei (MGN) (Hackett, 2010), was 

entered on HG, which was at the bottom of the cortical hierarchy; (ii) STG and FOP were 

second and third in the cortical hierarchy, respectively, as embodied using forward and 

backward connections; (iii) HG, STG and FOP were laterally connected assuming callosal 

communication between corresponding regions in the two hemispheres; (iv) the deep source, 

which embodies reentrant cortical-subcortical loops that take place after the first flow of 

information passing through the MGN and HG, was arbitrarily assumed between HG and 

STG in the hierarchy.  

Please insert Figure 1 about here. 

Model evidence at the group level and at the family level was estimated using random effect 

analysis of the negative free energy obtained for every subject and model (Stephan et al., 
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2009; Penny et al., 2010). Family level inference removes uncertainty about aspects of model 

structure other than the characteristic of interest. We used five families (Figure 1): models 

without the deep source (No deep), models with the deep source differentiated according to 

the lateral connections (HG, STG, FOP), models with the anterior cingulate cortex (CG). 

Extrinsic connectivity parameters of the winning families were estimated at the group level 

using Bayesian model averaging (BMA) (Penny et al., 2010). 

DCM simulations 

Monte-Carlo simulations were performed with scalp data to demonstrate the possibility of 

detecting the presence of a hidden source involved in the brain network having generated 

those data. The head position (306 channels, Elekta Neuromag system) of a subject taken at 

random was used for simulations. The first step consisted of generating scalp data. Two 

sources were positioned randomly in the brain and the associated forward model was 

computed using a spherical head model. One example of the sources together with their 

corresponding time courses is displayed in Fig. 2A. Cortical sources are labeled as A (blue) 

and B (red) and an additional hidden relay source as H (green).  

Please insert Figure 2 about here. 

Their dynamics were created using the neural model of DCM assuming forward and 

backward connections between subsequent sources following two configurations: (i) a simple 

model only composed of the two measurable sources; (ii) an augmented model containing a 

hidden (deep) source between the two measurable sources located at random. For each model, 

scalp data were obtained by integrating the differential equations of the corresponding 

neuronal models, with parameter values chosen randomly (using the prior mean value plus a 

random component of maximal value equal to 50% of the prior variance). Fifty realizations 

were considered for the Monte-Carlo simulations.  
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In the second step, synthetic scalp data (generated with and without a hidden source) were 

adjusted under two assumptions: using a DCM composed of the two measurable sources (A & 

B), or using a DCM which contained the additional hidden source (H). Each model was the 

true model for only one set of scalp data. For each condition, fixed effect model posterior 

probability (Stephan et al., 2009) was computed to assess the possibility of DCM inference to 

accurately detect the presence or absence of the hidden source. 

Results 

DCM simulations 

As an additional observation, we found that models including the deep source are recovering 

the temporal time series almost perfectly. Note that even the time course of the hidden source 

was correctly estimated when appropriately assumed. On the contrary, the cortical time 

courses were rather poorly recovered when the hidden source is wrongly assumed to be 

absent. Additionally, the value of the negative free energy, an approximation of the log 

evidence of each model, was higher for the true model, the one with the hidden source. 

Model posterior evidence computed on randomly generated data (Monte-Carlo-Simulations) 

shows clearly that, in principle, it is possible to correctly detect the presence or the absence of 

the hidden source (Figure 2B). 

DCM modeling of language data 

The competing DCMs differed in the topology of subcortical-cortical loops and in their direct 

interhemispheric connections (Figure 1). Comparing model exceedance probability of all 22 

models and of all 5 families tested, we found clear evidence of the presence of a hidden 

source whatever the cortical connectivity (Figures 3A and 3B). Indeed, exceedance 

probability summed over the three families with the deep source (HG, STG, FOP) was over 

0.95. Models 1 to 6 and corresponding family “No deep” only reached very low values of 
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exceedance probability. As an empirical demonstration of the actual presence of a deep 

source, the evidence of family CG including an anterior cingulate source was well below the 

evidence of the other families having the deep source (HG, STG, FOP) - see Figure 3B. The 

profile of exceedance probability between HG, STG and FOP families may indicate that 

transcallosal connectivity at a higher level in the cortical hierarchy is more appropriate to 

explain the data. However, the three best models, which represented 86% of exceedance 

probability, belonged to each of those three families (Model 10: HG, Model 11: STG, Model 

15: FOP) - see Figure 3C. This suggested that it was not possible to distinguish between HG, 

STG and FOP. Therefore those families were considered as winning families and were 

included in Bayesian Model Averaging (BMA) of connectivity parameters. 

Please insert Figure 3 about here. 

Mean brain evoked responses were computed by averaging over subjects and winning 

families (Figure 4A). They showed increased amplitude in response to violations, from 100 

ms peri-stimulus time on, in almost all conditions and locations. Specifically, syntactic 

violations appeared to have more impact than prosodic violations on subcortical activity. The 

link between amplitude (Figure 4A) and connectivity (Figure 4B) modulations was however 

difficult to assess because of heterogeneous connectivity over conditions. The most consistent 

finding in relation to violations was a decrease of cortical (no violation: 1.41 ; violation: 1.13) 

and subcortical (no violation: 2.35 ; violation: 1.14) reentrant connectivity to Heschl’s gyrus. 

Intercallosal lateral connections were also modulated and showed a global decrease of 

connectivity whenever a violation was detected (no violation: 0.71; violation: 0.36). The 

difference of conditional modulation of connectivity between the correct and the other three 

experimental conditions is displayed in (Figure 4C). 

Please insert Figure 4 about here. 
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Discussion 

This study is important for two reasons. First, from a methodological point of view, we have 

shown that hidden neural activity (i.e., activity that is not recordable using non-invasive 

methods) can be recovered using parameter estimation of biophysical models of brain 

networks (Dynamic Causal Modeling) (David et al., 2005, 2006). Second, the present data 

allow us to make specific inferences on subcortical-cortical connectivity during auditory 

language processing. 

The ability to record deep brain structures in EEG or MEG has been a matter of debate, and 

several studies have suggested that thalamic activity would actually be recordable in MEG or 

EEG (Attal et al., 2007; Gross et al., 2002; Tesche, 1996). When comparing intracerebral and 

scalp data, it is nonetheless clear that scalp recordings do not capture the activity of deep 

structures well (Dalal et al., 2009; Ray et al., 2007). Here, we made the radical assumption 

that deep structures (e.g., thalamus) were not recorded (i.e., their activity did not project to the 

scalp), and we proposed to indirectly estimate depth activity by the means of biophysical 

modeling of neuronal connections. 

Dynamic Causal Modeling allows the estimation of neuronal parameters (connectivity and 

time constants) from EEG or MEG evoked responses (David et al., 2006). Using a Bayesian 

framework, it is possible to make inferences on estimated parameters, and most importantly, 

to compare different models on the basis of their evidence, which combines the goodness of 

fit to the data of model dynamics and model complexity. The simple idea we have tested to 

investigate the presumed influence of deep nuclei was to compare models with or without a 

hidden (i.e., deep) source. Because a model with a deep source is more complex than a model 

without, given the same number of cortical sources, it is selected as a better model only if it 

does allow the better reproduction of recorded scalp data through the modulation of brain 

dynamics by the means of subcortical/cortical connections. Using a simulation (see Figures 
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2A-C), we demonstrated the face validity and potential value of this new method of modeling 

the sources of MEG or EEG data. This approach is in fact radically new and opens avenues 

for the noninvasive study of thalamocortical loops under physiological and pathological 

conditions. We applied it to investigate the possible role of the thalamus and basal ganglia 

during the processing of syntactic and prosodic violations in auditory sentence 

comprehension. 

Overall, our MEG DCM results suggest the involvement of a deep source in language 

processing. Though DCM does not provide here a definitive answer, this deep source very 

likely represents the thalamus, as intracranial recordings in a study using partly similar 

material indicated increased thalamic responses to syntactic violations in an earlier time 

window (Wahl et al., 2008). Here, the particular modulations in connection strength suggest 

different networks react as a function of syntactic and prosodic information. Syntactic 

information, which is known to be processed in the left hemisphere (Friederici, 2002; 

Hagoort, 2005; Hickok & Poeppel, 2007), indeed leads to increased responses in left STG and 

FOP, but also in right FOP and in the deep source. Prosodic information is known to be 

processed in the right hemisphere (Meyer et al., 2004). Not surprisingly, we observed that 

prosodic violations involved right-sided modulation of cortical activity but also elicited an 

increase of subcortical activity, weaker than the one evoked by syntactic violations. In terms 

of connectivity patterns, contextual modulations are complex. A consistent feature is a 

decrease of cortical and subcortical reentrant inputs to Heschl’s gyrus whenever violation is 

detected. Given that the syntactic violations investigated in the present study are reflected in 

the EEG and MEG experiments as an early effect whose dipolar activity is located in the 

superior temporal gyrus anterior to HG (Friederici et al., 2000; Knoesche et al., 1999) or in 

close vicinity to the HG (Herrmann et al., 2009), the reentrant loop between HG and the deep 

source suggests that the information from the secondary auditory cortex is referred to the deep 
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nuclei for further processing which affects high and low level cortical processing. This is 

backed up by cortical and intracranial recording data indicating the cortical effect precedes the 

respective effect in the thalamus (Wahl et al., 2008). 

In addition we observed a global decreased of transcallosal connections in relation to 

violations, particularly at the level of HG and FOP. The decrease for the interhemispheric 

connection between the FOP, HG and STG sources is in line with the assumption that during 

normal auditory language processing, both hemispheres work in parallel, with the left 

hemisphere being primarily responsible for syntactic and lexical-semantic processes and the 

right hemisphere for prosodic processes. In conditions where one hemisphere detects a 

violation, possibly via fast thalamo-cortical (HG) loops, the intercollosal connectivity is 

reduced to allow independent processing of syntax and of prosody.  

To sum up, these results can be interpreted using the theory of predictive coding (Friston, 

2005). During learning of language, both brain hemispheres acquire prior representations of 

syntactic and prosodic information. In the presence of syntactic of prosodic violations, after 

early auditory stimulus processing in HG, thalamus and STG/FOP send back error signals by 

the means of increased connectivity on HG and decreased transcallosal connectivity. These 

error signals have two main purposes: (i) allow to process the sentence as a whole using prior 

representations of language that allow to reconstruct its initial meaning if mismatch is limited, 

probably here by dissociating processes related to prosody and syntax; (ii) start learning new 

prior representations of language using synaptic plasticity in the case of violations become 

common rules. 

Overall, our MEG DCM results are highly suggestive of where increased thalamic responses 

to language violations were measured using intracranial recordings (Wahl et al., 2008). DCM 

was thus successful in demonstrating that the thalamus is a crucial part within the language 
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network, probably as a moderator between the other cortical regions. Our study opens new 

avenues for studying the role of subcortical structures in human cognition. 
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Figure 1: Schematic overview of the twenty-two models tested distributed into 5 families 

(rows). The first family includes the six cortical regions but no deep source. Other 

model families are characterized by the interhemispheric connections between either the 

Heschl’s gyrus HG or the superior temporal regions STG or the opercular regions FOP. 

Last family CG is used as a control. It is an STG family assuming an anterior cingulate 

region instead of the deep source. The left part of each display represents the left and 

the right part the right hemisphere of the brain. 
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Figure 2:  

A) Generative model for simulations to investigate the influence of the hidden source (H) and 
two measurable sources (A and B). Locations of A and B were varied randomly. 

B) Results of Monte Carlo simulations testing two model families: with and without a deep 
(hidden) source (H). Monte Carlo simulations demonstrated that independent of the 
location and the distance between the visible sources, the model posterior probability 
provides stable information whether or not inclusion of a hidden source constitutes in a 
better model. 
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Figure 3: Bayesian model selection based on exceedance probabilities for different scenarios. 
 
a) Comparison of the models 19 to 22 (STG including CG) versus models 11 to 14 (STG 

including deep). Note that there is just a minor exceedance probability for the models 
including CG.  

b) Comparison of all investigated model families: no deep source, deep source + HG 
intercallosal connection, deep source + STG intercallosal connection, deep source + 
FOP and cingulum (CG) + STG. Note, that the three winning families together (all 
including the deep source) have 95% exceedance probability.  

c) Exceedance probabilities for each model separately. Note that the three best models 
together pass an exceedance probability of 85%.  
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Figure 4: Averaged time courses and connectivities of winning model families. 
 
A) Mean time sourses of the winning families (all models which included a deep source). 
 
Delete the axes and cyan line of the eighth subplot. 
 
B) Bayesian model averaging including models of the winning families (HG, STG, FOP): 

Mean connectivity between all regions. Note the stronger connection (dark red) from 
the deep source to the cortical region (LHG) – right upper corner of the CC square. Blue 
means lowest connectivity. Gray displays the redundant and non-existing parts. The 
panels display the values for the different conditions CC, CS, PC and PS, respectively. 
Direction of connectivity is indicated in the CC-CC panel of part C): “from” displayed 
at the top/bottom “to” on the left/right. 

C) Bayesian model averaging based on models of the winning families (HG, STG, FOP): 
Difference of the mean connectivity between all regions to the condition CC. Note that 
green means difference equals zero. Gray displays the redundant or non-existing parts. 
The upper left panel displays the values for condition CC-CC, the upper right panel - 
condition CS-CC, the lower left panel – condition PC-CC and the lower right panel – 
condition PS-CC, respectively. 

 


