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Supplemental Methods 

I. Data description 

The whole set of data is composed of a total of 4407 arrays described in SupTab2, and for 

which available bioclinical annotations were thoroughly standardised within the CIT database 

(http://cit.ligue-cancer.net).  

1. Patients and tumors: a total of 724 (537 discovery + 187 validation) primary breast 

carcinomas as well as 58 (response to CT) fine needle aspiration biopsies from locally 

advanced patients enrolled in a neoadjuvant trial were collected in the frame of the Cartes 

d‟Identité des Tumeurs (CIT) program from the Ligue Nationale Contre le Cancer in 23 

clinical centers in France. All tumors from this collection (n=782, 537 discovery + 187 

validation + 58 response to CT) were analyzed for expression profiling on Affymetrix U133 

plus 2.0 chips and 488 for copy number changes by array-CGH. This dataset was split into a 

CIT discovery series comprising a total of 537 tumors of which 488 samples were analyzed 

at both the expression and genome profiling levels, 187 which were used as part of the 

validation series, and 58 which were included in the response-to-chemotherapies series. 

Description of this tumor collection is presented in SupTable 1. Mean follow up time was of 

65 months (standard-deviation of 40)  

2. Validation series (= 2291 Affymetrix microarrays + 796 non-Affymetrix microrrays): 

in addition to the 187 expression profiles from the initial CIT collection, we collected 

Affymetrix expression profiling datasets from public databases (GEO and array-express) 

corresponding to 2104 breast cancers, as well as Agilent, Swegene and Operon breast 

cancer microrray series (references are given in Sup Table 2). 

3. Response-to-chemotherapy series (= 307 microarrays): in addition to the 58 

expression profiles from the CIT collection, we collected 249 Affymetrix expression profiling 

datasets from public databases (references are given in Sup Table 2). 
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4. Normal-mammary-cells series (= 27): we collected 27 Affymetrix expression profiles 

from public databases (references are given in SupTab 2). 

 

II. Gene expression: hybridization and pre-treatment 

1. RNA extraction and Quality Control: tumor samples (10 to 50 mg) were powdered 

under liquid nitrogen. RNA were extracted using RNAble (Eurobio, Courtaboeuf, France), 

followed by a clean-up step on RNAeasy columns (Qiagen, Courtaboeuf, France). Aliquots of 

the RNA were analyzed by electrophoresis on a Bioanalyser 2100 (version A.02 S1292, 

Agilent Technologies, Waldbronn, Germany) and quantified using Nano Drop™ ND-1000 

(Nyxor Biotech). Stringent criteria for RNA quality were applied to rule out degradation, 

especially a 28s/18s ratio above 1.8 for microarray.  

2. cRNA probe production and labeling: 3 mg of total RNA were amplified and labeled 

according to the manufacturer‟s one-cyle target labeling protocol (http://www.affymetrix.com). 

10 mg of cRNA were used per hybridization (GeneChip Fluidics Station 400; Affymetrix, 

Santa Clara, CA). The labeled cRNAs were hybridized to HG-U133 plus 2.0 Affymetrix 

GeneChip arrays (Affymetrix, Santa Clara, CA). Chips were scanned with a Affymetrix 

GeneChip Scanner 3000 and subsequent images analyzed using GCOS 1.4 (Affymetrix).  

3. Affymetrix chips quality control: we used the R package affyQCReport to generate a 

QC report for all chips (CEL files) from the CIT discovery series. All the chips that didn‟t pass 

this QC filtering step were removed from further analysis.  

4. Normalization: raw feature data from Affymetrix HG-U133A Plus 2.0 GeneChipTM 

microarrays are normalized using Robust Multi-array Average (RMA) method (R package 

affy) [1].  

http://www.affymetrix.com/
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5. Probe sets filtering: probe sets corresponding to control genes and those whose the 90e 

percentile of the log intensity do not reach log2(10) are masked yielding a total of 52,188 

probe sets available for further analyses. 

 

III. CGHarray: hybridization and pre-treatment 

1. Chip description: the human genome-wide CIT-CGHarray (V6) containing 4,434 

sequence-verified bacterial artificial chromosome (BAC) and P1-derived artificial 

chromosome (PAC) clones, was chosen to obtain a systematic coverage of the genome and 

detailed coverage of regions containing genes previously implicated in carcinogenesis. This 

array was designed by the CIT-CGH consortium (Olivier Delattre laboratory, Curie Institute, 

Paris; Charles Theillet laboratory, CRLC Val d'Aurelle, Montpellier; Stanislas du Manoir 

laboratory, IGBMC, Strasbourg) and the company IntegraGenTM..  The 4,434 clones, spaced 

at approximately 600 kb intervals, were spotted in quadruplicate on the slides. 

 

2. DNA labeling and hybridization protocols: 600ng of tumor DNA was labeled by the 

random priming (Bioprime DNA labelling system; Invitrogen, Cergy-Pontoise, France) with 

cyanine-5 (CyDye dCTP Multipack, Amersham GE Healthcare, Buckinghamshire, UK). 600 

ng of reference normal DNA (a pool of 20 normal female DNAs) was labeled with cyanine-3 

using the same procedure. After ethanol-coprecipitation with Human Cot-1 DNA (Roche, 

Basel, Switzerland), resuspension in 72.5 µl of hybridization buffer, denaturation at 100°C for 

10 minutes and prehybridization at 37°C for 90 minutes, probes were hybridized on treated 

microarray slides in a humidity chamber at 37°C for 24 hours. After washing, slides were 

scanned with a GenePix 4000B scanner (Axon Instruments Inc., Union City, CA, USA) and 

analyzed with GenePix Pro 5.1 image analysis software, which defined the spots and 

determined the median intensities for the Cy3 and Cy5 signals of each BAC clone. 
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3. Spot filtering and normalization: raw log2-ratio feature values were filtered from further 

analyses (i) using a signal-to-noise threshold of 2.0 for the reference channel or (ii) when the 

individual single intensities for the sample or reference was less than 1.0 or at saturation (i.e. 

65,000). The remaining values were normalized using the lowess within-print tip group 

method [2]. For BACs in which more than 1 feature value remained after filtering and that 

yielded an inter-feature standard deviation of less than 0.25, an average normalized log2-

ratio value was calculated. 

 

4. Smoothing: the iterative, data-adaptive smoothing technique Adaptive Weights 

Smoothing (AWS, http://www.wias-berlin.de/project-areas/stat/publications/paper.html; 

Polzehl and Spokoiny) was then applied to the normalized log2-ratio values (as adapted in 

the R GLAD package v1.8) [3]. This yielded smoothed log2-ratios values in homogeneous 

segments along the chromosome.  

 

5. Determination of DNA copy number: for each sample, the level (LN) corresponding to a 

normal (i.e. diploid) copy number is determined as the first mode of the distribution of the 

smoothed log2-ratio values across all autosomes. The standard deviation (SD) of the 

difference between normalized and smoothed log2-ratio values is calculated. Then for all 

clones in a segment, the „GNL‟ copy number status (G: gain - N: normal - L: loss) is 

determined as follows: based on the segment smoothed log-ratio value (X): if X > LN + SD 

then status=gain (G), if X < LN – SD then status=loss (L), else status=normal. In a given 

segment, outlier clones that yielded normalized log2-ratio values (Y) such that Y > LN + 3 × 

SD (respectively Y < LN - 3 × SD) are classified as gains (respectively losses). 

 

IV. TP53 typing 

TP53 status was determined by the yeast functional assay, in which mutant TP53 transcripts 

yield red yeast colonies and wild-type transcripts yield white ones [5]. Tumors were 
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considered TP53 mutant when: (i) more than 15% of the yeast colonies were red, (ii) analysis 

using the split versions of the test could identify the defect in the 59 or 39 part of the gene, 

confirming the initial determination [6], and (iii) sequence analysis from mutant yeast colonies 

could identify an unambiguous genetic defect (mutation, deletion, or splicing defects). All 

tumors with more than 15% red colonies fulfilled these three criteria. Note that the four 

tumors with low percentage of mutant colonies (15%–25%) all exhibited stop or frame-shift 

mutations, defects known to be associated with nonsense mediated RNA decay, resulting in 

low mRNA abundance. Prediction of dominant negative activity was performed using IARC 

software (http://www-p53.iarc.fr/index.html). 

 

V. Subgroups discovery by applying a semi-unsupervised approach 

Introductory note: Except when indicated, statistical analyses were carried out using either 

an assortment of R system software (http://www.R-project.org, V2.10.1) packages including 

those of Bioconductor [7] or original R code. R packages and versions are indicated when 

appropriate. 

Our rational was to produce a robust classification scheme independent of previously 

proposed approaches and ensure the greatest possible homogeneity to identified subgroups. 

To this aim, subgroup determination was based on the CIT discovery series including 537 

Affymetrix U133Plus2 microarrays. We applied an approach of clustering that iterates 

unsupervised and supervised steps, which was, therefore, designated as “semi-

unsupervised” clustering approach. 

The overall approach applied in our study is summarized in SupFig 1. 

Step 1: Unsupervised probe sets selection 

Probe set unsupervised selection was based on two criteria:  

(i) p-value of a variance test (see below) < 0.01 

(ii) a coefficient of variation < 10 and a rCV percentile > 99% (see below). After filtering we 

were left with 244 probe sets corresponding to 188 known genes.  

http://www-p53.iarc.fr/index.html
http://www.r-project.org/
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Variance test: For each probe set (P) we tested whether its variance across samples was 

different from the median of the variances of all the probe sets. The statistic used was ((n-

1)×Var(P) / Varmed), where n refers to the number of samples. This statistic was compared to 

a percentile of the Chi-square distribution with (n-1) degrees of freedom and yielded a p-

value for each probe set. This criterion is the same used in the filtering tool of BRB 

ArrayTools software [8]. 

Robust coefficient of variation (rCV): For each probe set, the rCV is calculated as follows: 

having ordered the intensity values of the n samples from min to max, we eliminate the 

minimum value and the maximum value and calculate the coefficient of variation (CV) for the 

rest of the values. 

Step 2: Preliminary clustering and samples coreset 

A preliminary set of five molecular subgroups was determined by applying three parametric 

and non-parametric statistical methods of clustering on the 537 microarrays and the 244 

probe sets: (i) Agglomerative Hierarchical Clustering with Pearson correlation as a similarity 

measure and the Ward‟s linkage method to minimize sum of variances (as in Step 1); the 

number of subgroups (=5) was assessed qualitatively by considering the shape of the 

clustering; (ii) Mixed-Gaussian-Models (R package mclust); the number of subgroups (=5) is 

assessed with the Bayesian-Information-Criterion (BIC); (iii) K-Means-Clustering (R package 

stat); the number of subgroups is set to the same value (=5) than the one determined with 

the two other methods.  

The five classes defined according to the three unsupervised methods were matched and the 

394 samples for which the three methods showed convergence were selected. Conversely, 

143 samples associated to discordance were taken out.  

Step 3: Identification of a molecular signature 

A supervised analysis was performed on the 394 samples and all the probe sets to 

determine probe sets best discriminating the molecular subclasses. To this aim, 21,000 

probe sets were selected according to a classical Analysis-of-Variance (FDR < 1e-7) (R 
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package kerfdr) and then ranked by random-forest (R package randomForest). This 

produced a minimal list corresponding to 375 probe sets (256 known genes) leading to the 

best re-classification of the samples (SupTab3). 

Step 4: Final clustering and sample 

Using the 375 probe sets selected in Step 3, we re-applied Step 2 on our discovery set 

including 537 microarrays. This led to the identification of six main molecular subgroups by 

the convergence of the three clustering methods. They represented a total of 355 samples 

that constituted the coreset that was used for further investigations.  

 

VI. Predictors 

1. CIT predictors: There are two CIT predictors, one for Affymetrix (RMA normalized) data 

and one for non-Affymetrix (pre-treated) data. Both predictors (as well as the related 

confidence score –see below–) are implemented in the citbcmst R package (CRAN 

repository http://cran.r-project.org/web/packages/citbcmst/index.html) coming with a Sweave 

user documentation.  

Predictor for Affymetrix (RMA normalized) profiles : given a sample profile S to be assigned 

to one of the 6 CIT subgroups, and the set X of probe sets that were measured for S, the 

following steps are processed : 1) identify the set Y of probe sets common to X and to the set 

of 375 probe sets given in supplemental table 3. 2) compute centroids of the 6 subtypes on 

these reduced dataset of Y probe sets, using the 355 samples from the CIT coreset 3) 

compute the distance of the new input sample(s) to those 6 centroids 4) assign sample(s) to 

the subgroup corresponding to the closest centroid. Here the (DLDA) distance between S 

and the centroid of a subgroup K is defined as: 

2
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subgroup K (K in {lumA, lumB, lumC, normL, mApo, basL}) and  (genei) the standard-

deviation of the gene (probe set) i across the samples from the CIT coreset.  

NB: µK,i and i values are given in SupTab3. 

 

Predictor for non-Affymetrix (pre-treated) profiles : given a sample profile S to be assigned to 

one of the 6 CIT subgroups, and the set X of genes (HUGO gene symbols) that were 

measured for S, the following steps are processed :1) identify the set Y of genes common to 

X and to the set of 256 genes given in SupTab3. 2) Aggregate data by gene (HUGO gene 

symbols). 3) compute centroids of the 6 subtypes on these reduced dataset of Y genes, 

using the 355 samples from the CIT coreset. 4) compute the distance of the new input 

sample(s) to those 6 centroids 5) assign sample(s) to the subgroup corresponding to the 

closest centroid. Here the distance used is (1-Pearson coefficient of correlation). 

 

Confidence score for the CIT predictors: In order to have a confidence evaluation of the 

subtype assignation, we have defined a score to identify outliers and characterizes a sample 

assignment to a subgroup as certain or uncertain.  If a sample is close to several centroids, 

i.e. if the difference of distance to centroid is inferior to the 1st decile of the difference 

between centroids on data used to compute centroids, the score is set to uncertain. If the 

distance to the assigned centroid is n times superior to the mad (median absolute deviation) 

of distances to the centroid within the related subgroup in the training set, the sample is set 

to outlier; n is defined on data used to compute centroid as the maximum between the 6 

subtypes of (max distances to centroid c-med distances to centroid c)/mad distances to centroid c. 

 
2. Sorlie, Hu and Parker classifiers: Sorlie [17], Hu [21] and Parker [22] centroids were 

respectively retrieved from (1) (2) and (3) (see below). To build the corresponding predictors, 

the procedure used for the CIT non-Affymetrix predictor (see above) was repeated here. For 

Sorlie centroids the 552 clone ids from the intrinsic gene set corresponded to 334 unique 

HUGO gene symbols, which were then mapped to Affymetrix (U133A or U133Plus2) probe-
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sets. For Hu centroids of the 306 original UniGene ids, 232 corresponded to a unique HUGO 

gene symbol, which were then mapped to Affymetrix (U133A or U133Plus2) probe-sets. For 

Parker centroids the 50 HUGO gene symbols were directly mapped to Affymetrix (U133A or 

U133Plus2) probe-sets. 

(1) http://genome-www.stanford.edu/breast_cancer/robustness/data/IntrinsicGeneList.txt  

(2) https://genome.unc.edu/pubsup/breastTumor/data/306genes-X-249samples-X-5subtypes+5centroids.xls  

(3) https://genome.unc.edu/pubsup/breastGEO/pam50_centroids.txt 

3. Van’t veer and GGI predictors: These predictors were built as described in [18] and [19] 

using the CIT coreset as training set. To train the GGI predictor we used the grade 

information of the CIT coreset.  

4. Jönsson classification system (arrayCGH-based): This predictor was built as described 

in [20]. The 6 Jönsson centroids are relative to genomic regions determined with the GISTIC 

algorithm [23]. To apply this predictor to the CIT arrayCGH coreset (n=320), we averaged the 

smoothed log2 ratios obtained as described above (see III.4) by Jönsson GISTIC region and 

used (1-Pearson coefficient of correlation) as distance between these profiles and Jönsson 

centroids. 

5. Performance on external dataset evaluation: To evaluate the performance of our 

classification system on non-Affymetrix external dataset, we analyzed the GSE3155 dataset 

(Sorlie et al 2006 [24]), where the same 20 samples were analyzed on 3 different platforms 

(Applied Biosystem (AB), Agilent (AG) and Stanford (ST) microarrays) and where the 

analysis on AB platform was done in duplicate. We assigned each microarray profile to a CIT 

subtype as mentioned above (Predictor for non-Affymetrix profiles in CIT predictor 

subsection), using the same genes for all platforms. We assessed the intra-platform 

robustness of our classifier as the concordance between duplicated samples (AB platform). 

We assessed the inter-platform robustness as the concordance between the 3 platforms 2 by 

2 (CIT vs AB, CIT vs AG, CIT vs ST). 

http://genome-www.stanford.edu/breast_cancer/robustness/data/IntrinsicGeneList.txt
https://genome.unc.edu/pubsup/breastTumor/data/306genes-X-249samples-X-5subtypes+5centroids.xls
https://genome.unc.edu/pubsup/breastGEO/pam50_centroids.txt
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VII. Statistical tests 

1. Differential expression: to identify genes differentially expressed between the sample 

subgroups, based on the RMA log2 single-intensity expression data, we used Welch‟s T-tests 

(t.test function, R package stats) as well as the ANOVA (aov function R package stats). 

2. Differential genomic status: to identify clones / regions with differential genomic status, 

based on the GNL (Gain/Normal/Loss) copy number status, we used the chi-square test (or 

the equivalent Fisher-exact test when appropriate) (chisq.test and fisher.test functions, R 

package stats). 

3. Clinical factors: association of the sample subgroups to bio-clinical factors was tested by 

applying the chi-square test (or the equivalent Fisher-exact test when appropriate) for 

qualitative factors (gene expression, mutation, histological type, SBR grade and metastatic 

sites) and the ANOVA test for quantitative variables (age of diagnostic). 

4. Survival: disease outcome was investigated by applying a Cox model on Kaplan-Meier 

curves stratified for each subgroup (function Surv, R package survival). P-values at 60, 120 

and 180 months resulted from a log-rank test on Cox estimates (function survdiff, R package 

survival). The proportional-hazards assumption was tested to examine the model‟s 

appropriateness.  

5. Response to chemotherapy: Association of subgroups to response to chemotherapy 

was assessed using the chi-squared test. For adjustment relatively to other factors (ER and 

grade) we used the Cochran-Mantel-Haenszel chi-squared test. 

6. P-values adjustment: p-values adjustment for multiple-testing was performed using the 

p.adjust function from stats R package which estimates the FDR using the Benjamini and 

Hochberg (BH) method [9]. 

7. Π1 proportion: the proportion of tests under H1 was calculated using the Storey method. 



 

 11 

 

VIII. Principal Component Analysis for dimensional reduction and 

visualization 

Principal Component Anallysis (PCA) identifies new variables, the principal components, 

which are linear combinations of the original variables [10]. The first principal component is 

the direction along which the samples show the largest variation. The second principal 

component is the direction uncorrelated to the first component along which the samples 

show the largest variation. Each component can then be interpreted as the direction, 

uncorrelated to previous components, which maximizes the variance of the samples when 

projected onto the component. 

 

 

IX. Gene cluster expression 

Gene cluster expression values are based on the mean expression of all the genes of a 

given cluster. Their distribution for each molecular subgroup is represented by using 

boxplots. Except for the lum-C cluster, all the gene clusters represented in Figure 1 results 

from the molecular signature of 256 genes. 

 

X. Validation on a large set of data and comparison between CIT the other 

classification systems 

Validation series were treated independently in order to avoid confusion due to technical bias 

and different molecular composition between series. Pre-treatment was processed following 

the same workflow described previously and applied to the main CIT discovery series for 

Affymetrix series (starting with CEL files); for non-Affymetrix series, as pre-treated data were 

available they were directly used. 

CIT subgroups prediction: samples for each series were independently classified into the six 

CIT main subgroups by applying the relevant predictor (see chapter VI above) depending on 

the platform (Affymetrix versus non-Affymetrix). 
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Sorlie / Hu / Parker classification prediction: samples of each series were independently 

classified using the predictors obtained as described in chapter VI. 

 

XI. Relation to normal mammary epithelial cell hierarchy 

 We collected expression data of normal mammary gland sorted cells from 3 public datasets 

[GSE11395 { Affymetrix X3P}, GSE18931 { Affymetrix HG U133 Plus 2.0 }; GSE16997 

{Illumina HumanWG-6_V3 }]. For each of these 3 series we calculated an independent gene 

signature by comparing the differentiated cells and stem cells (-like) populations, using a 

0.05 p-value threshold. More precisely (i) in Raouf dataset we compared the differentiated 

luminal samples (n=3)  to the bipotent and committed samples (n=6); (ii) in Pece dataset we 

compared the PKH negative samples (n=3) to the PKH positive samples (n=3); (iii) in Lim 

dataset we compared the mammary stem cells (MaSC) samples (n=3) to the mature luminal 

samples (n=3). 

For Pece and Lim datasets the compared conditions were respectively derived from the 

same 3 pools and same 3 patients, so we used paired T-tests. For Raouf dataset we used 

the Bayes moderated T-test [11] implemented in the limma R package. 

We then built a meta-signature (163 genes, SupTab9) by selecting genes present in all 3 

signatures (that is genes for which the p-value was less than 0.05 in all 3 series). 

The expression profiles from the CIT coreset restricted to the genes from this meta-signature 

were then used in a Principal Component Analysis. The CIT coreset samples profiles were 

then projected on the first 2 Principal Components (upper panel in Figure 5). The same 

space was then used to project normal mammary gland samples profiles (lower panel in 

Figure 5) from Lim dataset. 

 

XII. Cancer pathways analysis 

Cancer pathways: we selected a set of KEGG 

(ftp://ftp.genome.ad.jp/pub/kegg/pathways/hsa), Biocarta (http://www.biocarta.com) and 
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MSigDB (http://www.broadinstitute.org/gsea/msigdb) biological pathways known to be 

associated to cancer, and mapped the related genes to non-redundant HUGO Gene 

symbols. 

Subgroup pathways: given a cancer pathway and the molecular subgroup to be compared 

to the others, four methods are used: GSA (R package GSA, Efron and Tibshirani [12]), 

Globaltest (R package globaltest, [13]), SAM-GS (original R code implementing the algorithm 

bu Dinu et al [14]), Tuckey approach (original R code implementing an algorithm described 

by Goeman et al [15]).  Each method will yield a p-value based on Monte-Carlo simulations: 

the lower the p-value, the more the genes from the gene set are differentially expressed 

between the sample‟s subgroups. In order to rank the gene sets by order of interest, we used 

the mean rank of the p-value across the four methods. 

 

XIII. DNA copy number aberrations 

1. Cumulated profiles of alteration: cumulated profiles of alteration, in the whole cohort of 

488 CGH arrays and by subgroup, were obtained by computing the proportion of samples 

harboring a gain or a loss of copy, at each clone of the array. 

2. Identification of frequently-altered genomic regions in the whole cohort: frequently-

altered genomic region in the whole cohort were determined by identifying regions for which 

the proportion of alteration (in gain or loss) exceed 20%, 30%, 40% and 50%.  

3. Identification of subgroups specific regions: for each subgroup, specific regions were 

determined by (i) applying at each clone a test of proportion comparing the proportion of 

alteration (gain and loss) in the samples of a given subgroup versus the others; (ii) resulting 

p-values were corrected for multiple-testing by FDR; (iii) then, subgroup-specific genomic 

regions defined as significantly more altered in the subgroup of interest, were delimited by 

applying a threshold of 1% on p-values; (iv) the resulting regions are refined by applying the 
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segmentation-clustering approach described in Picard et al (2005) [16] for aCGH, to the 

signal of p-values within each region. 

4. Integration of genomic and expression data: in order to identify putative candidate 

genes impacted by the alterations identified in the whole cohort and specific to each 

subgroup, we integrated expression data to the genomic profiles. We mapped BAC clones 

and probe sets based on their genomic position. Then given a set of samples (whole cohort 

or molecular subgroup) and a genomic region of alteration, we compared the expression of 

each gene mapped within this region by applying a t-test between samples harboring the 

alteration (gain for regions of gain and loss for regions of loss) and samples that do not 

present the alteration.  

5. Identification of focal alterations: for a given set of samples, we identified focal 

amplifications based on the intra-sample rank of the normalized log2-ratio values, by 

selecting clones for which a significant number of samples showed values superior to the 

99th percentile. 

6. Functional resolution of the CGH Array platform used: we used the method by Coe et 

al [25] to assess the functional resolution of our BAC-array platform. The theoretical 

sensitivity, single-copy sensitivity and the breakpoint precision for a 95% cut-off were 

estimated using the associated software ResCalc. 

In order to estimate the percent of focal regions that can be detected using CGH array, we 

evaluated the concordance between focal regions (amplification <0.5Mb and homozygous 

deletion <1Mb) found for 72 samples from the CIT coreset hybridized on Illumina 610K 

SNParray with the GNL status of the CGH clones mapping those regions.  

XIV. Significance of prognostic parameters and molecular signature 

A Cox proportional-hazards model was fit to assess differences in 5-year survival to compare 

the CIT classification to prognostic parameters and molecular signatures. The proportional-

hazards assumption was tested for each model to examine the model‟s appropriateness. 
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Prognostic factors: CIT classification {normL; lumA; other subgroups}, ESR1 (EXP), 

ERBB2 (EXP), N {0; 1+}, T {0-1; 2+}, ± SBR grading, ± adjuvant chemotherapy, ± adjuvant 

hormonotherapy.  

Prognostic molecular signatures: Sorlie [17], van‟t Veer [18], GGI [19], Hu [21], Parker 

[22].  

First a univariate analysis is performed to assess the marginal prognostic value of each 

variable independently from the others. In addition, a multivariate analysis is performed using 

variables having available values for a sufficient number of samples. To be comparable, 

each variable have to be assessed on the same samples; consequently we analyzed 

prognostic factors separately from molecular signatures.  

 

XV. ER, PR, AR and ERBB2/HER2 scoring  

This was done both on the basis of IHC staining and on that of Affymetrix expression 

measures. We used both in parallel, because of the limited availability of IHC data in the 

validation series. 

IHC scoring was as follows: ER and PR status were defined as positive when 10% of 

carcinoma cells (or more) were stained, whereas HER2 was done according to the 

Herceptest® system [0 = no or less than 10% membrane staining positive cells; 1+ > 10% 

stained cells with weak staining; 2+ > 10% stained cells with weak or moderate complete 

staining; and 3+ > 10% cells with strong and complete staining]. Tumors scored 3+ were 

considered HER2-positive, whereas 2+ tumors were verified by CISH or FISH for gene 

amplification. The current ASCO/ CAP guidelines (Hammond et al. JCO 2010 and Wolff et al. 

JCO 2007) were not used in this work, since the selection of patients and tumor samples 

began in 2005 while the ASCO/ CAP guidelines were published in 2007.Pathologists 

involved in this work regularly participate to national insurance quality tests on ER, PR and 

HER2 techniques, proposed either by the “AFAQAP” (Association Française  pour 

l‟Assurance Qualité en Anatomie Pathologique) or by UKNEQAS. They also have regular 
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consensus meeting and participate to multicenter studies, initiated by the “GEFPICS” 

(Groupe d‟Etude des Facteurs Pronostiques en Immunohistochimie dans les Cancers du 

Sein), aiming at improving inter-laboratory and inter-observer agreement.   

Affymetrix scoring was done as follows: we used the following probe sets AR: 211621_at 

(HG-U133A) and 226197_at (HG-U133plus2.0); ESR1: 205525_at ; PGR: 208305_at (HG-

U133A) and 228554_at (HG-U133plus2.0); ERBB2 : 216836_s_at. To define 

positivity/negativity thresholds were adapted to each series using the density R function: 

distributions were bi-modal; the thresholds were put at the point of smallest density between 

the 2 modes. 

Comparison of IHC and Affymetrix measures: We also compared IHC and Affymetrix 

expression measures for ER, PGR and ERBB2. We hypothesized that if we used the same 

set of samples with complete information in both approaches, the “best” definition should be 

the one yielding the highest level of intra-condition homogeneity and inter-conditions 

heterogeneity assessed as the differential expression level (i.e. H1 proportion) in a T-test 

comparison of the two conditions (positivity/negativity) for all of the 56K probe sets of the 

Affymetrix HGU133 plus2.0 chip. In all 3 cases (ER, PGR and ERBB2) the Affymetrix 

expression-derived definition clearly yielded the highest H1 proportion compared to the IHC-

derived definition. We thus used both the IHC and the Affymetrix derived definitions of ER, 

PGR and ERBB2 in the principal and supplemental tables. Of note, the Affymetrix-derived 

definitions have the great advantage to ensure a standardized definition to be used over the 

public Affymetrix datasets. 

 

XVI. Pathological review and SBR Grading 

This was performed in each contributing center which are all academic cancer hospitals, 

where breast cancer is a major pathology. Histological grade was defined according the 
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modified SBR (Sarff, Bloom and Richardson) grade according to Elston and Ellis (Ellis et al. 

Histopatholgy 1992;20:479-498).  

XVII. Percent of non-diploid cells 

To get an objective estimate of the rate of non-diploid cells in the analyzed tumors and 

determine its distribution in the molecular subgroups, we analyzed 72 samples from the CIT 

coreset on Illumina 610K SNParray and used the formula recently published by Van Loo et 

al, (PNAS, 2010) to compute the rate of non-diploid cells. 
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Legends to Supplemental Figures  

SupFigures  

SupFig1. Overall discovery process: steps of the unsupervised analysis. Workflow 

scheme of the unsupervised approach used to define and characterize molecular 

classification of the CIT discovery set. 

 

SupFig2. Subtypes gene cluster characterization  

Expression levels boxplot of the genes in clusters specific to each subtype.  

 

SupFig3. Metastasis related genes expression levels in CIT subtypes. Expression level 

boxplots stratified in the 6 CIT subgroups of ST6GALNAC5, HBEGF, PTGS2 whose 

increased expression has recently been associated to brain metastasis (Bos et al., 2009; 

Minn et al., 2005). 

 

SupFig4. Kaplan-Meier survival curves in CIT subtypes defined in non-Affymetrix 

datasets. Metastasis-Free survival (left) and overall survival (right) was determined in 3 

whole genome expression datasets produced on different technological platforms: (A,B) 

Operon/Qiagen dataset (Chanrion et al. 2008), (C) Swegene dataset (Jönsson et al. 2010), 

(D,E) Agilent dataset (van de Vijver et al. 2002). Only overall survival data were provided for 

the Swegene dataset. The log rank test p-values are given for two delay cutoffs 60 months (5 

years) and 120 months (10 years). 

 

SupFig5. Metastasis-Free Survival according to molecular subgroups defined by the 

CIT, Sorlie, Hu and Parker and Jönsson classifications in the CIT discovery set. (A) CIT 

(B) Sorlie (C) Parker (D) Hu (E) Jönsson. The log rank test p-values are given at 60 months 

(5 years), 120 months (10 years) and 180 months (15 years). 

 

SupFig6. Metastasis-Free Survival according to molecular subgroups defined by the 

CIT, Sorlie, Hu and Parker and Jönsson classifications in the Affymetrix validation set: 

(A) CIT, (B) Sorlie (C) Parker (D) Hu (E) Jönsson. The log rank test p-values are given at 60 

months (5 years), 120 months (10 years) and 180 months (15 years). 

 

SupFig7. Copy Number Alterations (CNAs) showing inverse patterns according 

molecular subgroups. CNAs are depicted as color bars arranged according to their position 

on the genome: BasL (red), mApo (orange), lumC (pink), lumB (light blue), NormL (green). 

Bars represent -log10 p-values of the increase in proportion in a given subgroup tested 

against all others. Gains are depicted as bars going up, losses going down. 

  

SupFig8a. Fraction of non diploïd cells in breast tumors stratified by CIT subgroups. 

Boxplot represent the fraction of non diploid cells according to CIT subgroups estimated from 

72 SNP data using the Van Loo et al. approach. Numbers between brackets indicate the 

number of samples per box. 

 

SupFig8b: correlation between the snp-based estimation of the fraction of non diploid cells 

and the pathological estimation of non tumor cells in the same samples. 
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SupFigure9. heterogeneity of ERBB2-positive tumors. Histogram of moderated t-test p-

values between (top) mApo samples and lumC samples having an ERBB2 amplification 

(ERBB2+), (middle) between ERBB2+ and ERBB2- samples in the mApo subtype and 

(down) between ERBB2+ and ERBB2- samples in the lumC subtype. The H1 proportion is 

the estimate of the proportion of p-values generated under H1 hypothesis, i.e. that a gene is 

differentially expressed between the two groups. 

 

Legends to Supplemental Tables 
 

SupTab1. Clinical and Molecular Description of the CIT discovery cohort. Descriptive 

values concerning SBR grade, Tumor Size from surgery, Age at diagnosis, Histological type, 

nodal involvement and ESR1 (ER), PGR (PR) and ERBB2 (HER) protein expression (IHC, 

0:absent, 1:present).  

 

SupTab2. datasets used in this work. List of all the dataset, CIT and publicly available, 

used, per analysis type (training, validation, response-to-treatment, normal mammary cell) 

with the references to the related article, the database accession number, the platform type 

and the number of samples/arrays used. 

  

SupTab3. CIT Subtypes Centroids. List of the 375 pbs (256 genes) with the mean values 

per subtype constituting the centroids used to classify new datasets. For each probesets, are 

also given the Affymetrix Gene Symbol annotation (version na29, Jun 30, 2009), 

chromosomal location and the gene cluster. 

 

SupTable4a. Bio-Clinical correlations of CIT molecular subgroups defined in the 

Affymetrix validation set. Association (Chi-squared or Fisher test) between clinico-

molecular annotations and CIT subtypes. 

SupTable4b. Bio-Clinical correlations of CIT molecular subgroups defined in the non-

Affymetrix validation set. Association (Chi-squared or Fisher test) between clinico-

molecular annotations and CIT subtypes. 

 

SupTab4c inter platform classification agreement. The GSE3155 dataset generated in 

parallel on 3 technological platforms using the same samples; Agilent (AG, dual-color), 

Stanford (ST, dual-color), Applied Biosystems (AB, uni-color). Each dataset was classified 

using our classification rule and results were compared. Samples were run twice on the AB 

platform allowing to test for intra platform reproducibility as well.   

 

SupTab5. Comparison of sample attribution between CIT classification and other 

classifications on the coreset (left) and on the Affymetrix validation set (right). (A,E) 

CIT versus Sorlie, (B,F) CIT versus Parker, (C,G) CIT versus Hu, (H) CIT vs Jönsson 

 

SupTab6. Bio-Clinical correlations with the classifications of Sorlie, Hu, Parker and 

Jönsson. This SupTable includes 8 spreadsheets corresponding to sub-tables. Distributions 

are presented as in ST4, each Table is presented for comparison with the Table presenting 

the distribution using the CIT classification.  

 



 

 22 

SupTab7. Copy Number Alterations (CNAs) regions specific to each subgroup. CNAs 

significantly associated to a molecular subgroup are listed according to subgroup and 

ordered according to chromosomal location. Each region is defined by its start and end 

positions (5‟ end of the BAC clone on the left and the 3‟end of the BAC on the right 

extremity). Size represents the distance between these two values. Mean p value 

reprensents the level of association of the region to the molecular subgroup. Genes listed 

indicate genes with significant expression changes.  

 

SupTab8a. Molecular subgroups show preferential amplification patterns. 

 

SupTab8b: Focal CNA were detected on a subset of 72 breast tumors from the CIT 

discovery set. All tumors were previously analyzed by BAC-arrays. Total numbers of CNAs 

were determined and distributed as gains, losses, recurring and probable CNVs (events 

showing identical starts and/or ends). Mean size of each category of event was calculated 

and the overlap between the number of regions determined on the Illumina-arrays and those 

from the BAC-array. 

 

Sup Tab9: Enrichment of mammary epithelial cell subpopulations signatures in CIT 

subgroups. Results of gene set differential analysis (GSA) between CIT basL and lumA (A) 

and between CIT basL and lumB (B) for each gene set of genes deregulated between the 3 

normal mammary epithelial cell subpopulation in Lim et al., 2009; Pece et al.2010 and Raouf 

et al. 2008.   

 

Sup Tab10: Prognostic significance of the CIT classification relative to that of clinical 

parameters (A) and of 3 molecular classifiers (Sorlie, Hu, Parker)  and 2 prognostic 

signatures (GGI, Van't Veer). Relative risk was calculated taking metastatic relapse as an 

endpoint. The dataset comprised 1186 patients from the Affymetrix validation set for which 

MFS information was available. Complete clinical information was available 995 cases  of the 

Affymetrix validation set explaining the smaller numbers in the multivariate analysis on 

prognostic factors. SBR grade  was available in about 25% of cases was thus excluded of 

the multivariate analysis because it reduced statistical power significantly. 

 

Sup Tab11. Summary of all tables/figures in the article with a brief description, sample 

list used, gene list used if relevant and reference to supplememtal method chapter.  

 


