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Abstract 

The current histoclinical breast cancer classification is simple but imprecise. Several 

molecular classifications of breast cancers based on expression profiling have been 

proposed as alternatives. However, their reliability and clinical utility have been repeatedly 

questioned, notably because most of them were derived from relatively small initial patient 

populations. We analyzed the transcriptomes of 537 breast tumors using 3 unsupervised 

classification methods. A core subset of 355 tumors were assigned to 6 clusters by all 3 

methods. These 6 subgroups overlapped with previously defined molecular classes of breast 

cancer, but also showed important differences, notably the absence of an ERBB2 subgroup 

and the division of the large luminal ER+ group into 4 subgroups, 2 of them highly 

proliferative. Of the six subgroups, the four luminal ones were ER-/PR+/AR+, one was ER-

/PR-/AR+ and one was triple negative (AR-/ER-/PR-). ERBB2-amplified tumors were split 

between the ER-/PR-/AR+ molecular apocrine group and the highly proliferative Lum-C 

group. Importantly, each of these 6 molecular subgroups showed specific copy number 

alterations. Gene expression changes were correlated to specific signalling pathways. Each 

of these 6 subgroups showed very significant differences in tumor grade, metastatic sites, 

relapse-free survival or response to chemotherapy. All these findings were validated on large 

external datasets including more than 3000 tumors. Our data thus indicate that these 6 

molecular subgroups represent well-defined clinico-biological entities of breast cancer. Their 

identification should facilitate the detection of novel prognostic factors or therapeutical targets 

in breast cancer. 
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Introduction 

Breast cancer is heterogeneous. Biological features have proven insufficient for a 

comprehensive description of the disease. Seminal work by Sorlie and colleagues (Sorlie et 

al., 2003) has delineated 5 major molecular subtypes of breast cancer associated to different 

outcomes. This initial classification was reproduced in independent datasets (Bertucci et al., 

2006) strongly suggesting the existence of distinct molecular entities in breast cancer. The 

Sorlie centroid approach has subsequently been redefined and adapted to more recent 

technological platforms (Hu et al., 2006; Parker et al., 2009). 

However, criticisms have pointed to the instability of the defined subtypes (Kapp et al., 2006; 

Weigelt et al., 2010) and their dependence on the original set of samples or genes. Thus, while 

molecular classification brings interesting insights in breast cancer taxonomy, its 

implementation in the clinics is put in doubt due to insufficient reliability in single sample 

allocation (Weigelt et al., 2010). Rather, three broad classes of breast tumors drawn along their 

ER, PR and ERBB2/HER2 status are commonly used in the clinic. ER-/PR-/HER2- tumors 

were defined as triple negative, ER+/PR+/HER2- as luminal and HER2+ tumors irrespective 

of their ER status form the third class (Foulkes et al., 2010). However, this simple 

classification is also criticized because of the biological heterogeneity within classes. In 

particular, the correspondence between the triple negative group and basal-like breast 

tumors and the heterogeneity of the large ER/PR positive group have been repeatedly 

questioned (Foulkes et al., 2010; Gusterson, 2009). This argues for a more elaborate 

stratification amenable to biological exploration and clinical choices. 

This prompted us to construct a robust molecular classification on a large number of samples 

to reach high statistical power. To this aim, we produced transcriptomes of a series of 537 

primary breast cancers and, using a semi-supervised analysis, revealed 6 stable molecular 

subgroups. A related classification rule was defined. Each of the 6 molecular subgroups 
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showed distinct genomic changes, correlated with a specific set of signaling pathways and 

was associated with significant differences in tumor grade, metastatic sites and metastasis-

free survival. We propose that this classification scheme could lay the bases of an operative 

tool to reliably classify breast cancers in more homogeneous molecular subgroups. This 

classification could be highly beneficial in future investigations aiming at identifying novel 

prognostic factors or therapeutical targets in breast cancer.   

 

Results:  

Semi-supervised gene expression analysis identifies six prototypic molecular 

subtypes 

Our aim was to identify molecular subgroups representing homogeneous subsets of breast 

cancer. Our methodology is detailed in SupFig1 and the SupMethods section. Briefly, we 

produced a large dataset comprising 537 primary breast cancer transcriptomes on Affymetrix 

U133-Plus2.0 arrays to ensure proper statistical power. First, this tumor-set was classified 

with 3 unsupervised methods (hierarchical clustering, Gaussian mixture models and k-

means) in parallel. Of the 537 tumors, 355 yielded a consensus subgroup assignment (i.e. 

were assigned to the same subclass) between all 3 methods. This subset was named core-

set and used for further analysis. Second, a minimal list of 256 discriminative genes with 

maximal intragroup homogeneity and intergroup heterogeneity was generated by ANOVA 

(SupTab3). Hierarchical clustering based on this list delineated six homogeneous tumor 

subgroups, homogeneity being confirmed by the principal component analysis (PCA) (Figure 

1B). To allow the classification of independent sample profiles to one of the 6 subgroups we 

built a single sample predictor (SSP) based on a distance-to-centroids approach (using the 

previously mentioned 256 genes) (SupMethods). The 182 tumors of the discovery set lying 

outside of the core-set were classified using this SSP. 
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The overall distribution of the six subgroups was determined by 3 large gene clusters shared 

by at least two subgroups. The first one (cluster-VI, Figure 1A, 1C, SupTab3), containing 

ESR1 and correlated genes, defined two ER-negative (ER-) and four ER-positive (ER+) 

subgroups (Figure 1A, 1C). The second gene cluster (cluster-IV) included the androgen 

receptor (AR) gene and encompassed five subgroups. Of the six subgroups, four were 

ER+/PR+/AR+, one was ER-/PR-/AR+ and one was triple negative (AR-/ER-/PR-) (Figure 

1A, 1C). Interestingly, cluster-IV included transcription factors FOXA1, SPDEF and XBP1, 

which are usually associated to the ER-cluster (Bertucci et al., 2006). The third cluster 

(cluster-II), was predominantly composed of genes regulating DNA replication and cell cycle 

progression, thus defining elevated cell proliferation. This cluster encompassed both ER- and 

2 ER+ subgroups (Figure 1A , 1C).   

Each subgroup was defined by a specific gene cluster (SupFig2) in which we found genes 

previously part of the Sorlie centroids. Hence, for simplicity we named our subgroups 

according to the Sorlie subtype (Sorlie et al., 2003). ER+ subgroups were split according to 

expression levels of the cell cycle cluster. Low proliferation ER+ subgroups were 

differentiated by clusters-III and IX (Figure 1A, SupFig2), comprising respectively genes from 

the Sorlie luminal-A and normal-like centroids (SupTab3) and were, thus, designated LumA 

and NormL. The two high proliferation ER+ subgroups differed sharply in ER-cluster 

expression levels. The subgroup expressing highest levels of ER was named LumB. The 

other subgroup, positioned at the boundary between ER+ and ER- tumors, was designated 

LumC (Figure 1A, 1B, 1C). Noteworthy, 40% of LumC tumors overexpressed the 

ERBB2/HER2 gene.  

Next was the AR+/ER-/PR- subgroup (Figure 1B), defined by cluster-VIII. The AR+/ER- 

status of this subgroup was reminiscent of the previously described “molecular-apocrine” 

subtype (Farmer et al., 2005) and we designated it mApo. Although ERBB2/HER2 was 

overexpressed by 72 % of the tumors in this subgroup, cluster-VIII did not comprise genes 

co-amplified with ERBB2/HER2. In fact, ERBB2/HER2+ tumors distributed in mApo and 
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LumC subgroups (Table 1). Finally, the AR-/ER-/PR- subgroup, defined by cluster-I, 

presented the greatest distance to all others (Figure 1). Since it shared genes with the 

“basal-like” subtype, it was designated BasL (SupTab3).  

Molecular subgroups show distinct clinical correlations, metastatic sites and 

outcomes 

BasL and mApo at one end of the spectrum and LumA and NormL at the other end showed 

an inverse balance between high-grade and ER/PR positivity (Table 1). TP53 mutation 

incidence reached 83% in the BasL subgroup and gradually went down to 4% in NormL and 

LumA tumors (Table 1). This distribution of high grade/ER- vs. low grade/ER+ cancers was 

also coherent with the median age of onset: 50 and 62 for BasL and LumA patients, 

respectively. Correlation with histological type was observed as well. While the BasL 

subgroup was composed of 98% ductal carcinomas, NormL presented 19% of invasive 

lobular tumors, representing 53% of all lobular cancers in the dataset, in coherence with 

previous findings (Bertucci et al., 2008).  

Molecular subgroups showed differences in sites of metastatic relapse. In line with previous 

studies (Smid et al., 2008), LumA and NormL predominantly metastasized to the bone and 

rarely or never to the brain, while BasL and mApo tumors metastasized to the brain and less 

to the bones (Table 1). ST6GALNAC5, COX2/PTGS2 and HBEGF, whose expression has 

recently been associated to brain metastasis (Bos et al., 2009), were increased in BasL 

(SupFig3). Clear differences were also found in metastasis-free survival (MFS) (Figure 2). 

BasL and mApo subgroups showed earliest recurrence (18 to 60 months). LumA and NormL 

had the slowest course. Whereas, metastatic recurrence plateaued between 60 and 180 

months in BasL and mApo, it progressively increased after 60 months in ER+ subgroups. 

LumA and NormL tumors presented recurrences after 120 months post-surgery. 

Interestingly, patterns of recurrence (early vs. late) matched cell cycle cluster expression 

levels in the different subgroups. 
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Performance on external datasets  

We applied our classification scheme to a large Affymetrix dataset comprising 2291 breast 

cancer transcriptomes we have collected from the litterature (SupMethods). The 6 molecular 

subgroups were perfectly reproduced, both in terms of distribution and clinical correlations 

and outcomes (SupTab4a, Figure 2B). To further ascertain its robustness, we tested our 

classification on 3 expression datasets from different technological platforms (Swegene, 

Qiagen/Operon and Agilent). Our prediction rule being designed for Affymetrix datasets we 

had to adapt it to different technological contexts (SupMethods). Overall molecular 

subgroups were reproduced on different platforms (SupTab4b, SupFig4). Differences were 

noted according to the dataset, which may possibly be due to different tumor recruitment in 

each series. To test inter-platform reproducibility we classified the GSE3155 dataset which 

was analyzed in parallel on 2 dual-color (Agilent and Stanford) and 1 uni-color (Applied 

Biosystems) platforms (SupTab4c). Classification on both dual-color datasets showed a 90% 

overlap, suggesting a good inter-platform reproducibility. However, overlap dropped 

dramatically when dual and uni-color platforms were compared (48 and 52%). This indicates 

that classification rules need adaptation to technological specificities of each platform to 

perform optimally.  

Comparison with other molecular classifiers 

We next compared our classification with the Sorlie, Hu and Parker centroids (Sorlie et al., 

2003; Hu et al., 2006; Parker et al., 2009). Variable overlaps were found for BasL, LumB, 

LumA and NormL subgroups (Figure 1D). However, significant differences were noted for the 

mApo and LumC subgroups which overlapped at variable levels with the ERBB2 subtype, 

but also with basal-like, luminal A and B and normal-like groups, depending on the classifier 

(SupTab5). Classification differences affected the distribution of bioclinical markers among 

molecular subgroups. Main differences were in the fraction of ER+/PR+ and AR+ tumors in 

basal-like subtypes and the distribution of ERBB2 positive tumors (SupTab6). MFS curves 
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showed better separation of good and bad outcome subgroups with the CIT classification 

(SupFig5, SupFig6). 

Molecular subgroups show differential activation of signaling pathways  

We selected 40 cancer relevant pathways from public databases and tested for specific 

enrichment in our molecular subgroups (SupMethods). Genes specific for each subgroup 

were identified using 4 algorithms. Pathways were ranked for each subgroup on the mean of 

p-values across the four methods. As shown in Figure 3 each subgroup was associated to 

different up or downregulated signaling pathways. The upregulation of DNA replication and 

repair in BasL and LumB contrasted with its downregulation in NormL. The upregulation 4/5 

immune system pathways in LumC was of further note. These data indicate that molecular 

subgroups relate to different signaling pathways and biological processes.  

Molecular subgroups show specific genomic anomalies 

Of the 537 tumors profiled for RNA expression, 488 tumors were analyzed by array-CGH. 

Twenty-one regions of gain and 33 regions of loss were found in more than 30% of the 

tumors (Figure 4A, top panel). BasL and LumB showed extensive copy number alterations 

(CNA), whereas NormL and LumA were the least rearranged. Qualitative differences were 

also apparent (Figure 4A) and we searched for CNAs specifically associated to each 

subgroup. BasL and LumB tumors presented the greatest number of CNAs with respectively 

39 and 46 specific CNAs (Figure 4A, SupTab7). The number of specific events was lower in 

the other subgroups ranging from 2 to 8. Expectedly, amplifications at 17q12 were found in 

70% of mApo tumors. LumA showed gains at 4q35 and 16p11-p13, whereas NormL tumors 

could be differentiated from LumA by gains at 9q33, 8p23, 16p13 and loss at 16q12.  

CNAs were associated to large-scale gene expression modifications. A total of 786 genes 

comprised in intervals of gains or losses showed significantly modified expression levels. A 

number of regions of gains overexpressed genes encoding cell cycle and proliferation 

activators and, conversely, known tumor suppressors, pro-apoptotic or DNA damage 

in
se

rm
-0

06
11

75
2,

 v
er

si
on

 1
 - 

27
 J

ul
 2

01
1



9 

 
 

CT 29 juil. 11 

checkpoint genes were found downregulated in regions of loss (SupTab7). These findings 

suggest that CNAs are part of a selective process associated with tumor progression, with 

differences from one subgroup to another. In that respect, 28 CNAs presented inverse 

patterns in different subgroups. These inverted patterns involved mainly BasL and LumB, but 

were also found in mApo and LumB or LumB and NormL (SupFig7). Strikingly, they were 

associated to inverse expression of key cancer genes. These data support the notion that 

breast cancer subgroups arise along distinct genetic pathways.  

Focal DNA amplification (defined as high-level gains occurring in regions not larger than 3 

Mb) occurred significantly more frequently in LumB, mApo and LumC than in the other 

subgroups (SupTab8a). We further investigated the occurrence of focal CNAs and analyzed 

a subset of 72 tumors from the CIT discovery set with high resolution Illumina 610K-SNP-

arrays (SupTab8b). We detected 246 gains and 337 losses (mean size 132 and 161 kb 

respectively). We noted that 53% of the gains were also detected in our BAC-array data, 

while the overlap was lower for losses (19%). However, gains showed modest copy number 

increase and were infrequently recurrent. Losses showed greater recurrence but this 

corresponded mainly to probable CNVs (identical starts and ends).  

We verified the overlap of our subgroups with the recently proposed CNA-based 

classification (Jönsson et al., 2010) and observed an overall coherence with our findings. 

Their CNA-based Basal-complex class overlapped with our BasL, 17q12 with part of our 

mApo and LumC, Luminal complex and amplifier with LumB and LumC, while the Luminal-

simple corresponded globally to LumA and NormL (Figure 1D).  

Fraction of non-tumor cells and distribution in molecular subgroups 

The fraction of non-tumor cells is frequently discussed as a confounding factor in molecular 

analyses of breast cancer fostering the proposition that the normal-like group was a possible 

artefact (Prat et al., 2010). To get an objective estimate of the rate of non-diploid cells in our 

dataset and determine its distribution within molecular subgroups, we computed the Illumina 
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610K-SNP data using a recent formula (Van Loo et al., 2010). Significant differences were 

seen among molecular subgroups (SupFig8a), with, surprisingly, mApo showing the lowest 

rate of non-diploid cells. NormL ranked third and LumA and LumB presented the highest 

fraction of non-diploid cells. Our results agreed with recent data (Van Loo et al., 2010). 

However, a variable fraction of tumor cells may also be diploid, leading to an overestimation 

of normal cells. To assess this, a histological estimate of the non-tumor cell fraction was 

performed on the tumors analyzed with the Illumina 610K-SNP-arrays. This showed that 

SNP-based estimates of non-diploid cells were lower than pathological tumor cell content 

(SupFig8b). Overall these data are coherent with the idea of NormL representing a bona-fide 

breast cancer subgroup. 

Breast cancer subgroups and mammary epithelial cell hierarchy 

To test whether our subgroups relate to distinct cells of origins in the mammary gland, we 

took advantage of 3 published expression profiling datasets of sorted normal mammary 

epithelial cell subpopulations (Lim et al., 2009; Pece et al., 2010; Raouf et al., 2008). We 

inferred a signature that discriminated the Mammary Stem Cell (MaSC) enriched, luminal 

progenitor (LPC), mature luminal (MLC) and stromal cell populations and used this signature 

to classify our breast tumor expression data (SupMethods). As shown in Figure 5, the PCA 

ordered normal mammary epithelial cell fractions according to a differentiation gradient and 

breast tumors from BasL, mApo, LumC, LumB /NormL to LumA, suggesting a proximity of 

BasL and mApo with either MaSC or LPC, whereas ER-positive subgroups showed a 

gradient between LPCs and MLCs. The correlation of BasL and mApo with least 

differentiated cells (MaSC or LPC) in the normal mammary gland was confirmed in a second 

analysis (SupTab9). 

Prognostic significance of molecular subgroups,  

We next compared the prognostic significance in terms of metastatic relapse of our 

molecular subgroups to classical prognostic factors (ER, ERBB2/HER2, SBR grading and 
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nodal involvement). As shown in Table 2, our classification signature performed better in 

both univariate and multivariate analyses than the classical prognostic factors, in both the 

discovery and validation sets. However, the absence of central pathology review in both 

datasets prevents us to draw firm conclusions on the independent prognostic power of our 

signature. In a comparative analysis with 5 expression signatures (Hu et al., 2006; Parker et 

al., 2009; Sorlie et al., 2003; Sotiriou et al., 2006; van 't Veer et al., 2003), our signature 

came second after the van’t Veer signature in the discovery set and performed best in the 

validation set (SupTab10), demonstrating the important difference in terms of prognosis 

among molecular subgroups. 

Molecular subgroups show differential response to chemotherapy 

To test whether our classification could predict chemotherapy response, we analyzed 3 

datasets of locally advanced breast cancers treated by neoadjuvant therapy followed by 

surgery and assessment of the pathological response. ER-negative breast cancers were 

overrepresented in the 3 cohorts, but our signature allowed the assignment of tumors to 4 

subgroups after pooling LumB and LumC, as well as LumA and NormL to reach sufficient 

sample size by subgroup. Despite different chemotherapy protocols in individual cohorts, 

obvious differences in response were observed. BasL and mApo showed the best response 

rates with respectively 44 and 65% and 37 and 42% of complete response. ER-positive 

subgroups showed 19% of complete response in LumB/LumC tumors and 0% in 

LumA/NormL(Table 3A). Prediction of complete pathological response (pCR) of the CIT 

classification was then compared to that ER status and SBR Grade in the three pooled 

datasets. Both in the univariate and multivariate analysis the CIT classification showed the 

strongest score (Table 3B).  

 Discussion 

Breast cancer heterogeneity, reflected in molecular subgroups, can be attributed to 

differences in molecular alterations, cellular origin or both. We present a classification of 
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breast cancer into 6 molecular subgroups, which differed upon gene expression, genomic 

profiles, differentiation level and clinical features.  

First, gene expression differences strongly suggested that they outlined distinct biological 

entities, reflecting founder mutations and/or cell-of-origin. Specific sets of signalling pathways 

were associated to each subgroup.  

The distribution of the 6 subgroups was determined by the combination of the expression of 

three large gene clusters organized around (i) the estrogen receptor, (ii) androgen receptor, 

(iii) cell cycle regulator genes. The ER cluster is well known as defining luminal breast tumors 

(Bertucci et al., 2006) and the expression of AR in breast cancer is long-known (Isola, 1993), 

but has been confounded with that of the ER cluster (Doane et al., 2006). Its combined 

expression with the ER cluster yields 3 broad classes determined by nuclear receptor 

expression; AR-/ER-/PR- (triple negative) corresponding to the BasL subgroup, AR+/ER-

/PR- (mApo), AR+/ER+/PR+ (triple positive) including the 4 ER+ subgroups. The AR cluster 

comprises key genes previously associated to the ER cluster, such as the pioneer factor 

FOXA1, which recruits ER, AR and RAR/RXR (Carroll et al., 2006; Lupien et al., 2008).  

The existence of an ER-/AR+ breast tumor subset (our mApo subgroup) has been proposed 

(Doane et al., 2006; Farmer et al., 2005) and its important overlap with ERBB2/HER2 

amplification is intriguing, possibly reflecting cross-talks between the AR and ERBB2/HER2 

pathways (Naderi & Hughes-Davies, 2008). However, it is notable that our classification did 

not define an ERBB2 subgroup. Instead, ERBB2-amplified cancers distributed in mApo (ER-) 

and LumC (ER+) subgroups. We found less expression differences between mApo/ERBB2+ 

and mApo/ERBB2- than between mApo and LumC tumors (SupFig9). Interestingly, Staaf 

and coworkers (Staaf et al., 2010) showed that ER- and ER+ ERBB2-amplified tumors 

presented different 17q CNA patterns. These observations could have implications in the 

clinic as they indicate that ERBB2+ breast cancer correspond to a biologically 

heterogeneous group. Moreover, it seems important to distinguish ERBB2+ and mApo 
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tumors, because the so-called triple-negative group comprises both BasL and ERBB2-/mApo 

tumors despite clear molecular and clinical differences.  

Second, subgroups were also characterized by different patterns of genomic anomalies. 

These data were concordant with previous results (Chin et al., 2006; Natrajan et al., 2009) 

and the CGH classification recently proposed by Jönsson and coworkers (Jönsson et al., 

2010). Moreover, the existence of chromosomal regions showing inverse patterns (gain in 

one subgroup/loss in another) further supported the notion that these subgroups progress 

along distinct genetic routes, which possibly involve different mechanisms of genetic 

instability.  

Third, our data indicated that subgroups differed in their differentiation level, pointing to 

possible differences in cell-of-origin. This was suggested by similarities between the 

transcriptome of distinct cellular contingents in the normal mammary gland and those of 

molecular subgroups. While BasL and mApo showed proximity to MaSC or Luminal 

Progenitors, ER+ subgroups formed a gradient between LPCs (LumC) and mature luminal 

cells (LumA). Our findings are consistent with recent work suggesting that LPCs were the 

cells of origin of basal cancer and Brca1 mammary tumors (Lim et al., 2009; Molyneux et al., 

2010). These findings bring insight on the prevalence of grade 3 tumors in BasL and mApo 

contrasting sharply with that of low grade cancers in NormL and LumA. Our data thus 

suggest that breast cancer may arise from at least two distinct cell types and that the final 

phenotype will result from genetic and epigenetic changes occurring during cancer 

progression. This may also have some link with the striking gradient of TP53 mutations 

observed between BasL and NormL subgroups. The correlation with elevated expression of 

the cell-cycle cluster and increased genomic instability was also notable. Moreover, there is a 

striking parallel between the incidence of TP53 inactivation and the response rates of neo-

adjuvant chemotherapies. These data are in line with our previous observation proposing 

that TP53 is not the mediator of chemotherapy-induced cell death (Bertheau et al., 2007). 
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Fourth, molecular subgroups show striking differences with respect to metastatic relapse 

both in terms of kinetics and site of recurrence. While BasL and mApo tumors preferentially 

metastasized to the brain and rarely to the bone, ER+ subgroups exhibited an inverse 

pattern, strengthening previous studies (Smid et al., 2008). Our data suggest that these 

differences could be due to differential expression of key metastasis genes (Bos et al., 2009). 

Hence, metastasis to a specific organ can also be the result of a subgroup-specific gene 

program and coexist with the de novo acquisition of stochastic mutations, as recently shown 

by massively parallel sequencing work (Ding et al., ; Yachida et al.). Outcomes of the 

different subgroups were very different as well. BasL and mApo showed earlier relapse, but a 

remarkably stable metastasis-free survival for the next 100 months. In contrast, while all ER+ 

subgroups did better during the first years, a continuous incidence of late relapse was 

observed. LumB and LumC outcome progressively became worse than that of BasL or 

mApo. However, a number of recurrences occurring after 5 years in ER+ subgroups are 

probably linked to interruption of anti-estrogen treatments.  

The status of the NormL subgroup is of particular interest because its existence has been put 

in doubt and attributed to an elevated content of normal cells (Prat et al., 2010). In line with 

recently published data (Van Loo et al., 2010), we showed that NormL tumors did not present 

a lower fraction of non diploid cells than mApo or LumC. Furthermore, our data showed that 

70% of NormL tumors showed loss at 16q, further supporting that this subgroup does not 

result from a co-cluterization of breast tumors presenting smaller fractions of tumor cells. 

Our results are in favor of the existence of different breast cancer subtypes bearing distinct 

biologies and clinical courses. We propose that stratifying breast cancers according to such a 

classification could be highly beneficial when searching for new prognostic or response to 

treatment indicators. These would be subgroup specific instead of expressing the differences 

between highly and poorly proliferating tumors. Furthermore, such a classification, once 

adapted in a format compatible with clinical setting, could efficiently contribute to disease 

management. Indeed, the different subgroups outlined here occur in different age groups, 
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metastasize to different organs and exhibit distinct survival kinetics. Similarly, the association 

with immune system activation pathways in LumC may be indicative for an anti-tumor 

immunity in this specific subgroup. All of these are clear indications that they represent 

distinct clinical and biological entities.  

Materials and methods  

Patients and tumors 

A total of 724 primary breast carcinomas were collected and analyzed for expression profiling 

on Affymetrix U133-Plus2.0 chips and a subset of 488 samples were analyzed by array-

CGH. In addition, 58 fine needle aspiration biopsies from patients undergoing neoadjuvant 

chemotherapy were analyzed by transcriptome and included in the response-to-

chemotherapies set. Full description can be found in SupTab1 and SupTab2. Mean follow up 

time was of 65 months. Four RNA from normal human breast tissue were used as reference. 

Histological grade as well as ER, PR and HER2 levels determination are detailed in the 

SupMethods. 

Discovery and validation sets 

Our 724 breast tumor transcriptome dataset was split in a CIT-discovery-set comprising 537 

(75%) tumors of which 488 were analyzed by array-CGH and 187 (25%) cases that were set 

apart for the validation-set. The Affymetrix validation-set comprised the 187 samples from 

CIT and 2291 transcriptomes collected from GEO and array-express (SupTab2). 

Expression profiling and data analysis  

RNA profiling  

Methods used for RNA purification, quality control, fluorescent probe production, 

hybridization and data processing were essentially as previously described (de Reynies et 

al., 2009). 
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Transcriptome analysis and molecular subgroup determination 

Our rational was to ensure the greatest possible homogeneity to identified subgroups. 

Subgroup determination was based on the CIT discovery set including 537 transcriptomes 

and a clustering approach iterating unsupervised and supervised steps (SupFig1, 

SupMethods). Microarray data were first classified with a set of 244 most variant probesets 

using in parallel Hierarchical clustering, k-means and Gaussian mixture model. Tumors that 

were assigned to the same group by the 3 methods were kept defining a core-set of 355 

tumors. Based on this core-set most discriminative genes were selected by ANOVA and 

ranked by random-forest, producing a 256 gene signature, leading to the identification of 6 

homogeneous molecular subgroups. Validation datasets were independently classified in the 

CIT molecular subgroups by applying a classical distance-to-centroid approach, implemented 

in the citbcmst R package available at the following URL http://cran.r-

project.org/web/packages/citbcmst/index.html. and coming with a (Sweave) user 

documentation. The complete classification procedure is detailed in the SupMethods. 

Comparison with the Sorlie, Hu and Parker classifiers 

Sorlie (Sorlie et al., 2003), Hu (Hu et al., 2006) and Parker (Parker et al., 2009) centroids 

were respectively retrieved from  

http://genome-www.stanford.edu/breast_cancer/robustness/data/IntrinsicGeneList.txt, 

https://genome.unc.edu/pubsup/breastTumor/data/306genes-X-249samples-X-5subtypes+5centroids.xls and 

https://genome.unc.edu/pubsup/breastGEO/pam50_centroids.txt.. To build the classifiers corresponding clone 

UniGene_IDs were mapped  to Affymetrix (U133A or U133Plus2) probe-sets. For Sorlie this 

was possible for 334 UniGene_IDs gene symbols, for Hu 232 UniGene_IDs and Parker all   

genes could be directly mapped. 

Comparison with the Jönsson array-CGH-based classification  
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The 6 Jönsson centroids are relative to genomic regions determined with the GISTIC 

algorithm (Jönsson et al., 2010). Details are provided in the SupMethods.  

Cancer pathways analysis 

Cancer relevant pathways were retrieved from KEGG 

(ftp://ftp.genome.ad.jp/pub/kegg/pathways/hsa), Biocarta (http://www.biocarta.com) and GO 

(http://www.geneontology.org/) and related genes mapped to non-redundant HUGO Gene 

symbols. Four gene set analysis methods were used (SupMethods) yielding p-values based 

which were transformed in ranks. Gene sets were ranked by order of interest according to 

the mean of the ranks across the four methods.  

Array-CGH 

Array-CGH was performed on a 4434 BAC-array with a median inter-BAC gap of 0.6 Mb. 

DNA labeling, hybridization and data processingare as described in the SupMethods. 

Statistical tests 

Clinical correlations were determined by chi-square for qualitative factors and ANOVA for 

quantitative variables. Disease outcome was investigated with Kaplan-Meier curves using 

metastatic recurrence as an endpoint and subgroup for stratification. Metastasis-free survival 

(MFS) was calculated from the date of diagnosis until first metastatic relapse. P-values at 60 

and 180 months resulted from a log-rank test on Cox estimates. Benjamini and Hochberg 

(BH) method was applied for multiple-testing adjustment. 
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Legends to the Figures 

Figure 1: Breast tumor classification according to the CIT classification into 6 

subgroups of tumors. (A) Heatmap representing the expression of the 256 genes (8 

clusters of genes represented by vertical color bars on the left of the heatmap) through the 6 

groups. (B) Principal-Component-Analysis (PCA) of the samples of the core-set according to 

the 256 gene signature. The first principal component (PC1) represents the combined 

expression of the 3 transversal clusters (ER, AR and cell cycle), the second component 

(PC2) differentiates LumB and NormL. (C) Distribution of mean expression levels of the three 

transversal gene clusters (ER, AR and Cell Cycle) over the six main molecular subgroups. 

(D) Comparison of the CIT classification with those obtained using the Sorlie, Hu, Parker and 

Jönsson systems.  

Figure 2: Breast cancer molecular subgroups show distinctly different disease 

outcome. Kaplan-Meier curves shown in this Figure represent disease free survival with 

metastatic relapse as an end point. Panels A and B show survival curves in the CIT and 

validation set respectively. Abrupt breaks in some curves of panel  A are related to small 

numbers of patients with long term follow up in these subgroups. These appear smoothed 

out in panel B because of greater numbers in the validation set.  

Figure 3: Molecular subgroups show differential activation of major signaling 

pathways:  Correlations between a given pathway and a subgroup are indicated by color 

boxes. Red boxes show up-regulation of the pathway, green down-regulation.  Up or down-

regulation was deduced using KEGGanim tool where relative expression measures are 

projected in the related KEGG pathway interaction graph. Pathways showing no clear 

direction of regulation were excluded. 

 

in
se

rm
-0

06
11

75
2,

 v
er

si
on

 1
 - 

27
 J

ul
 2

01
1



22 

 
 

CT 29 juil. 11 

Figure 4: Breast cancer molecular subgroups present different copy number change 

(CNC) profiles. CNC profiles were established using genome wide array-CGH on the a 488 

breast tumor dataset and subsequently stratified according to the CIT classification. The left 

panel shows frequency of gains (vertical bars going up) or losses (bars going down) at a 

given location on the genome. Graphs from top to bottom correspond to profiles of the whole 

CIT breast cancer  set and each of the six molecular subgroups. The right panel  represents 

regions of CNC correlating to a specific subgroup. Specific genomic regions for the whole 

CIT set are the ones for which the proportion of alterations (in gain or loss) exceeded 20%. 

Subgroup specific regions are those that present significant increase in proportion (at a 0.1 

FDR level) in a given subgroup tested against all others. Bars represent p-values after a 

standard logarithmic transformation.  

Figure 5: Principal Component Analysis of the CIT core-set expression profiles based 

on a meta-signature comparing normal mammary epithelial cell subpopulations. A 163 

gene signature was produced by comparing different normal mammary cell contingents from 

3 independent studies (GSE16997, GSE18931, GSE11395) and used in a principal 

component analysis. Samples from the CIT core-set and normal mammary gland samples 

from GSE16997 were projected in the 2 first principal components in the upper and lower 

panel respectively. 

Legends to the Tables 

Table 1: molecular subgroups show differential correlation to breast cancer clinico-

biological parameters and different sites of metastatic relapse. Expression of ER, PR 

and ERBB2/HER2 were determined by immunohistochemistry as well as by RNA expression 

(for greater details see SupMethods). TP53 mutation status was determined by the yeast 

functional assay (SupMethods). P-values for qualitative variables (ER, PR, ERBB2/HER2, 

TP53 mutation, histological type, SBR grading) result from a Fisher exact test. P-values for 

quantitative variables (median age) result from an ANOVA. Metastasis relapse (MR) was 
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determined 5 and 15 years after surgery. Frequency of MR in a subgroup was calculated as 

the ratio of MR with the total number of MR. For each subgroup, percentages of M.R. in a 

given site are determined by the number of M.R. in this site over the whole number of MR in 

the subgroup. MR may occur at more than one site, hence the sum of percentages may not 

equate 100. 

 

Table 2: Prognostic significance of the CIT classification. Relative risk was calculated 

taking metastatic relapse as an endpoint and compared to that of (A) clinical parameters and 

(B) of 3 molecular classifiers (Sorlie, Hu, Parker) and 2 prognostic signature (GGI, Van't 

Veer). The dataset comprised 426 patients from the CIT discovery set for which MFS 

information was available. Complete clinical information was available in 371 cases 

explaining the smaller numbers in the multivariate analysis on prognostic factors. Prognostic 

significance was assessed by applying a Cox model. Columns refer to the Hazard Ratio 

(HR), the 95% confidence-interval (CI) and the p-values for both univariate and multivariate 

models. 

 

Table 3: Differential response to chemotherapy according to molecular subgroups of 

the CIT classification. Table 3A shows the correlation between pathological complete 

response (pCR) and CIT molecular subgroups. Pathologic complete response (pCR) and 

absence of response (no pCR) to chemotherapy was analyzed in three clinical trials (Hess et 

al 2006, Bonnefoi et al 2007, CIT set). Due to the small number of data, four main subgroups 

and two intermediate subgroups were combined into two groups: [ LumB; LumC; LumB/C ] 

and  [ NormL; LumA; NormL/LumA ]. Treatment description: (EC) six cycles of a dose-dense 

regimen of 75 mg/m2 epirubicin and 1,200 mg/m2 cyclophosphamide, given every 14 days; 

(T/FAC) 24 weeks of sequential paclitaxel and fluorouracil-doxorubicin-cyclophosphamide; 

(FEC) fluorouracil, epirubicin, and cyclophosphamide for six cycles; (TET) docetaxel for three 

cycles followed by epirubicin plus docetaxel for three cycles. Correlations were calculated 

using Fisher exact test. Table 3B shows uni and multivariate analyses of factors predictive of 
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pCR in the three pooled datasets. Univariate analysis was done using the Fisher exact test 

and Multivariate analysis by logistic regression.  
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