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Abstract

The causes of age-related macular degeneration (AMD) are not well understood. Due to demographic shifts in the

industrialized world a growing number of people will develop AMD in the coming decades. To develop treatments

it is essential to characterize the disease’s pathogenic process. Over the past few years, numerous studies have

focused on the role of chemotactic cytokines, also known as chemokines. Certain chemokines, such as CCL2 and

CX3CL1, appear to be crucial in subretinal microglia and macrophage accumulation observed in AMD, and partici-

pate in the development of retinal degeneration as well as in choroidal neovascularization. This paper reviews the

possible implications of CCL2 and CX3CL1 signaling in AMD. Expression patterns, single nucleotide polymorphisms

(SNPs) association studies, chemokine and chemokine receptor knockout models are discussed. Future AMD treat-

ments could target chemokines and/or their receptors.

Introduction

Age-related macular degeneration (AMD) is the leading

cause of legal blindness in the developed world [1]. The

pathology is characterized by lesions of photoreceptors,

retinal pigment epithelium (RPE), Bruch’s membrane

(BM) and choriocapillaris [2]. Physiologically, the RPE

phagocytoses, degrades and recycles photoreceptor outer

segments, and clears the debris through the underlying

BM into the choroidal circulation. RPE cells selectively

transport nutrients from the choroidal capillaries to the

outer retina (external hemato-retinal barrier). In the

early stages of AMD changes in RPE pigmentation and

the excessive presence of yellowish-white subretinal

deposits called drusen are clinically observable (fundo-

scopy) [2,3]. Drusen are composed of lipids and proteins

[4], located on the BM, they are partially covered by the

RPE. It is believed that drusen are formed because of a

transport defect between the RPE and the choriocapil-

laries or as a result of degenerating RPE cells [5]. There

are two clinical forms of late AMD: the fast progressing

exudative form defined by choroidal neovascularisation,

responsible for the majority of legal blindness in AMD,

and the more slow progressing atrophic form character-

ized by RPE atrophy, photoreceptor degeneration and

choroidal involution and obliteration [6,7]. Some of

these features can be simulated in a variety of animal

models [8], but no animal model has consistently repro-

duced AMD.

In recent years, there has been increasing evidence for

an inflammatory component in AMD. Drusen deposits

have been reported to contain immune complexes, com-

plement factors, major histocompatibility complex

(MHC) and amyloid oligomers, among others [5,9-12].

A more recent discovery, that AMD is associated with a

polymorphism of complement factor H (CfH) [13-15], a

polymorphism that leads to an overactivation of the

complement system [16,17], emphasizes the importance

of inflammatory mediators in AMD. Nevertheless, it

remains unclear how the over-activation of the comple-

ment system leads to AMD.
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Microglial cells (MC) are the resident macrophages of

the central nervous system (CNS). In the eye they are

only located in the inner retina [18,19]. The subretinal

space is physiologically devoid of MCs or macrophages

(Mj) in healthy young adult subjects. In AMD, MC and

Mj are activated [9,20] and accumulate in the subretinal

space [19,21]. Interestingly, activated complement frac-

tion C3 and C5 participate in neutrophil and macro-

phage recruitment to the subretinal space in a choroidal

neovascularization model [22]. A similar mechanism

might participate in retinal/choroidal inflammation in

AMD. The prolonged presence of MC/Mj in the sub-

retinal space is associated with photoreceptor degenera-

tion [19,23] and the development of choroidal

neovascularization in animal models [24,25]. This is pos-

sibly because MC/Mj are an important source of cyto-

kines and angiogenic factors like VEGF [26,27].

Interfering with subretinal MC/Mj accumulation might

therefore be a promising avenue in the treatment of

AMD, but the mechanisms of subretinal MC/Mj cell

accumulation remain unclear.

Chemokines constitute a family of structurally related

chemotactic cytokines that direct the migration of leuko-

cytes throughout the body, both under physiological and

pathological conditions [28]. CCL2 signaling through

CCR2, and CX3CL1 signaling through CX3CR1 are key

factors in Mj recruitment to a tissue lesion [29,30]. In

this review, we discuss the possible role of CCL2/CCR2

and CX3CL1/CX3CR1 axes in MC/Mj homeostasis in

the healthy eye and in AMD. We review data describing

the expression of these chemokines and their receptors

in the retina, polymorphism studies in AMD, animal

chemokine and chemokine receptor knockout models

presenting drusen formation, and photoreceptor degen-

eration or choroidal neovascularisation.

CX3CL1, CX3CR1, CCR2 and CCL2 expression in the retina

In the blood, chemokine receptors CCR2 and CX3CR1

identify two functional subsets of murine blood mono-

cytes: “inflammatory” monocytes, which express both

receptors, and non-inflammatory monocytes, which only

express CX3CR1 [31]. CCL2 and CX3CL1 released by

tissue lesions participate in the recruitment of mono-

cytes and in local inflammation [29,30].

CX3CL1 is an atypical chemokine. It is expressed as a

transmembrane protein, which can be cleaved by pro-

teases into a soluble form that has chemotactic properties

[32]. In its transmembrane form, CX3CL1 mediates

integrine-like intracellular adhesion. Unlike many promis-

cuous chemokines, it only signals through the CX3CR1

receptor [33]. In the eye, it is constitutively expressed in

retinal neurons and in the RPE [34] CX3CL1 can also be

induced in microvascular endothelial cells [34]. In the

retina, the vast majority of resident “quiescent” MCs

express CX3CR1 in newborn (PN6) and adult mice (6 to

18 months) [19,35]. Immunohistochemistry reveals simi-

lar results in humans [19]. Contrary to a previous report,

the use of CX3CR1-specific antibody in humans and

experiments with Cx3cr1GFP/+ mice [36] failed to find sig-

nificant CX3CR1 expression in RPE cells in vivo [37].

MCs are the only cells in the retina that express CX3CR1

under physiological conditions.

CCL2 expression in the retina and RPE is very low in

healthy young adult animals [38], but increases in acute

inflammation [23,39,40], with aging [38] and under oxi-

dative stress in the RPE [41].

Recent evidence suggests that subretinal MC/Mj

induce CCL2 and CCL5 in the RPE [42]. CCL2 mainly

signals through CCR2 [43]. There is no direct evidence

of CCR2 expression by retinal MCs or macrophages in

the retina. However, it has been shown that CCL2/

CCR2 signaling is involved in monocyte or MC recruit-

ment after laser injury [44,45] and aging [45] in knock-

out mice. This suggests that CCR2-expressing

monocytes or MCs are present at some point in these

models. In the brain, CCR2 expression has been

reported to be very low in healthy rat CNS microglia,

but large numbers of CCR2 positive MC/Mj are found

in acute inflammation [46]. To summarize, CX3CL1 and

CX3CR1 are constitutively and robustly expressed in the

retina and might have a role in retinal homeostasis. In

contrast, CCL2 is expressed at low levels in the healthy

young adult, but increases with age and injury. A very

recent clinical study shows that elevated intraocular

CCL2 levels are associated with exudative AMD [47].

CCL2 might therefore play a role in monocyte and

microglial cell recruitment to the subretinal space with

age and in AMD.

CX3CR1, CCR2 and CCL2 single nucleotide polymorphisms

(SNPs) AMD

Several studies have examined SNPs of the chemokine

system and AMD susceptibility. The T280M allele of

the CX3CR1 gene has been shown to be associated with

AMD in a group of Caucasian patients recruited in the

Washington D.C. area [37]. We replicated this associa-

tion in a group of C-aucasian patients recruited in Paris

[19] and a similar association has recently been found in

Han Chinese patients recruited in Nantong [48]. Pre-

vious studies show that the M280 polymorphism pro-

vokes loss of chemotaxis [49] or increases adherence to

its ligand [50]. Therefore, dysfunctional CX3CL1/

CX3CR1 signaling might play a role in AMD (see

below). No evidence was found of an association

between common genetic variations of CCR2, and CCL2

and AMD [51].
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The Cx3cr1
-/- mouse model of AMD

As the T280M allele of the CX3CR1 leads to dysfunc-

tional monocyte migration [19] and is associated with

AMD [19,37,48], several groups have studied Cx3cr1-/-

mice to decipher the effect of CX3CR1 dysfunction on

ocular homeostasis. As with monocytes bearing the

T280M allele, Cx3cr1-/- MCs display inhibited migration

[52] when compared with CX3CR1 competent MCs. We

have shown that Cx3cr1-/- mice spontaneously accumu-

late subretinal MC/Mj with age in the absence of

photoreceptor degeneration [19]. Furthermore, an

increased accumulation of subretinal MC/Mj is found

after light injury in comparison to a wildtype control

group [53]. These results stand in sharp contrast to

observations of inflamed peripheral tissue, where

Cx3cr1-/- mice similar to other chemokine receptor

knockouts present an inhibition of Mj accumulation

[30].

It has since been recognized that subretinal MC/Mj

also accumulate in wild type mice at a more advanced

age [54], suggesting that dysfunction of certain chemo-

kines and possible other factors accelerates a physiologi-

cal process leading to MC/Mj accumulation at an

earlier age in Cx3cr1-/- mice as compared to controls.

Ng et al. [55] showed that normal animal facility light-

ing conditions induced subretinal MC/Mj accumulation

in the absence of photoreceptor degeneration in albino

strains. Furthermore they show that subretinal MC/Mjs

are cleared from the subretinal space when light stimu-

lus is removed. These observations suggest that MC/

Mjs migrate to the subretinal space and are subse-

quently cleared once the stimulus is removed in the

absence of primary pathological photoreceptor or RPE

lesions. It remains unclear if this clearance is due to

apoptosis of the subretinal MC/Mj or to migration

from the subretinal space. In retinal degeneration, where

severe degeneration occurs, we observed an egress of

rhodopsin laden MC/Mjs from the subretinal space

[53], suggesting that MC/Mjs can leave the subretinal

space by migration. The migratory deficit observed in

Cx3cr1-/- microglia [52] might contribute to the reduced

clearance from the subretinal space and therefore accel-

erate the accumulation, as observed in aged Cx3cr1-/-

mice. Nevertheless, it cannot be excluded that reduced

subretinal MC/Mj apoptosis plays a role in subretinal

MC/Mj accumulation.

In Cx3cr1-/- mice, the resulting prolonged presence of

subretinal MC/Mj in the subretinal space is associated

with excessive OS phagocytosis by the MC/Mjs, which

subsequently ingest intracellular lipids [19,56]. These

subretinal MC/Mj “foam cells” are the origin of the

drusen-like deposits observed in the clinical observation

of Cx3cr1-/-mice [19] and have recently been reported

in Ccl2-/- mice [45] (see below). Similarly, CX3CR1-

positive bloated subretinal microglial cells are found in

the eyes of AMD patients [19,21]. Recent reports sug-

gest that drusen appearance in patients with AMD is

not solely caused by sub-RPE deposits, but also by sub-

retinal drusenoid deposits [57-59] not unlike the lesions

observed in Cx3cr1-/- and Ccl2-/- mice. It is tempting to

speculate that these drusenoid deposits are the conse-

quence of accumulated debris from subretinal MC/Mj

“foam cell” apoptosis. In consequence, drusen might

evolve from subretinal deposits which are subsequently

covered by the RPE. There are several lines of evidence

supporting this hypothesis: drusen contain numerous

degenerating organelles, the origin of which may be sub-

retinal MC/Mj [4]. Moreover, drusen contain CX3CR1,

apolipoprotein E, complement factors, and the major

histocompatibility complex (MHC) [5,9-12,19], all of

which can be expressed by MC/Mj [19,60-62]. The

debris and inflammatory proteins found in drusen may

originate in part from MC/Mj additionally to RPE

debris.

Another consequence of the prolonged presence of

Cx3cr1-/- MCs in the subretinal space is photoreceptor

cell death [19,53] and changes in RPE structure and dis-

tribution [42]. In Cx3cr1-/- mice on a pigmented C57Bl6

background, photoreceptor degeneration of about 25-

30% is observed in 18-month-old mice as compared to

wild type C57BL6 mice and can be induced in two-

month-old Cx3cr1-/- mice by exposure to 100 Klux for

10 min, which does not provoke degeneration in wild

type C57BL6 mice [19,53]. Cx3cr1-/- mice on an albino

Balb genetic background develop complete light-depen-

dent photoreceptor degeneration by the age of four

months in 12 h/24 h 100-500 lux (normal animal facility

conditions). In a light-induced model that provokes near

complete degeneration in pigmented C57Bl6 wild type

animals this difference is no longer observed [63], sug-

gesting that a maximal MC/Mj cell toxicity can be

reached in wild type animals. Activated MC toxicity has

been shown in photoreceptors in vitro [64] and in vivo

[23]. Neuronal cell toxicity caused by the prolonged pre-

sence of activated Cx3cr1-/- MCs in the brain has been

described as a mechanism of neurodegenerative diseases

[65]. Similar mechanisms may cause the degeneration

observed in the Cx3cr1-/- mice.

Additionally, Cx3cr1-/- mice develop increased MC/

Mj accumulation and choroidal neovascularization in

comparison to controls in a laser-induced choroidal

neovascularization (CNV) model, suggesting that the

presence of subretinal MC/Mjs contributes to a proan-

giogenic environment [19]. MC/Mjs might produce

proangiogenic factors themselves, but more importantly,

they have been shown to induce MMP9 and VEGF

expression in the RPE [42]. This may help to explain

the increase in CNV observed in Cx3cr1-/- mice.
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In summary, Cx3cr1-/- mice develop primary subret-

inal MC accumulation, possibly resulting from a migra-

tory defect associated with CX3CR1 dysfunction. We

have shown that the M280 polymorphism of CX3CR1,

associated with AMD increases adherence to its ligand

[50]. The increased adherence to transmembraneous

CX3CL1 abundantly present in the retina and RPE [34]

significantly inhibits the mobility of monocytes expres-

sing the CX3CR1-M280 variant [19]. If similar altera-

tions occur in vivo to MC/Mj, the M280 polymorphism

may cause excessive MC/Mj adherence to membrane-

anchored CX3CL1 in the retina and RPE [34] and

reduce migration in response to other inflammatory

chemoattractants. In subjects with the M280 poly-

morphism, clearance of MC/Mjs from the subretinal

space (in response to soluble CX3CL1 or other che-

moattractants) would thereby be inhibited, and subret-

inal MC/Mj accumulation might occur.

The prolonged presence of subretinal MC/Mjs could

thereby lead to subretinal drusenoid deposits, retinal

and RPE degeneration, and an increase in CNV as

observed in Cx3cr1-/- mice. These results suggest that

MC/Mj accumulation in the subretinal space may be a

driving force in the pathogenesis of AMD and not a

mere consequence of primary RPE or photoreceptor

disease.

Ccl2-/- and Ccr2-/- mouse models of AMD

There are several reports using Ccl2-/- or Ccr2-/- mice in

an attempt to decipher the inflammatory mechanisms of

AMD. CCL2 is increased intraocularly in exudative

AMD [47] and in a mouse model of choroidal neovascu-

larization [40]. Tsutsumi et al. [44] reported that macro-

phages extracted from eyes undergoing the laser-

induced CNV model are angiogenic and that the recruit-

ment of MC/Mjs to the injury site and subsequent

CNV are reduced in Ccr2-/- mice. These results have

since been corroborated in Ccl2-/- mice [45]. Supporting

this data is the repeated observation that macrophage

depletion inhibits CNV [24,66]. In contrast, Ambati et

al. observed spontaneous CNV in 4 of 15 Ccl2-/- and 3

in 13 Ccr2-/- mice older than 18 months of age, identi-

fied by angiographic leakage. Luhmann et al. were

unable to detect spontaneous CNV by angiography or

immunohistochemistry in 11 Ccl2-/- mice aged 16 to 25

months [45], suggesting that CCL2 deficiency is not suf-

ficient to induce spontaneous neovascularization.

Ambati et al. also observed the spontaneous appearance

of yellowish white subretinal deposits in fundoscopies of

Ccl2-/- and Ccr2-/- mice aged 9 months and older,

which they referred to as “drusen”. The authors sug-

gested that the deficiency in Mj recruitment through a

CCL2-/CCR2-dependent pathway from choroidal circu-

lation may prevent the clearance of accumulating debris

in BM [25], which, over time, would lead to drusen for-

mation. Luhmann et al. corroborated the spontaneous

appearance of funduscopically observed autofluorescent

lesions that resemble drusen in 16- to 25-month-old

Ccl2-/- mice. However, these lesions are not caused by

the sub-RPE extracellular deposits believed to be the

origin of drusen appearance in humans. In fact, the ana-

tomical equivalent of the lesions observed in Ccl2-/-

mice was found to be bloated subretinal lipid MC/Mjs

detectable by immunohistochemistry [45], similar to

those described in Cx3cr1-/- mice [19,56]. It is difficult

to appreciate what structure led to the drusen-like

lesions described by Ambati et al. [25] because immuno-

histochemical analysis of subretinal MC/Mjs were not

performed and no histological evidence of typical con-

vex shaped local BM deposits are shown.

In terms of photoreceptor degeneration Ambati et al.

[25], using electron microscopy, observed pyknotic

photoreceptor cell nuclei in 16-month-old Ccl2-/- mice

but not in wild type animals. Nevertheless, the quantifi-

cation of photoreceptor in 23- to 25-month-old mice

performed by Luhmann et al. [45] showed no significant

degeneration in Ccl2-/- mice as compared to wild type

congeners, suggesting that Ccl2 invalidation does not

lead to significant photoreceptor degeneration.

The conclusion drawn from Ambati’s data [25], that

AMD develops because of a CCR2-dependent macro-

phage recruitment deficit and therefore a hypoinflam-

matory state, is in contradiction with a recent report of

increased intraocular CCL2 levels in AMD [47] and

abundant evidence of MC/Mj accumulation in AMD

[9,19-21]. Further studies are needed to identify the

additional factors that led to the discrepancy of Luh-

mann et al.’s and Ambati et al.’s results.

The Ccl2
-/-
Cx3cr1

-/- mouse model of AMD

Tuo et al. [37] were the first to describe an association

between the T280M Cx3cr1 allele and AMD in 2004.

Shortly thereafter, Ambati et al. [25] reported that

Ccl2-/- and Ccr2-/- mice develop AMD-like features at

an advanced age. In an attempt to accelerate the devel-

opment of AMD-like features, Tuo et al. [67] generated

Ccl2-/-Cx3cr1-/- mice that indeed develop “drusen,” pig-

ment alterations, and retinal degeneration by the age of

6 weeks in 100% of mice. Nevertheless, independently

generated Ccl2-/-Cx3cr1-/- mice in our laboratory do not

present any of these features at 6 weeks of age, and are

indistinguishable from Ccl2-/-, Cx3cr1-/- and wild type

animals. Tuo and Chan [68] also reported an abnormal

mendelian segregation of the Ccl2-/-Cx3cr1-/- genotype,

poor reproduction, and progressive patchy skin depig-

mentation, all of which we have not encountered in the

generation of our Ccl2-/-Cx3cr1-/- mice [29]. Tuo et al.

[68] selected the founding breeding pair of their Ccl2-/-
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Cx3cr1-/- mice “with the most retinal drusen-like

lesions”. By selecting the founding breeding pair for

AMD-like features, the authors may have selected ani-

mals genetically predisposed to these lesions indepen-

dent of their Ccl2 or Cx3cr1 invalidation. The non-

reproducibility of the ocular and systemic features in

our Ccl2-/-Cx3cr1-/- mice, in which the breeding pairs

were not selected for any feature other than the genetic

invalidation of Ccl2 and Cx3cr1, suggests this is the

case. The conclusions concerning the implication of

CCL2 in the phenotype of this mouse strain should

therefore be taken with caution.

Conclusions and perspectives

CX3CL1 and CX3CR1 are robustly expressed in the

healthy retina. Their dysfunction leads to subretinal

MC/Mj accumulation with deleterious effects to the

RPE and photoreceptors. The association of AMD with

a polymorphism in the Cx3cr1 gene, leading to a dys-

functional CX3CR1 protein, and the observation that

MC/Mjs accumulate in the subretinal space in AMD

suggests that dysfunctional CX3CL1/CX3CR1 signaling

might play a role in the pathogenesis of AMD. However,

the mechanism that leads to the MC/Mj accumulation

remains obscure and further research is needed to iden-

tify the implicated actors.

In contrast, CCL2 and CCR2 expression in the healthy

retina is low. Injuries, such as laser impacts or retinal

detachment, lead to a CCL2/CCR2 dependent recruit-

ment of MC/Mj to the subretinal space with deleterious

effects to the photoreceptors and to the progression of

CNV [23,44]. A recent clinical study that shows an asso-

ciation of increased intraocular CCL2 levels and AMD

[47] supports the possible involvement of CCL2 in the

pathogenesis of AMD. It is not well understood if CCR2

is expressed in the healthy retina. The observation that

Ccl2-/- mice also develop subretinal MC/Mj accumula-

tion at a later stage might indicate an age-dependent

shift in populations of CX3CR1 + CCR2- microglia to

CX3CR1 + CCR2 + microglia and that at this later

stage, CCL2/CCR2 signaling is implicated in the clear-

ance of subretinal MC/Mjs similar to the phenomenon

observed in Cx3cr1-/- mice. These results would suggest

that the inhibition of CCL2/CCR2 signaling might have

a beneficial effect on CNV formation and MC/Mj asso-

ciated photoreceptor degeneration at an early stage of

AMD. More research is needed to determine if CCL2/

CCR2 inhibition is beneficial at a later stage.
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