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Abstract: The use of TRAIL/APO2L and monoclonal antibodies targeting TRAIL receptors for cancer therapy holds 
great promise, due to their ability to restore cancer cell sensitivity to apoptosis in association with conventional che-
motherapeutic drugs in a large variety of tumors. TRAIL-induced cell death is tightly regulated right from the membrane 
and at the DISC (Death-Inducing Signaling Complex) level. The following patent and literature review aims to present 
and highlight recent findings of the deadly discussion that determines tumor cell fate upon TRAIL engagement.  
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INTRODUCTION 

 TRAIL, also known as APO2-L or TNF-Related Apopto-
sis-Inducing Ligand and its derivatives, including agonistic 
antibodies targeting TRAIL receptors or PARAs (ProApop-
totic Receptor Agonists), are attractive compounds for can-
cer therapy due to their ability to induce tumor regression 
without significant side effects [1]. Extensive efforts are 
being made to evaluate the efficacy and the safety of these 
combinations in clinical trials [2], and there are many in-
stances in the patent literature of efforts to use polypeptides 
derived from the TRAIL ligand, [3-10] as therapy against 
cancerous cells. Other patent applications seek to use agonis-
tic antibodies directed against the TRAIL receptors in order 
to induce the TRAIL apoptotic pathway [11-19], or TRAIL 
ligand gene transfer [20]. Amgen has recently published 
interesting results of a phase Ib study on twenty five patients 
with advanced nonsquamous non-small-cell lung cancer, 
treated with recombinant TRAIL (Dulanermin / AMG 951) 
combined with paclitaxel, carboplatine and Bevacizumab 
(PCB). Combining Dulanermin with PCB was well tolerated 
in patients, but importantly was more efficient than PCB 
alone for first line treatments, with an overall response rate 
of 58% as compared to 35% for PCB [21]. For a review on 
current ongoing clinical trials using PARAs see [22]. 

 TRAIL belongs to the TNF (Tumor Necrosis Factor) 
superfamily of ligands and receptors.  of this family 
generally recognize and bind to a limited subset of cognate 
receptors on the cell surface, leading to signal transduction 
cascades downstream of the receptor, allowing the activation 
of a large panel of signaling pathways including NF-kB- or 
caspase-activation. These type I transmembrane proteins 
contain two to four cysteine-rich domains (CRDs) in their 
extracellular region, and an intracellular domain that enables 
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the recruitment of adaptor proteins, driving the activation of 
a particular signaling pathway. 

 The receptors of this family, which includes TNFR1, 
CD95/Fas, TRAIL-R1/DR4, TRAILR2/DR5, DR3, and 
DR6, contain an intracellular stretch of approximately 80 
amino acids, called the Death Domain (DD), which is neces-
sary and sufficient for the triggering of the apoptotic pro-
gramme [23, 24]. With the exception of DR6, whose ligand 
has only recently been proposed to be a beta-amyloid precur-
sor protein [25], death domain containing receptors are rec-
ognized by ligands of the TNF superfamily. These cognate 
ligands share a common structural motif, the TNF homology 
domain, which allows their binding to the CRD of TNF 
receptors [26]. They can be cleaved by metalloproteinases to 
form soluble cytokines, however, the capacity of the soluble 
forms of the death ligands to induce apoptosis is signifi-
cantly lower than the membrane-bound forms [27, 28]. 
Ligands such as TRAIL, FasL and TNF can, however, be 
produced as recombinant proteins and used for anticancer 
therapy [29]. Unlike DR3, whose expression is mainly re-
stricted to T lymphocytes [30], TNFR1, Fas, TRAIL-R1 and 
TRAIL-R2 were demonstrated to be widely expressed by 
tumor cells, which prompted the evaluation of their cognate 
ligands for cancer therapy. TNF and Fas ligand, however, 
were rapidly shown to be toxic in vivo. Their administration 
triggers fulminant hepatic failure in mice [31], hampering 
their application for cancer therapy. TRAIL, unlike Fas and 
TNF, was shown to be safe in experimental animal models 
[32], as well as in patients, as demonstrated by ongoing 
clinical trials [33]. Similarly, antibodies targeting agonistic 
TRAIL receptors, including mapatumumab or lexatumumab, 
are also well tolerated in patients [33-35].  

 Besides its lack of evident toxicity in vivo, TRAIL has 
gained increasing interest for cancer therapy due to at least 
four major properties. First of all, TRAIL is naturally in-
volved in tumor metastasis immune surveillance by NK cells 
[36]. Accordingly, TRAIL-null mice are tumor prone [37] 
and TRAIL-R-deficient mice exhibit enhanced lymph node 
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metastasis in a model of drug-induced skin carcinogenesis 
[38]. Second, amongst the ligands of the TNF superfamily, 
TRAIL is the only member that exhibits a relative selectivity 
for tumor cells [39, 40]. Hence, it has been demonstrated that 
while both normal and immortalized cells are resistant to 
TRAIL-induced apoptosis, Ras- or myc-transformed cells 
become sensitive [39, 41]. Third, TRAIL-induced cell death 
is largely independent of p53 [42]. It should be noted how-
ever that TRAIL and its receptors are p53 targets [43-46] and 
that sensitization to TRAIL-induced cell death by che-
motherapeutic drugs has sometimes been associated with 
p53-induced mitochondrial activation either through the 
activation of Bax [47] or puma [48], as well as through the 
upregulation of TRAIL-R2 [43, 49] or TRAIL [50]. On the 
other hand, activation of p53 by some chemotherapeutic 
drugs may be detrimental to TRAIL-induced apoptosis. 
Likewise, the combination of TRAIL and oxaliplatin in p53 
wt colon carcinoma cell lines was shown to be inefficient 
due to the p53-dependent up-regulation of TRAIL-R3 [51]. 
Finally, combinations that associate TRAIL with chemother-
apy generally restore tumour cell sensitivity to apoptosis [6, 
7, 12], irrespective of TRAIL-R4 expression, or mitochon-
drial inhibition [52], while having little effect on normal 
cells [53]. The molecular mechanisms that underlie sensitiza-
tion to cell death induced by death domain containing recep-
tors encompass a wide panel of events, and depend on both 
the drug and the cell type [54].  

 At the proximal level, sensitization to TRAIL or Fas 
ligand was shown to involve receptor up-regulation [55-60], 
c-FLIP downregulation [42, 61-64], restoration of caspase-8 
expression [65, 66] or enhanced DISC formation [67-71]. 

Downstream of the DISC, sensitization to TRAIL-induced 
apoptosis was associated with the deregulation of cell sur-
vival proteins including, Bcl-2, Bcl-XL, Mcl-1, HSP27, 
survivin, IAPs [60, 72-75] or pathways such as AKT and 
NF-kB [76-79]. 

 TRAIL-induced cell death engagement is subject to an 
exceptional level of control, with many different proteins 
interacting throughout the apoptotic cascade. The following 
chapters will focus on the regulation of TRAIL signaling at 
the membrane and DISC level. 

TRAIL SIGNALING 

 TRAIL-induced apoptosis involves several major events. 
The main constituents of the TRAIL receptor DISC and 
experimental evidence for their presence and function as 
compared to TNFR1 or Fas are summarized in Table 1 [80-
111]. Initiation by ligand binding to the receptors is followed 
by recruitment of adaptor proteins to the intracellular region 
of the receptors. The adaptor proteins in turn recruit initiator 
caspases, forming the Death-Inducing Signaling Complex 
(DISC), a large macromolecular complex in which caspase-8 
and -10 are activated and released for the triggering of apop-
tosis either directly or indirectly through the mitochondria 
via the protein Bid Fig. (1).  

 TRAIL triggers apoptosis following binding to one of its 
cognate death receptors, TRAIL-R1 (DR4) and TRAIL-R2 
(DR5). Like Fas, but unlike TNFR1[89], TRAIL binding to 
TRAIL-R1 and TRAIL-R2 induces the formation of the 
DISC at the membrane level, through homotypic interactions 
Fig. (1). The DD of the agonistic receptors and that of the 

Table I. Components of the Death Inducing Signaling Complex for Fas, TRAIL and TNF. *Membrane Bound Complex. Main 

Evidences from native Immunoprecipitation Experiments or from Yeast Two-hybrid and Co-immunoprecipitation As-

says. 

 TNF-R1 TRAIL-R1, TRAIL-R2 Fas 

Apoptosis Complex II 

(in absence of TNF-R1) 

RIP [83, 85, 89] 

TRADD [83, 85, 89] 

FADD [83, 85, 89] 

Caspase-8 [83, 85, 89] 

Caspase-10 [89] 

c-FLIP [89] 

Complex I* 

FADD [80, 81] 

Caspase-8 [80, 92] 

Caspase-10 [88, 93, 96] 

c-FLIP [84, 94, 97] 

Complex I* 

FADD [82, 87, 111] 

Caspase-8 [86] 

Caspase-10 [88, 90, 93, 95] 

c-FLIP [84, 91, 94] 

Non-apoptotic signal-

ling 

Complex I * 

TRADD [102-104] 

TRAF-2 [102, 104] 

RIP1 [102] 

IKK  [98] 

IKK , IKK  [98, 99] 

cIAP1 [106-108] 

cIAP2 [106, 107] 

LUBAC ligase complex [101, 109] 

Complex II 

RIP-1 [85, 110] 

TRAF2 [110] 

Caspase-8 [110] 

FADD [110] 

IKK  [85, 110] 

TRADD [85] 

Complex II 

 (in absence of CD95) 

FADD [105] 

Caspase-8 [105] 

cFLIP [105] 

RIP1 [100] 
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adaptor protein FADD allow the recruitment of caspase-8, 
caspase-10 or c-FLIP through their respective DED (Death 
effector Domain) [80, 112]. TRAIL-induced cell death can 
efficiently be regulated at the receptor level by antagonistic 
receptors [53], at the proximal level by c-FLIP [113] or fur-
ther downstream by Bcl-2 family members [114] or inhibi-
tors such as XIAP [115, 116] or Survivin [117] Fig. (1).  

 TRAIL non-apoptotic signaling activities include NF-kB, 
ERK or p38 activation. A secondary complex, which is not 
membrane bound (Table I), has been proposed to arise se-
quentially from complex I to trigger MAPK activation [110]. 
Sequential generation of two distinct functional complexes 
provide clues to TRAIL's pleiotropic signaling activities, that 
depending on the cell type, lead to apoptosis, survival or cell 
differentiation. This secondary complex may explain why, 
for instance, terminal keratinocyte differentiation induced by  
 

TRAIL proceeds both through MAPK and caspase activation 
[118]. Albeit less characterized (Table I), a similar secon-
dary complex may also arise upon Fas stimulation [105]. 
Keeping in mind that keratinocytes express large amounts of 
intracellular Fas ligand [119], it could be of interest to define 
whether this death ligand/receptor set may substitute for 
TRAIL deficiency to induce cell differentiation, or whether 
the Fas pathway only affords apoptotic triggering in this cell 
type. Other differentiation functionalities, associated with 
MAPK activation have been attributed to TRAIL, including 
in intestinal cells [120], skeletal myoblasts [121, 122], osteo-
clasts [123], T helper cells [124] and in dendritic cells [125].  

 Although of great interest, these non-apoptotic features 
of TRAIL will not be developed any further here. Rather, the 
following review will mainly focus on TRAIL-induced cell 
death regulation from complex I. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). TRAIL signaling pathway and regulatory proteins. Binding of the TRAIL ligand to TRAIL-R1 or TRAIL-R2 (1) induces the 
recruitment of FADD and caspase-8 to these receptors, forming the membrane DISC or complex I (2), in which pro-caspase-8 is activated, 
leading to the release of the active caspase-8 in the cytosol (3) and allowing the engagement of the apoptotic cascade (4). The mitochondrial 
amplification loop (5) can be required in some cells to induce the activation of the effector caspase-3. A second complex has recently been 
described (6), which induces activation of survival signaling pathways leading to transcription factors, which can result in cytokine secretion 
and increase levels of the inhibitory protein c-FLIP. Regulatory processes of the TRAIL pathway can be divided into three groups: receptor 
level, proximal, and distal regulation. Inhibitory proteins are shown in red. 
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CONTROLLING TRAIL-INDUCED CELL DEATH AT 

THE MEMBRANE LEVEL 

Antagonistic Receptors 

 TRAIL-R3 (DcR1) and TRAIL-R4 (DcR2) can specifi-
cally inhibit TRAIL signaling at the membrane level [45, 
126]. These two antagonistic receptors lack a functional DD 
[53] and impair TRAIL-induced cell death through distinct 
mechanisms Fig. (2A). TRAIL-R3 is devoid of an intracellu-
lar domain, but harbours a GPI anchor which drives its ex-
pression to lipid rafts [127]. TRAIL-R3 prevents DISC as-
sembly through its ability to compete for TRAIL binding, 
resulting in the titration of TRAIL within the lipid rafts Fig. 
(2B). TRAIL-R4 on the other hand, is much more similar to 
TRAIL-R2, and contains an intracellular domain that in-
cludes a truncated death domain. Unlike TRAIL-R3, 
TRAIL-R4 is recruited with TRAIL-R2 within the DISC 
upon TRAIL engagement, and inhibits initiator caspase acti-
vation Fig. (2C), probably through steric hindrance [23]. 
TRAIL-R4 has been shown to form a specific heteromeric 
complex with TRAIL-R2 through the preligand assembly 
domain (PLAD), a domain encompassing the first CRD of 
both receptors but, contrary to our findings, PLAD-mediated 
TRAIL-R4 and TRAIL-R2 association was suggested to be 
ligand-independent [128]. The interaction of death-domain 
containing receptors via the PLAD is proposed to induce a 
parallel dimeric conformation of the receptors that can ac-
count for homotypic as well as heterotypic associations in 
the absence of ligand Fig. (2A). Ligand binding causes a 
conformational change in the pre-assembled receptor com-
plex that facilitates receptor clustering and DISC formation 
Fig. (2A).  

 Similar to TRAIL, some agonistic antibodies are able to 
engage TRAIL signaling through DISC formation Fig. (2E). 
These antibodies, which selectively target either TRAIL-R1 
or TRAIL-R2, efficiently induce cell death in cells that ex-
press TRAIL-R3 or TRAIL-R4, unlike TRAIL ligand itself 
Fig. (2E-F). Regardless of the stoichiometry of the DISC 
components, the key common event for the triggering of 
signaling activity is oligomerization, which allows neigh-
bouring initiator caspases to form specific activating dimers 
Fig. (2D). A proximity-induced dimerization model was 
proposed to explain the activation of caspase-8 [129]. Re-
cently, a very elegant approach of reconstitution of the Fas 
DISC using recombinant proteins, revealed a two-step acti-
vation mechanism involving both dimerization and prote-
olytic cleavage of procaspase-8 as obligatory steps for death-
receptor-induced apoptosis [130]. Little is known about the 
stoichiometry of this scaffold. The DD and the DED, like the 
caspase recruitment domain (CARD) family or the pyrin 
domain (PYD), share a six-helical bundle structural fold 
feature that accounts for protein-protein interaction, the ar-
rangement of which defines the stoichiometry of the multi-
molecular scaffold to which they are recruited. A crystal 
structure of RAIDD and PIDD, two DD-containing proteins, 
which are not required for TRAIL signaling but are closely 
related to the adaptor protein FADD, revealed an asymmetric 
core complex comprised of seven RAIDD DDs and five 
PIDD DDs assembled through 3 major interfaces [131]. 
More recently, the crystal structure of FADD and Fas was 
obtained, unveiling a tetrameric arrangement [132]. The 

crystal structure of FADD and TRAIL-R2 or TRAIL-R1 is 
not known for the moment but, assuming that the assembly 
of the TRAIL DISC mimics that of Fas, the formation of 
heteromers of TRAIL-R2 and TRAIL-R4 is likely to disturb 
the highly ordered arrangement that accounts for caspase-8 
activation within the TRAIL DISC since the truncated death 
domain of TRAIL-R4 is unable to interact with FADD and 
thus cannot recruit a caspase-8 monomer. According to this 
hypothesis, we propose a model of DISC arrangement dis-
ruption by TRAIL-R4 as compared to the arrangement of a 
DISC composed of TRAIL-R2 and TRAIL-R1 Fig. (2D). In 
the latter complex, each receptor recruits an initiator caspase, 
the proximity of which is favourable for a full activation of 
caspase-8. Recruitment of TRAIL-R4 within the TRAIL 
DISC, however, alters caspase-8 dimer formation and there-
fore inhibits caspase-8 activation within the DISC Fig. (2D). 
Arrangement of the DISC and, in particular, caspase-8 prox-
imity is a limiting step for the initiation of the apoptotic 
signal. Accordingly, it has been demonstrated that enforced 
ligand covalent trimerization accelerates TRAIL-induced 
caspase-8 activation and cell death [133]. In line with the 
requirement of these adaptor proteins to build a proper scaf-
fold for caspase-8 activation, US6015712 raises the possibil-
ity of inhibiting FADD expression for therapeutic interven-
tion related to diseases in which the death signaling pathway 
is activated inappropriately [134].  

LIPID RAFTS AND TRAIL 

 Death domain-containing receptors of the TNF superfa-
mily have a tendency to self-aggregate, owing to their DD. 
Their overexpression triggers apoptosis [135]. Therefore, it 
may be assumed that initiation of DISC formation is tightly 
controlled at the membrane level. The Silencer Of Death 
Domain (SODD), a DD containing protein identified by 
yeast two hybrid assay to interact with TNFR1, was pro-
posed to prevent constitutive signaling of tumor necrosis 
factor receptor 1 (TNFR1) in the absence of TNF  [136]. 
Generation of mice deficient for SODD, however, failed to 
support a function regarding the control of TNFR1 aggrega-
tion [137]. At the moment it is not clear how these receptors 
are maintained in an inactive state at the membrane. Mem-
brane lipid composition and fluidity could take part in avoid-
ing receptor self-association. Supporting this hypothesis, 
ionizing radiation and UV rays [138, 139], which are known 
to change membrane fluidity, as does cholesterol depletion, 
induce Fas receptor clustering on the cell surface independ-
ently of FasL [140-142]. Alternatively, DISC formation in 
lipid rafts may account for efficient Fas-induced apoptosis 
triggering [143]. Cholesterol enriched membranes, however, 
have not been associated with TRAIL-DISC formation [144-
148] with the exception of one study in which TRAIL-DISC 
formation in lipid rafts was clearly demonstrated [149]. An-
other indication suggesting that TRAIL signaling might 
occur within the cholesterol rich membrane domains was the 
discovery that palmitoylation is required to target TRAIL-R1 
to lipid rafts [146]. In a mechanism similar to that of Fas, 
palmitoylation of TRAIL-R1 was shown to be required for 
redistribution of actin cytoskeleton-linked rafts, receptor 
oligomerization and cell death. However it was also found 
that TRAIL-R2 was not palmitoylated. Although some 
TRAIL DISC components can be found within lipid rafts 
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[149], thus far it has not been clearly demonstrated that 
caspase-8 activation occurs within these structures. In addi-
tion, with the exception of TRAIL-R3, which localizes read-
ily within lipid rafts, TRAIL-R1, TRAIL-R2 and TRAIL-R4 
are mainly expressed in non-lipid raft-containing membranes 
at the steady state, where most DISC analysis assays demon-
strate capase-8 activation upon TRAIL stimulation [23]. In 
line with these findings, it should be noted that edelfosine-
induced cell death requires Fas translocation and aggregation 
within lipid rafts, but not TRAIL receptors [150].  

O-GLYCOSYLATION 

 An additional level of complexity regarding the regula-
tion of TRAIL signaling was recently found, following the 
discovery that O-glycosylation of TRAIL-R1 and TRAIL-R2 
is a prerequisite for DISC formation and apoptotic triggering 
[151]. The finding that O-glycosylation controls cell sensi-
tivity to TRAIL-induced cell death could be an important 
finding, as alterations in glycosylation profiles are often 
found in cancer patients [152] and during cancer progression 
[153]. Of particular interest are the findings that in normal 
human mammary epithelial cells, RAS-induced transforma-
tion triggers drastic changes in the glycosylation profile of 
cell surface proteins [154], and enhances TRAIL DISC for-
mation and caspase-8 activation upon TRAIL stimulation 
[39]. It remains, however, to be determined whether these 

changes are sufficient to account for TRAIL tumor cell se-
lectivity. 

RECEPTOR TURN-OVER/TRAFFICKING 

 Little is known about TRAIL receptor trafficking, yet the 
first requirement to engage TRAIL-induced cell death is the 
availability of TRAIL agonistic receptors at the cell surface. 
Epigenetic dysregulation of TRAIL antagonistic receptors, 
TRAIL-R3 and TRAIL-R4, or of TRAIL agonistic receptors 
TRAIL-R1 and TRAIL-R2, has been documented to varying 
extents [155-157], leading to the loss of expression of the 
receptors in tumor cells and giving rise to resistance to 
TRAIL-induced cell death [158]. Recently, a yeast two-
hybrid screen uncovered ARAP1, an ArfGAP and RhoGAP 
adapter protein, as a TRAIL-R1-binding partner. ARAP1 
was shown to bind to TRAIL-R1 and TRAIL-R2 in co-
expression experiments, but was unable to interact with 
DR6, another death-domain containing receptor. At the en-
dogenous level, ARAP1 interacted with TRAIL-R1 in a 
TRAIL- and time-dependent manner. Downregulation of 
ARAP1 induced a loss of membrane expression of TRAIL-
R1 and partly impaired TRAIL-induced cell death [159]. 
Since ARAP-1 was shown to regulate EGFR endocytosis 
[160], it was proposed that ARAP1 could play a role in regu-
lating TRAIL-R1 trafficking and thus TRAIL-induced sig-
naling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). TRAIL signaling at the receptor level. A, TRAIL ligand induces aggregation of the TRAIL receptor at the membrane and acti-
vates the apoptotic cascade. B, TRAIL-R3 competes for TRAIL binding, sequestering TRAIL in lipid rafts. C, TRAIL-R4 forms hetero-
meric complexes with TRAIL-R2, inhibiting caspase-8 activation. D, Tentative model of inhibition of caspase-8 activation by TRAIL-R4. 
Upon engagement of TRAIL, the receptors aggregate into a highly regular array, whose minimal arrangement is represented as a side view in 
the white square. This tetrameric interaction module is composed of FADD-TRAIL-R2/Caspase-8 (Yellow and Red circles). Modular ar-
rangement of this module into a platform enhances the proximity-induced dimerization and activation of caspase-8. Recruitment of TRAIL-
R4 (lower panel, grey circles) disrupts caspase-8 arrangement, and thus limits caspase-8 activation. E-F, receptor specific agonistic antibod-
ies engage TRAIL DISC, irrespective of TRAIL-R3 or TRAIL-R4 expression. 
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CONTROLLING TRAIL-INDUCED CELL DEATH AT 

THE DISC LEVEL 

 The stoichiometry and composition of the TRAIL DISC 
is not clearly defined, but important regulatory proteins are 
proposed to be involved in the regulation of TRAIL signal-
ing, owing to their ability to be recruited to the DISC or to 
interfere with proteins participating in TRAIL DISC forma-
tion. 

c-FLIP 

 Cellular FLIP is probably the most important inhibitor of 
receptors containing death domains. Three main isoforms of 
c-FLIP are expressed in human cells: c-FLIPL, c-FLIPS, and 
c-FLIPR. Depending on the cell line and on the levels of 
FLIP expression, all three proteins can be found within the 
Fas DISC due to their N-terminal domain which contains 
two DED repeats similar to caspase-8 or caspase-10 [54]. 
The contribution of c-FLIPR regarding the control of TRAIL-
induced cell death has not yet been characterised. The short 
isoforms of c-FLIP, c-FLIPS and c-FLIPR both possess a 
truncated C-terminus. In addition to the tandem DED repeat, 
c-FLIPL harbours an extended C-terminal domain that is 
structurally similar to procaspase-8, but is devoid of an ac-
tive catalytic domain. The cysteine residue that is normally 
required for caspase-8 function is replaced by a tyrosine that 
renders c-FLIPL inactive [113]. These isoforms of c-FLIP, 
although generally expressed at a lower level compared to 
caspase-8 in most tumor cell lines, are recruited within the 
DISC together with caspase-8 where they inhibit the activa-
tion of the initiator caspases, impairing apoptotic triggering. 
The molecular mechanisms by which the long and the short 
FLIP isoforms inhibit TRAIL-induced cell death differ sub-
stantially. In the absence of c-FLIP, caspase-8 is activated in 
two-steps: dimerization, followed by cleavage [130]. One 
caspase-8 molecule brought in close proximity within the 
DISC to another caspase-8 can cleave itself and the other 
caspase-8 to induce the release of the catalytic subunits, p10 
and p20, which form the mature caspase-8 that initiates the 
triggering of apoptosis. In the presence of c-FLIPS, pro-
caspase-8 remains inactive within the DISC and the cells 
survive. Heterodimerization of c-FLIPL with procaspase-8 
within the DISC, however, mimics procaspase-8 dimeriza-
tion and leads to caspase-8 activation in the absence of pro-
caspase-8 cleavage [161]. Caspase-8 is maintained within the 
DISC and cannot be released to the cytosol because the gen-
eration of the p20 subunit of caspase-8 cannot occur in the 
presence of c-FLIPL. Active caspase-8 therefore remains 
sequestered within the DISC, where it can still induce the 
cleavage of a number of substrates including c-FLIP, RIP 
and as yet to be discovered unidentified proteins, recruited 
within the DISC or in close proximity [130, 161]. While all 
isoforms of c-FLIP efficiently inhibit Fas ligand- and 
TRAIL-induced cell death, subcellular confinement of active 
caspase-8 is only asscociated with c- FLIPL so far. The find-
ing that c-FLIPL induces caspase-8 activation within the 
DISC represents another degree of control regarding the 
regulation of TRAIL signaling. RIP cleavage at the DISC 
level in these circumstances could play a role in controlling 
TRAIL-induced necrosis [162], NF-kB activation [163-165] 
or other non-apoptotic functions. The possibility of using of 
RNA interference to inhibit cFLIP to circumvent TRAIL 

resistance has been proposed in the patent application 
US20040126791 [166].  

MADD-IG20 

 The MAPK-Activating Death Domain (MADD) variant, 
also coined Rab3-GAP, which is constitutively expressed in 
many cancer cells [167], was the first member of the family 
found to harbour a low homology DD and to interact with 
TNFR1 [168]. All of these splice variants contain a DD, but 
their contribution to the regulation of death receptor differs. 
IG20 was found to interact with both TRAIL-R1 and 
TRAIL-R2 and to enhance TRAIL DISC formation, thus 
increasing TRAIL-induced cell death Fig. (3A) [169]. 
MADD on the other hand, albeit structurally close to IG20 
since both isoforms contain a DD and a leucine zipper do-
main, was demonstrated to behave as a negative regulator of 
TRAIL [169]. Similar to IG20, MADD was shown to inter-
act with TRAIL-R1, but its expression was suggested to 
impair TRAIL DISC formation through the inhibition of 
caspase-8 recruitment Fig. (3A), leading to survival of the 
cells expressing MADD. Modulation of MADD to overcome 
resistance to TRAIL has been suggested as a possible ther-
apy [170]. 

PRMT5 

 The protein arginine methyltransferase 5 (PRMT5) was 
found to interact with TRAIL-R1 by a proteomic screen 
[171]. Coexpression experiments revealed that PRMT5 
could also interact with TRAIL-R2 but not other receptors of 
the TNF family, including Fas or TNFR1 Fig. (3B). Knock-
down of PRMT5 was shown to sensitize tumor cells to 
TRAIL-induced cell death, while PRMT5 overexpression 
conferred TRAIL resistance [171]. PRMT5-mediated TRAIL 
resistance required NF-kB activation but was demonstrated 
to be methyl transferase-independent [171]. It is unclear for 
the moment how PRMT5 binds to TRAIL-R1. PRMT5, 
besides its methyl transferase activity, has no DD and no 
DED. Like IG20 and MADD, recruitment of PRMT5 to 
TRAIL-R1 appeared to be ligand independent. Finally, 
PRMT5 inhibitory function was suggested to occur regard-
less of TRAIL DISC formation.  

DAP3 

 DAP3 (Death Associated Protein 3) is a GTP-binding 
adapter protein that interacts directly with the FADD DED 
Fig. (3C). Though the predominant function of DAP3 con-
cerns maintenance of mitochondrial function, it is also able 
to influence apoptotic signaling [172]. Its recruitment to the 
TRAIL DISC was shown to regulate caspase-8 activation in 
a GTP-dependent fashion [173], so it was therefore proposed 
that DAP3 could be a direct regulator of TRAIL-induced 
caspase-8 activation and cell death Fig. (3C). It was later 
found that DAP3 is a ribosomal protein that is mainly local-
ized to the mitochondrial matrix, and which cannot interact 
with FADD unless subcellular compartments are compro-
mised [174, 175]. While the relative expression level of 
DAP3 in the cytosolic fraction remains unclear, targeted 
gene inactivation of dap3 confirmed the regulatory function 
of this GTP-binding adapter protein regarding TRAIL-
induced cell death in particular, but also apoptosis induced 
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by death receptors including TNFR1 or Fas [172]. Inactiva-
tion of dap3, however, had little or no impact on apoptosis 
induced by staurosporine or etoposide, two chemotherapeu-
tic compounds known to target the intrinsic mitochondrial 
pathway. The question as to how DAP3 controls caspase-8 
activation within the TRAIL DISC remains open. The master 
kinase STK11 was suggested to play a significant regulatory 
function upstream of DAP3 in osteosarcomas. In this study, 
STK11 was found to interact with DAP3 and enhance 
TRAIL-induced cell death through its serine/threonine 
kinase activity [176].  

PEA15/PED 

 Phosphoprotein enriched in astrocytes (PEA15, also 
known as PED or HTMA), is a small protein (15kDa) com-
posed of a N-terminal DED and a C-terminal tail of irregular 
structure. PEA15 was first reported to inhibit apoptosis in-
duced by Fas and TNFR1 [177] and later found to be re-
cruited to the TRAIL DISC, and to inhibit TRAIL-induced 
cell death, thus accounting for cell resistance in gliomas 
[178]. PEA15 is an endogenous substrate of kinases includ-
ing PKC, Akt and CAMKII, and phosphorylation of PEA-15 

on the serine 116 promotes FADD-binding [179]. It has been 
demonstrated recently that PEA-15 could promote mito-
chondrial-dependent type II Fas-induced cell death in cells 
inactivated for PTEN [180]. It is reported, however, that 
Akt-mediated phosphorylation of PEA-15 on the serine 116 
residue impairs Fas DISC formation through the sequestra-
tion of FADD and not through the recruitment of PEA-15 
within the Fas DISC. However when PTEN is functional, 
Akt is inactivated, serine 116 of PEA-15 is not phosphory-
lated and PEA-15 is unable to interact with FADD, allowing 
FADD recruitment, TRAIL DISC formation and apoptosis 
after TRAIL stimulation Fig. (3D). Interestingly, TPA, a 
phorbol ester also coined PMA, which has been known for a 
long time to inhibit Fas and TRAIL-induced apoptosis [181], 
and to impair DISC formation [182, 183], upregulates PEA-
15 expression and enhances PEA-15 phosphorylation at 
serine 116 [184].  

RASSF1A / MOAP1 

 The RAS association domain family 1A (RASSF1A) 
protein, although devoid of any characterized DD or DED, is 
a tumor suppressor that is shown to interact with the DD of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Mechanisms of TRAIL signaling regulation by different proteins. See text for details. 
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TNFR1 and TRAIL-R1 [185]. RASSF1A links death recep-
tors to the mitochondrial pathway through the protein modu-
lator of apoptosis 1 (MOAP-1). Ectopic expression of 
RASSF1A enhances death receptor induced cell death while 
downregulation of RASSF1A or MOAP-1 inhibits bax acti-
vation and cytochrome c release [186]. This adaptor protein 
is found in an inactive state in the cytoplasm, and is activated 
upon recruitment with RASSF1A within the TRAIL DISC 
upon stimulation Fig. (3E). Release of MOAP-1 from the 
DISC is proposed to induce a conformational change that 
allows Bax recruitment and activation, leading to the activa-
tion of the mitochondrial amplification loop that sustains 
caspase activation and apoptosis [185]. Given that epige-
netic-driven loss of RASSF1A protein expression is often 
observed in tumors of higher grade [187] and that RASSF1A 
is a potential regulator of TRAIL, demethylation agents 
could prove useful to restore TRAIL sensitivity in high grade 
tumors. 

OTHER DD- OR DED-CONTAINING ADAPTOR 

PROTEINS INVOLVED IN THE REGULATION OF 

TRAIL AT THE DISC LEVEL (DEDD, RIP, TRADD, 

ARC)  

 All DD-containing proteins may potentially regulate 
TRAIL-induced apoptosis owing to their ability to induce 
homotypic interactions with TRAIL-R1, TRAIL-R2 or 
FADD. Likewise, RIP and TRADD contain a DD and are 
likely to participate in the TRAIL DISC. However, so far 
their recruitment has been found to be cell dependent, as 
neither TRADD nor RIP are recruited to the DISC in BJAB 
cells, a B lymphoma [188] while RIP is shown to be re-
cruited in colon cancer cell lines [189]. Similar to TNFR1 
[89], TRAIL induces the sequential formation of two distinct 
complexes Fig. (1).  

 TRAIL complex I, corresponds to the DISC. Complex I 
is localized at the cell membrane and is essential for caspase-
8 activation while Complex II, a complex arising from the 
membrane TRAIL DISC, has been proposed to activate 
survival pathways due to the integration of several adaptor 
proteins including TRADD and RIP [110]. RIP recruitment 
at the cell membrane can occur in the absence of FADD or 
TRADD in the TNFRI complex I, as well as independently 
of FADD in the Fas DISC [85, 162]. Therefore, it is likely 
that the recruitment of RIP to the TRAIL DISC or to com-
plex II is independent of these adaptor proteins. However, 
indirect interactions cannot be excluded despite the finding 
that RIP and TRADD are able to interact directly with 
FADD and some death receptors in overexpression experi-
ments [164]. In addition to its DD, RIP contains a kinase 
domain whose activity is required for TRAIL-induced necro-
sis, but is compulsory for NF-kB activation upon TRAIL 
stimulation [162]. Though RIP itself is thought to be essen-
tial to trigger NF-kB activation upon TNF stimulation [163], 
it has recently been demonstrated that RIP is in fact not es-
sential for TNFR1-induced NF-kB activation [190]. Whether 
this holds true for TRAIL remains to be determined. Inhibi-
tion of RIP expression, nonetheless, promotes TRAIL-
induced cell death [191, 192].  

 Similar to DD-containing proteins, proteins that harbour 
a DED such as DEDD or DEDD2, are capable of interfering 

with known DISC components, including c-FLIP or caspase-
8. Accordingly, DEDD2, a DED-containing protein that 
exhibits a close sequence homology with DEDD, was shown 
to interact with c-FLIP and to enhance apoptosis induced by 
Fas and TRAIL [193]. However, DEDD2 was unable to 
interact with FADD or caspase-8, even though DEDD2-
mediated sensitization to apoptosis was restricted to Fas and 
TRAIL. Its overexpression failed to enhance staurosporine- 
or bax-induced cell death. 

 DD- and DED-containing proteins feature a 6-alpha-
helical bundle structure fold that mediates dimerization by 
electrostatic interactions. It is generally accepted that homo-
typic interactions occur between similar domains, but un-
conventional heterotypic interactions may also account for 
the regulation of TRAIL signaling. Accordingly, Arc a pro-
tein containing a CARD domain, which is a protein interac-
tion module similar to the DD or the DED, was found to 
interfere with death receptor induced cell death, owing to its 
ability to bind to FADD and to inhibit DISC formation 
[194].  

CURRENT & FUTURE DEVELOPMENTS 

 One important bottle neck for TRAIL signaling is 
probably the engagement of the apoptotic signaling complex 
from the membrane. Since this signaling pathway seems 
primarily dedicated to cell killing in vivo, TRAIL signaling 
has to be tightly controlled at the cell surface. This control 
can be specifically acheived by TRAIL antagonistic 
receptors but also less selectively by c-FLIP, both of which 
are found to be conserved throughout evolution. Plasma 
membrane lipid composition, although not specific to 
TRAIL, is also likely to play an important role in controlling 
DISC formation and apopotosis triggering (see Segui and 
Dimanche-Boitrel, this issue). Moreover, since the discovery 
of the membrane-bound DISC, composed of the receptor, the 
adaptor protein FADD, the initiator caspases-10 and -8 and 
their inhibitor c-FLIP, a plethora of binding partners have 
been shown to contribute to the regulation of the deadly 
signal. These proteins act both at the membrane level or at 
the proximal level due to their ability to interact with DISC 
or secondary complex components. Regulation of caspase-8 
activation from the DISC and initiation of apoptosis is 
associated with either the disruption or the enhancement of 
TRAIL-induced scaffold complexes, as well as with the 
regulation of the mitochondrial pathway. There is an incre-
dible diversity of interacting molecules that have been 
described so far to take part in the regulation of TRAIL-
signaling which add another level of complexity to our 
understanding of the TRAIL Discussion. Current develop-
ments for targeting the TRAIL pathway show promise for 
cancer therapies, but a deeper understanding of the TRAIL 
DISC composition and stoichiometry will be crucial for the 
development of effective TRAIL-based therapeutic approa-
ches.  
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