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ABSTRACT

This study aimed to develop a joint population pharmacokinetic model for an antipsychotic agent

in development (S33138) and its active metabolite (S35424) produced by reversible metabolism.

Because such a model leads to identifiability problems and numerical difficulties, the model15

building was performed using the FOCE-I and the SAEM estimation algorithms in NONMEM

and MONOLIX, respectively. Four different structural models were compared based on Bayesian

information criteria. Models were first written as ordinary differential equations systems and

then in closed form (CF) to facilitate further analyses. The impact of polymorphisms on genes

coding for the CYP2C19 and CYP2D6 enzymes respectively involved in the parent drug and20

the metabolite elimination were investigated using permutation Wald test. The parent drug

and metabolite plasma concentrations of 101 patients were analyzed on two occasions after 4

and 8 weeks of treatment at 1, 3, 6 and 24 hours following daily oral administration. All

configurations led to a two compartment model with back-transformation of the metabolite into

the parent drug and a first-pass effect. The elimination clearance of the metabolite through other25

processes than back-transformation was decreased by 35 [9-53] % in CYP2D6 poor metabolizer.

Permutation tests were performed to ensure the robustness of the analysis, using SAEM and CF.

In conclusion, we developed a complex joint pharmacokinetic model adequately predicting the

impact of CYP2D6 polymorphisms on the parent drug and its metabolite concentrations through

the back-transformation mechanism.30

Key words: Nonlinear mixed effects modeling, First-pass metabolism, Back-transformation

mechanism, Estimation algorithms, Genetic covariate
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INTRODUCTION

For most drugs undergoing biotransformation, the process results in the formation of a more

polar metabolite that is pharmacologically inactive and is eliminated more rapidly than the parent35

drug (1). For some drugs however, the metabolite may be pharmacologically active and/or produce

adverse effects. Joint pharmacokinetic (PK) modelling accounts for the uncertainties in the data

and allows feedback from the metabolite data to the parent drug data to influence the estimation.

Thus, more and more studies now use this approach (2–4). Also, joint modelling allows to correctly

evaluate and predict the impact of drug-drug interactions, and in the case of reversible metabolic40

systems, it is the only way to properly assess covariate effects.

However, such models can rapidly gain in complexity and present parameter identifiability

problems and numerical difficulties in terms of estimation. To solve the issue of structural

identifiability, it is important to identify the parameters or ”apparent” parameters that can be

estimated (3), and for the sake of parameter interpretation or covariate analysis, it might be45

needed to make some assumptions on the parameters (e.g. fixing one parameter to a given

value) (4). Also, instability during the estimation is likely to result in solutions at local minima

which may lead to biased parameter estimates and potentially wrong conclusions. Furthermore,

numerical issues are likely to arise depending on the algorithms used for estimation in nonlinear

mixed effect models (NLMEM). The First Order Conditional Estimation with Interaction (FOCE-50

I) algorithm (5) which is implemented in the NONMEM software (6), has been shown to

encounter numerical difficulties even on simple single response models (7, 8). Yet, more robust

alternatives have been proposed that avoid simplifying the equation for the likelihood, such as the

Stochastic Approximation Expectation Maximization (SAEM) algorithm (9) implemented in the

MONOLIX (10) and S-ADAPT (11) software. The NONMEM software remains though the most55

popular tool in population PK analysis because of its superior flexibility in the pharmaceutical

field with tools such as NMTRAN. MONOLIX was only recently provided with a similar

model translator called MLXTRAN. Of note, the SAEM algorithm was recently implemented

in NONMEM software version 7.2.

During its development, an innovative antipsychotic agent from SERVIER research, the60
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S33138 (12), was shown to produce a metabolite which was also an active compound, called

S35424, through hydrolytic cleavage by hydrolases, as assessed in human microsomes. Preclinical

studies in rat and monkey supported the existence of a back-transformation of the metabolite into

the parent drug, and this was further confirmed in a microdose study in man. Such reversible

metabolism explained why both compounds showed similar terminal plasma half-life although the65

parent compound only slightly accumulates while the metabolite accumulates to a much larger

extent (AUC accumulation ratio of 3). In addition to hydrolases, other metabolism pathways were

identified for the parent drug involving CYP3A4 and to a lesser extent CYP2C19. The active

metabolite was mainly metabolized through CYP2D6. Both CYP2C19 and CYP2D6 are encoded

by highly polymorphic genes and these polymorphisms are known to have an impact on the course70

of many therapeutic drugs (13). Therefore, the effects of CYP2D6 and CYP2C19 polymorphisms

on the PK of the parent compound and the metabolite were investigated in a phase II study using

NLMEM. Drug plasma concentrations profiles were documented in patients at two occasions for

the parent drug and its metabolite along with genotypes for five polymorphisms of the CYP2D6

gene and two polymorphisms of the CYP2C19 gene. In previous works, we have shown through75

simulations that asymptotic tests to detect a gene effect in NLMEM require a correction for

type I error inflation on designs with unbalanced genotypes and/or including a small number of

subjects (8, 14). This slight inflation can be handled by permutation tests (15). However such

computing intensive approaches require a fast estimation method, all the more when the structural

and variability models become complex.80

The aim of the present work was thus to develop a joint population PK model for the

antipsychotic and its metabolite after oral administration based on the data of the phase II study

and to test for genetic effects. Because of the model complexity (reversible metabolism), the

building of the model was performed using FOCE-I in NONMEM and SAEM in MONOLIX, in

parallel. Furthermore, in order to alleviate the computational burden of permutation tests in the85

analysis of the genetic effect of CYP2D6 and CYP2C19 polymorphisms, models were encoded

in ordinary differential equations (ODE) system and closed form solutions (CF). Finally, both

internal and external model evaluations were performed, the latter using the data from a phase I
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study. It is noteworthy that external evaluation provides the most stringent method for assessing

the predictive ability of the developed model (16).90

MATERIALS AND METHODS

Pharmacokinetic studies

The data used for model building came from a pilot, phase II, international, multicentre,

randomized, double-blind, parallel-group, study assessing the effect of the above-mentioned

antipsychotic drug compared to a gold-standard medication. In this study, one hundred and95

twenty patients were randomly allocated to 4 groups receiving for 8 weeks either 5, 10 or 20 mg

of the novel antipsychotic or the gold standard medication (risperidone). Both treatments were

administered orally and once a day in the morning before breakfast. Four blood samples were

collected on two occasions, i.e. four and eight weeks after treatment initiation (W4 and W8). The

sampling times were set empirically as the following: prior to drug administration and then 1, 3100

and 6 h after drug administration. On the day of the sampling, the date and exact time of each

blood sample were reported along with the date and exact time of the drug administration as well

as those of the previous administration. Those exact times were used for the modelling.

For the external model evaluation, we used the data from a phase I randomized, double-blind

tolerance study versus placebo with repeated increasing oral doses. Thirty healthy male volunteers105

were randomly divided into three groups: in each group, eight subjects received repeated once-a-day

oral administrations of the parent drug at the dose of 10, 20 or 30 mg respectively, while two other

subjects received the placebo. In this study, blood concentrations were documented at steady-state

after 14 days of treatment with the following sampling times: prior to drug administration and

then 0.33, 0.66, 1, 1.5, 2, 3, 4, 8, and 12 hours after drug administration. The exact times of blood110

collection were also recorded.
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Concentration measurements and genetic polymorphisms

In both studies, the plasma concentrations of the antipsychotic and its active metabolite were

determined using a validated method involving solid phase extraction followed by reverse phase

Liquid Chromatography with Mass Spectrometry - Mass Spectrometry detection (LC/MS-MS).115

The intra/inter-day accuracy were 97.8/101.7% for the parent drug and 93/101.3% for the

metabolite, the intra/inter-day precision were 4.7/5.6% for the parent drug and 6.1/8.6% for

the metabolite and the recovery was 71% for the parent and 65.4% for the metabolite. Typical

retention times of the chromatography were about 1.6 min for S33138 and the internal standard

and 2.0 min for S35424, respectively. The limits of quantification were 0.56 and 0.44 nmol.L−1 for120

the parent drug and its metabolite, respectively.

In the phase II study, blood samples were taken at the selection visit in order to determine the

patient’s genotype of CYP 2D6*3, *4, *6, *7, and *8 alleles and of CYP 2C19*2 and *3 alleles

while in the phase I study, a phenotyping test (dextrometorphan administration) was performed at

the selection visit to ensure that all the persons involved were CYP2D6 intermediate or extensive125

metabolizers. All samples were stored at -20◦C and blood samples of included patients were sent

on a regular basis to a central laboratory for analysis.

Joint pharmacokinetic model

Here, we present the analysis of concentration-time profiles from patients treated with the novel

antipsychotic only (excluding patients treated with the reference medication). Concentrations were130

expressed in nmol.L−1 for the joint modelling of the parent drug and its metabolite; molecular

weights were respectively: 319.4 g.mol−1 and 361.4 g.mol−1. Data below the limit of quantification

as well as concentrations considered as non reliable given time or dosing information were treated

as missing data and were excluded from the analysis.

Four different structural models of increasing complexity were investigated: their structural135

representations are shown in Figure 2 along with the definition of related parameters. The first

model, on the left end of Figure 2, is a two compartment model where the dose is absorbed into

the parent compartment at a rate Kap and the parent drug (S33138) is either eliminated from the
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system with a clearance CLpo or is transformed with a clearance CLpm into a metabolite (S35424)

which is eliminated from the system with a clearance CLmo. Panhard et al. used such a model140

to jointly analyze nelfinavir and M8 concentrations (3). In the second model from the left on

Figure 2, S35424 can in addition be transformed back to the parent with a clearance CLmp. The

existence of a back-transformation of S35424 into S33138 was supported by preclinical studies

in rat and monkey and further confirmed in a microdose study in man. This microdose study

included five healthy volunteers in a cross-over design where they received an oral dose of S33138145

plus an additional intravenous dose of C14S35424 or C14S33138 depending on the period with two

groups of sequence composed of three and two subjects, respectively. Substantial concentrations

of C14S33138 were measured after administration of C14S35424. Moreover, back-transformation

of the metabolite into the parent drug is a well known process for numerous amines. A similar

model was used to describe the increased hydrolysis of tesaglitazar metabolite into tesaglitazar via150

biliary circulation in renally impaired subjects (17). In the third model from the left on Figure 2,

a first-pass effect has been considered: the dose not only enters into the parent compartment at a

rate Kap but also enters into the metabolite compartment at a rate Kam. This model, although

less physiological, is parsimonious because the fraction of dose transformed into the metabolite is

driven by the two absorption rate constants. The last model, on the right end of Figure 2, includes155

a dose apportionment independent of the rate constant values (Kap and Kam) with a fraction Fp

of the dose leading to the parent and a fraction 1-Fp leading to the metabolite prior to reach the

plasma. Such presystemic formation of an interconversion metabolite is mentioned in the extensive

review on reversible metabolic systems from Cheng and Jusko (18). For identifiability purposes,

the fraction of dose available after absorption (f) was set to 1.160

Also, for all these models, it is noteworthy that all PK parameters cannot be estimated in the

present study, since only an oral administration of the parent drug was performed. Estimating all

PK parameters requires that both the parent drug and the metabolite be given by the intravenous

route in addition to the oral administration of the parent compound (18). It results that only

”apparent” parameters can be estimated. The following parameters were identified for the last165

model: Vp/Fp, Vm/(1−Fp), E1 = kpo+kpm, E2 = kmo+kmp, kpmFp/(1−Fp) and kmp(1−Fp)/Fp. An
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alternative parameterization is given in Appendix. As our objective was here to assess the impact

of genetic covariates on specific clearances (CLmo for CYP2D6 and CLpo for CYP2C19 ), it was

necessary to make an assumption on the parameters to estimate all clearances separately (and not

global clearances divided by the corresponding volume). Thus, we chose to set Vm equal to Vp. In170

this respect, Fp, Vp and the clearance estimates presented here are tagged by a * as a reminder

of their reliance on the assumption made on volumes. All drug transfers between compartments

were modelled as linear processes.

Population parameter estimation was performed in parallel with the FOCE-I and SAEM

algorithms implemented in the NONMEM and MONOLIX softwares, respectively. The first175

algorithm performs an approximation of the model with a first-order linearisation around the

individual predictions of the random effects. In contrast, the second algorithm is a stochastic

version of the well-known Expectation-Maximization algorithm where the individual random effects

are the missing variables. In the expectation step, the individual parameters are simulated using a

Monte-Carlo Markov Chain approach and then used to compute a stochastic approximation of the180

conditional expectation of the complete log-likelihood which is the log-likelihood of the complete

data, i.e the observations and the imputed individual parameter estimates at the current iteration

of the SAEM algorithm. Then , the complete log-likelihood is maximized to obtain the updated

estimates of the population parameters. In NONMEM, the convergence of the FOCE-I algorithm is

achieved when all parameters have the required number of significant digits, while in Expectation185

Maximization-like methods the definition of convergence is usually left to the user discretion.

In MONOLIX additionally to the visual inspection of convergence graphics, stopping rules are

available which are based on the absence of decrease of the complete log-likelihood sequence during

the stochastic step and small variability between subsequent population parameter estimates and

estimates of the complete log-likelihood during the cooling step.190

In both NONMEM and MONOLIX, the Fisher Information Matrix and the loglikelihood of

the model were obtained by linearization of the model around the predictions of the individual

parameters. In NONMEM, we used the OPTION UNCONDITIONAL in the covariance step

to overcome the convergence issue as well as the OPTION MATRIX=R and MATRIX=S when
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needed.195

The models were encoded through ODE as well as using the corresponding CF solution derived

using the Laplace transform approach (19, 20) (see appendix). For the models encoded with

ODE system, data were fitted using the ADVAN5 routine in the NONMEM software version 7.2

and MLXTRAN with the STIFF option in MONOLIX version 2.4. For the models with a dose

apportionment, we used the ADVAN6 routine because of an issue in the ADVAN5 routine to be200

fixed in the next version of NONMEM. For the models encoded in CF solution, data were fitted

using the PRED routine in the NONMEM software version 7.2 and the model building function

of MONOLIX version 2.4.

In NONMEM, the number of digits required for convergence (SIG) was set to its default value

of 3 for ADVAN5 and to 3 or 2 for ADVAN6 with a fortran 95 compiler. With ADVAN6, we set205

the number of significant digits for the predicted values (TOL) to 6 and the number of significant

digits for the objective function (SIGL) to 6 in the estimation step and TOL=6 with SIGL=6 in

the covariance step, following guidance from (6); with ADVAN5 the TOL option is not required.

In MONOLIX, the algorithm settings were left to the default values; the maximal numbers of

stochastic (K1) and cooling (K2) iterations were set to 500 and 200 respectively, with use of210

automatic stopping rules and only one markov chain (nmc).

The structural model was determined on the data collected at W4 only and all the systems

were considered at steady state with a 24 hours dosing interval. We used an exponential model

for the between subject variability to ensure positivity of the individual PK parameters and a

logit model to force 0 ≤ Fp ≤ 1. Along the structural model selection, random effects for all215

parameters but f were assumed to follow a normal distribution with a diagonal variance matrix.

A combined error model with an additive component a and multiplicative coefficient b was used for

the parent drug and the metabolite. Model selection was performed using the Bayesian information

criteria (21): BIC = −2L + Ppoplog(N), where L is the loglikelihood of the model, Ppop is the

number of population parameters which includes the fixed effects, and the variance components220

and N the number of subjects. BIC allows to compare both nested and non nested models such

as those including Fp or not. In order to compare the NONMEM and MONOLIX output, we
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retrieved −2L for each model by adding ntot × log(2π) to the objective function estimate, ntot

being the total number of observations. Also in the present work we used N rather than ntot in

the BIC penalizing term, as the observations are dependent within each subject (22, 23).225

Once the structural model was selected, parsimonious error models (additive and proportional)

were tested using the likelihood ratio test (LRT). To capture clearance and volume correlations due

to bioavailability variation, between-subject variance was estimated on f . Next, between-subject

variance (ω2) nullity was tested using a LRT with, as a reference distribution, a mixture of a χ2

distribution with 0 degree of freedom and χ2 distribution with 1 degree of freedom (24). Finally,230

data at W8 were added to the data set and forward inclusion of within-subject variances (γ2) was

performed on parameters with non-null between-subject variance.

Covariate model

A linear dose effect was systematically investigated on f and Fp parameters using the Wald test.

The dose was analyzed as a continuous covariate with 10 mg as the reference dose, so that f and235

Fp of subject i at occasion k were predicted as described in equations (1) and (2).

fik = f eβf,D(Di−10) (1)

Fp,ik =

Fp

1−Fp
eβFp,D(Di−10)

1 + Fp

1−Fp
eβFp,D(Di−10)

(2)

Also, linear effects of the CYP2D6 and CYP2C19 polymorphisms were investigated following

a forward selection based on the Wald test with a significance threshold at 5%. Both genetic

covariates were analyzed by means of a phenotypic binary categorization; poor metabolizer (PM)240

versus the reference class the extensive metabolizer (EM), so that the parameter θ of subject i

at occasion k was predicted as described in equation (3) where βθ,CY P∗ was non-null for patients

CYP* EM and 0 otherwise.

θik = θ eβθ,CY P∗ (3)

The classification was performed as follows: carriers of two rare allele were classified as PM (25).
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In order to correct the inflation of the Wald type I error shown to occur on unevenly distributed245

genotypes (14), final p-values were assessed using permutations (15). The null hypothesis of the

permutation test is that the mean value of the parameter θ would be the same whatever the

CYP2D6 and CYP2C19 status while the alternative is that the mean value would be different

between the poor and extensive metabolizers. More specifically, 1000 data sets were generated

by permuting the rows of the covariate matrix from the original data set. For each covariate,250

one Wald statistic, W obs, was estimated from the original data and one Wald statistic, W perm,

was estimated from each of the 1000 data sets. Thus, we obtained j=1,...,1000 W permj . The

permutation p-value was the proportion : (card(W permj ≥ W obs)+1)/(1000+1). As the patients

were sampled on two occasions, we also computed a metric representing the genetic component

of variability RGC = max
(

0, 1 −
γ2

ω2

)

× 100 (26), for each model parameter with non-null within-255

subject variance. This component gets closer to 100% when the between-subject variance for the

parameter under study is larger than its within-subject variance, so that the variability for this

parameter is more likely to be explained by a genetic covariate.

As mentioned previously, the covariate analysis was performed with the assumption Vm = Vp.

As the parameter estimates are dependent on this assumption, we have also derived apparent260

parameters that are independent of any assumption made: Vp/Fp, Vm/(1 − Fp), CLptot/Fp,

CLmtot/(1 − Fp), CLpm/Vm and CLmp/Vp (see appendix). The fixed effects and between-subject

standard deviation of these apparent parameters were derived by simulation using our final

parameter estimates.

Model evaluation265

An internal model evaluation was performed on both occasions as well as an external model

evaluation which only considered one occasion.

For the internal model evaluation before the addition of the genetic effect, we performed

visual predictive check plots where the 90% confidence intervals around the 5th, 50th and 95th

prediction percentiles from 250 simulated data sets were overlaid to the 5th, 50th and 95th
270

percentiles of the observed data binned using the theoretical sampling times (27). Then after
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the addition of the genetic effect, we computed the normalized prediction distribution errors

(npde), i.e. the observation percentiles within the empirical distribution obtained from the model

simulations, decorrelated and normalized using the inverse function of the normal cumulative

density function (28).275

For the external evaluation of the model after the addition of the genetic effect, we computed

the npde and performed a visual predictive check plots where the 5th, 50th and 95th predicted

percentiles from 250 simulated data sets were overlaid to the observed 5th, 50th and 95th percentiles

of the observed data binned using the theoretical sampling times (27).

For the internal and the external model evaluation based on npde, 1000 data sets were simulated280

and we used the R npde package (29) for the calculations.

RESULTS

Data

The phase II study data set combining the observed profiles at both occasions contained 101

patients. Thirty five patients had a dose of 5 mg, 31 a dose of 10 mg and 35 a dose of 20 mg. The285

average [range] age in the population was 40 years [22-64], the average weight 69.0 kg [43.6-120.0]

and 53.5% were men. Among the 101 patients: 12 patients were classified as CYP2D6 PM and

2 were classified as CYP2C19 PM. Four of the CYP2D6 PM patients received a dose of 5 mg, 6

received a dose of 10 mg and 2 received a dose of 20 mg. The two CYP2C19 PM patients received

a dose of 5 mg and 20 mg, respectively. Genotype information was not available in 2 patients.290

On W4, 355 and 358 concentrations were measured for the parent drug and the metabolite

respectively in 97 patients, 81 of whom had a complete profile of four samples for both compounds.

On W8, 271 and 268 concentrations were measured for the parent drug and the metabolite

respectively in 71 patients, 51 of whom had a complete profile for both compounds. Sixty-seven

patients had concentration-time profiles at both W4 and W8. Only 8 concentrations out of 1252295

(less than 1%) were below the limit of quantification and were discarded from the analysis.

Figure 2 displays the observed concentrations for the parent drug and the metabolite on both
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normal and semi-log scales versus the time at W4 and W8, revealing a much larger accumulation

for the metabolite than for the parent drug.

In the external evaluation data set, the average age was 28 years [18-45], the average weight300

72.5 kg [63.0-99.3] and all patients were men. Eight patients had a dose of 10 mg, 8 a dose of 20 mg

and 7 a dose of 30 mg. After two weeks of repeated oral doses, 203 concentrations were measured

for the parent drug and the metabolite in 23 healthy volunteers, 20 of whom had a complete profile

of ten samples for both compounds. No concentrations were below the limit of quantification.

Structural and variability models305

Using FOCE-I in NONMEM and SAEM in MONOLIX, convergence was achieved for all models

with both coding conditions (ODE or CF). However with FOCE-I in NONMEM, standard error

estimates could only be obtained for the models with dose apportionment in ODE.

Table I reports the BIC along with the error model variance component estimates as well as

the computation time for the four structural models investigated plus the model with Kap = Kam,310

using both software and codings on data at W4. Confirming pre-existent knowledge, the addition of

the back-transformation mechanism greatly improved the model with a 100 units drop in BIC. The

addition of a first-pass effect led to a 40 units decrease in BIC further lowered with the inclusion

of an additional Fp term for the dose apportionment. Estimates of error model components were

quite close across algorithms and coding with the exception of the additive coefficient for the315

parent drug. Yet, the relative standard error (RSE) obtained with FOCE-I in NONMEM and/or

MONOLIX for this parameter was always very large (data not shown). For the most complex

model, computation times dramatically decreased when using CF instead of ODE irrespective of

the software (53.8 h to 22.2 min using NONMEM and 2.42 h to 0.6 min using MONOLIX).

The fixed effect estimates were similar when using ODE or CF for the same model and320

estimation algorithm, as shown in Table II. The median and maximal relative difference on

clearances were respectively 0 and 47% with FOCE-I and 3 and 45% with SAEM in MONOLIX.

For the two models without first-pass effect, the FOCE-I estimates were always included in the

confidence intervals of the SAEM estimates. Whereas for the model with first-pass effect but no
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dose apportionment, the FOCE-I estimates for the volumes and all clearance but CLmp* did not fall325

within the confidence intervals of the SAEM estimates. For the model with dose apportionment

and similar absorption rates, the confidence intervals of the FOCE-I estimates in ODE always

included the FOCE-I estimates in CF and overlapped with the confidence intervals of the SAEM

estimates. However with FOCE-I, the clearance of the parent by other pathways (CLpo*) was

greater than the clearance of transformation of the parent into the metabolite (CLpm*) while with330

SAEM CLpo*<CLpm*. Also with FOCE-I, the clearance of the metabolite by other pathways

(CLmo*) was similar to the clearance of transformation of the metabolite into the parent (CLmp*)

while with SAEM CLmo*>CLmp*.

Table III displays the between-subject standard deviation estimates of the four structural

models as well as the model with similar absorption rates. The between-subject standard deviation335

estimates showed greater discrepancies using ODE or CF for the same model and estimation

algorithm. Indeed, the median and maximal relative difference on clearance standard deviation

estimates were respectively 0 and 150% with FOCE-I in NONMEM and 1.8 and 44% with SAEM

in MONOLIX. As for the similarity based on the confidence intervals of the FOCE-I and/or SAEM

estimates, the pattern was similar to that for the fixed effect. Of note with FOCE-I, ωCLpm
* and340

ωCLmp
* estimates were very close to zero, while zero was either included in, or very close to the

boundaries of the corresponding confidence intervals of the corresponding SAEM estimates.

The model selection proceeded similarly using either FOCE-I in NONMEM or SAEM in

MONOLIX and ODE or CF, with the selected model including a back-transformation mechanism

and a first-pass effect with a Fp parameter for the dose apportionment. Both absorption/formation345

rate constants were difficult to estimate across models due to the combination of a 10 times ratio

with the elimination rates and limited plasma data early after dose administration. Thus, we

investigated a reduced model with similar absorption/formation rate constants for the parent drug

and the metabolite. The BIC decreased by 30 units so that we kept this model for subsequent

analyses. The RSE on the absorption rate constant in this model were about 15% with FOCE-I in350

NONMEM in ODE and 46 and 54% with SAEM in ODE and CF, respectively. Given the shorter

computation time and the possibility to obtain standard error estimates, the MONOLIX software
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with the model encoded in closed form solution was used in the following.

A proportional and a combined error model were selected for the parent drug and its metabolite,

respectively, with estimates for the multiplicative component about 30% and 6%. Of note in the355

model including the f parameter, the BIC was reduced by 100 units using a diagonal-covariance

matrix for the random effects compared to a full-matrix where the smallest and largest correlation

estimates were -0.09 and 0.71, respectively. Then, estimation of between-subject variance was

found to improve BIC for all parameters except the fraction of dose that escaped first-pass effect

(Fp*), CLmp* and CLpm*. Once included the data at W8, the absorption constant rate had to be360

fixed to its estimate on data at W4 for stability purposes. Only the within-subject variance of the

CLpo* was significantly different from 0.

Covariate model

It appears that the f* and Fp* were 10 and 22% higher for a 5 mg dose and 19 and 33% lower

for a 20 mg dose respectively (both p-values< 10−3). The population parameter estimates of the365

basic model not including the genetic covariate and their relative standard error (RSE) are given

in Table IV, for the 101 patients of the phase II study. Figure 4 represents the visual predictive

check (VPC) plots obtained for each compound at both occasions and for the three doses. The

predictions from the model described adequately the observed high and median concentration

profiles of both molecules for the three doses. However, the model seems to predict less well the370

low concentration-time profiles, with a systematic overprediction at time 1h for the parent together

with an underprediction of the ensuing times for the 5 mg dose on both occasions and the 10 mg

dose at W8. For the metabolite, the VPC plots indicate a misfit for the low concentration-time

profiles for the 10 mg dose at W4. It is noteworthy though that some of these misfits might

be explained by some atypical individual profiles (see figures 3c and 3d), which drive the lower375

observed percentile estimates at doses 5 and 10 mg.

The genetic effect analysis indicated that CLmo* was decreased by 34% (p-value=0.015, Wald

test by permutation) in CYP2D6 PM patients The population parameters of the model including

the genetic covariate and their RSE are given in Table IV, for the 99 patients with available
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genotyping for the CYP2D6 polymorphisms. Based on these estimates for a CYP2D6 EM patients380

at a dose of 10 mg, the following estimates could be derived for the apparent parameters (with

between-subject, and when applicable, within subject standard deviation in brackets) Vp/Fp=22.34

(0.42) L, Vm/(1−Fp)=145.27 (0.42) L, CLptot/Fp=3.19 (1.58 and 0.83) L.h−1, CLmtot/(1−Fp)=4.40

(0.65) L.h−1, CLpm/Vm=0.11 (0.28) h−1 and CLmp/Vp=0.004 (0.28) h−1 . Figure 5 represents the

distribution of the concentrations at each dose level between PM and EM. The rise in metabolite385

concentration levels in CYP2D6 poor metabolizers compared to extensive metabolizers appeared

clearly in all dose groups while for the parent drug, the impact was only noticeable at the 20 mg

dose. The between-subject standard deviation for CLmo* was only slightly decreased with the

incorporation of the covariate. However, it is noteworthy that there were only 12 CYP2D6 PM

patients in this study. Following Özdemir definition (26), RGC was computed only for CLpo*390

because it was the only parameter with non-null within-subject variance. In this study, the RGC

for CLpo* was equal to 0 as γ2
CLpo

* was superior to ω2
CLpo

* and indeed no genetic effect was found

on this parameter. No effect of the CYP2C19 polymorphisms was found, probably due to the

small number of PM.

Figure 6 displays the npde from the model including the genetic covariate versus time for the395

parent drug and the metabolite on both occasions in the original data set. For the parent, the npde

at 3, 6 and 24h were evenly distributed around 0 with the colored area formed by the 90% interval

almost confounded with the dashed lines that represent the 5th and 95th percentiles of the normal

distribution. Yet at time 1h on both occasions, the npde showed a deviation which was previously

observed on the visual predictive check plots and the corresponding global tests p-values given in400

the output of the npde calculation were below 0.001. The bias at time 1h might be explained by

the existence of a few patients with a slower absorption whose S33138 profile is not accurately

described by the model. For the metabolite, the npde appeared randomly distributed around 0

and within the required boundaries but the corresponding global tests p-values were also below

0.001. Figure 7 and 8 present respectively the npde and a visual predictive check plots from the405

model including the genetic covariate versus time for the parent drug and the metabolite in the

external evaluation data set. The npde for the parent drug tended to be below zero, especially in
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the first times but remained above the 5th percentiles of the normal distribution. Also, the colored

area formed by the 90% interval was somewhat narrower than expected and the corresponding

global tests p-values were below 0.001. Similarly on the visual predictive check plots, the 5th and410

95th predicted percentiles were respectively lower and higher compared to the observed percentiles,

especially for the 95th percentiles of the parent drug at the 20 mg dose. Nevertheless the observed

and predicted median were satisfactorily close.

In conclusion, the final model provided sensible predictions of the observations despite some

difficulties in capturing the lower concentration profiles in patients and an overprediction of the415

variability in healthy volunteers. Due to these misspecifications, the model was rejected based

on the npde global test. However, the heterogeneity in absorption at 1h could be tackled in

future analyses using mixture models to account for the diet or other unknown factors and healthy

volunteers are known to be a less heterogeneous population than patients. This model, involving

back-transformation and first-pass effect, had though to be parsimonious given the study design.420

DISCUSSION

In the present work, we compared four different structural models to describe the concentration-

time profiles of a novel antipsychotic and its active metabolite obtained at two occasions. We used

the FOCE-I algorithm in NONMEM and the SAEM algorithm in MONOLIX to fit the data using

models encoded both in ODE and CF solutions. With the final selected model, we investigated425

the effect of the metabolizer status as defined by CYP2D6 and CYP2C19 polymorphisms on the

PK of the parent drug and its metabolite.

The PK of both compounds was reasonably well described by a model including a

back-transformation mechanism and a first-pass effect with an additional term for the dose

apportionment. Cheng and Jusko (18) defined the acetylation of the metabolite to form back430

its acetylated parent as a known process for numerous amines, in their extensive review on

reversible metabolic systems. They also mentioned the occurrence of presystemic formation

of an interconversion metabolite and the consequences in determining the rates and extents of

drug absorption and presystemic formation of an interconversion metabolite. In addition, this
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reference work lists several formulas to derive PK parameters for compounds with interconversion435

metabolite(s), based on AUC ratio and/or numerical deconvolution after a separate analysis of the

parent and/or metabolite profiles. Here, we chose to model both compounds jointly, to provide

PK parameter fixed effects and variance estimates in patients. In the present study, the back-

transformation process provided a mechanism-based explanation for the long terminal plasma

half-life observed for the parent drug with reduced accumulation at steady-state. Actually, the440

terminal plasma half-lives derived from our model for the parent drug and metabolite were similar,

yet the parent drug showed an effective half-life of 8.5 h i.e. 4 times faster than that of the

metabolite (32.7 h) (30). The first-pass effect, on the other hand, allowed to capture the early

bump observed in the metabolite data. Auclair et al. also showed that adding a first-pass effect

in their model allowed to fit metabolite concentrations that appeared quicker or at the same time445

as the parent drug (31). Such a first-pass effect through amidases in the gut and the liver has

already been observed in more dramatic proportions for the experimental anti-convulsant related

to lidocäıne, D2624 (32). In our final model, the rate of appearance of the metabolite, Kam was

set to the absorption rate of the parent drug Kap. We explain this finding by the fact that the

absorption rate of the parent drug would be rate limiting due to the very quick formation of the450

metabolite. Duffull et al. also reported this phenomenon for ivabradine and its metabolite in (33).

Thorough mathematical investigations were required to identify the apparent PK parameters

which are presented here for the final and more complex model (first-pass effect with back-

transformation of the metabolite) in the appendix of the article. Yet, interpretation of apparent PK

parameters is not always straightforward, and they may not allow proper covariate analysis. For455

instance, the effect of CYP2D6 was expected on CLmo only, given prior knowledge, with no impact

on CLmp so using the apparent parameter CLmtot/(1− Fp) would not have been appropriate. For

this reason, we have decided to make an assumption on volumes in order to be able to estimate all

clearances separately. By convenience, we chose to set the volumes equal as this allowed estimation

of between and within-subject variability on parent and metabolite volumes. This assumption460

was judged reasonable since the ratio of 1 is in the range of volumes ratios estimated from the

microdose study and gives estimates for the bioavailability and the percentage of dose undergoing
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back-transformation close to those obtained from the microdose study where clearances of all

processes were identifiable. The microdose study gave a median [range] volume of distribution of

78 L [60-287] for the parent and 48 L [30-129] for the metabolite, with a volume ratio of 2.4 [0.5-6].465

It is obvious that Fp, Vp and clearance estimates depend on the assumption we made on the ratio

of volumes but setting the volumes ratio to 2.4 in the final model did not markedly impact the

results of the analysis apart a significant higher estimate for the percentage of dose undergoing

back-transformation (10 % instead of 5 %) which is less in agreement with the microdose study

results.470

In silico measures of log P=2.29 and 2.36, log D (pH7.4)=1.24 and 1.32 and pKa1=8.46 and

8.46 (tertiary amine) between respectively the parent and the metabolite were similar with the

exception of pKa2=12.43 (amide) and 4.73 (primary amine). This information neither supported

nor infirmed the assumption on the ratio of volumes. Moreover, the volume of distribution also

depends on the compound affinity for transporters or tissues as well as its binding ability to475

plasma proteins. In the present analysis, models with saturable elimination were not investigated

as neither the prior knowledge on the compounds nor the goodness of fit plots suggested the

existence of such a process. Also, models with a central and peripheral compartment for the

parent and metabolite were not evaluated because of the sparse study design which would have

not enabled robust estimation.480

Here, two estimation algorithms implemented in two softwares were used for data analysis.

As regulatory authorities encourage the use of new estimation algorithms, this work addresses

a current and relevant issue with a comparison of both software on such a complex model and

using both codings. The SAEM algorithm has been recently implemented in NONMEM version

7. Yet, we chose its implementation in MONOLIX because it has been thoroughly evaluated485

compared to the more recent NONMEM one. Both algorithms led to the selection of the same

structural model whatever the coding approach. However, substantial differences between the

standard deviation estimates were observed across codings for the same model and same estimation

algorithm. An extensive comparison of both softwares performances has been already performed

and is currently available on the MONOLIX website (http://software.monolix.org/sdoms/490
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software/index.php?/evaluation.html). However, the models investigated were less advanced

and all considered only one response. In the present work, using two estimation algorithms was

a complementary investigation and a proper comparison would require simulations from known

parameters and models. Taking these limitations into account, some differences in parameter

estimates were observed. Among the two software, the absorption rate estimates were those that495

differed the most, but they were also the most difficult to evaluate. The lack of sampling times

early after dose administration led to poorly estimable absorption rate constants. Yet, we chose

not to fix these parameters for the structural model building because this was the first modelling of

S33138 and S35424 pharmacokinetics performed in patients and this population can greatly differ

from healthy volunteers. Also, we were comforted in our decision by the consistency in the BIC and500

other parameter estimates. Difficulties were met to obtain SEs with FOCE-I in NONMEM despite

using several sets of different initial conditions, however we did not systematically investigate

initial conditions (this could be done using hypercube sampling in the multi-dimensional space of

parameter). Non-parametric bootstrap can be performed to obtain an empirical distribution of the

parameter uncertainty but in the present work we have performed permutation based Wald tests505

to correct for the departure from asymptotic conditions. Both procedures are computationally

intensive and are facilitated by the use of closed form solutions which provides an important gain

of time. While NONMEM easily handles steady state concentrations with model encoded in ODE,

MLXTRAN in MONOLIX version 2.4 requires the user to add dummy lines of dose to mimic the

path to steady state. The difference in computation time using this coding approach would thus510

increase with the number of subjects and the time to reach steady state.

CYP2D6 is an important catalyst of the oxidation of various antipsychotic agents:

chlorpromazine, thioridazine, risperidone and haloperidol (34). Recently, significantly higher

risperidone and 9-hydroxyrisperidone (its active metabolite) plasma concentrations have been

observed in Korean CYP2D6 PM (35). Here, both the metabolite and the parent drug showed a515

higher plasma exposure (AUC) in CYP2D6 PM patients compared to EM patients. This indicates

that the back-transformation of the metabolite to the parent affects the disposition of the parent

drug although concerning only 6% of the dose (30). Hamrén et al. have also described the
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impact of metabolite decreased elimination on parent drug concentrations in the presence of a

reversible metabolism; in patients with impaired renal function, the decreased renal elimination of520

the tesaglitar metabolite (acyl glucuronide) causes an increase of the metabolite in plasma, which

leads to increased amounts of metabolite undergoing back-transformation and subsequently an

accumulation of tesaglitazar (17). In this respect, despite some limitations of the model (i.e. its

apparent difficulty in capturing the lower concentration profiles in patients), the present work opens

some perspectives for the ongoing development of the antipsychotic. The occurrence of CYP2D6525

PM is higher in Caucasians (5-10%) than in East Asians (about 1%) (36) and the CYP2D6

activity is lower in Chinese EM compared to Caucasians (36) due to the CYP2D6*10 allele. Thus,

additional investigations should be useful to assess the impact of CYP2D6 polymorphisms in

populations other than Caucasians. As the model does not correctly predict the variability in

healthy volunteers, it may not be used for comparison of Caucasian and Asian healthy volunteers.530

However, it may be used as a model for Caucasian patients. Indeed, despite the lack of intravenous

data in patients and identifiability problems, the present model give sensibles predictions of the

concentrations of the parent drug and the metabolite in patients and of the effect of CYP2D6 on

plasma exposure.

CONCLUSION535

Using both algorithms and coding, we developed a complex joint pharmacokinetic model of interest

for further developments of an antipsychotic and its metabolite. This model enabled us to evidence

the CYP2D6 polymorphisms influence on the elimination of the active metabolite and adequately

predict its impact on the parent drug levels through a back-transformation mechanism.
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LEGEND TO FIGURES

Figure 1. Chemical structure of the parent drug: S33138 (a) and its active metabolite: S35424

(b).640

Figure 2. Schematic representation of the four tested structural models. f=fraction of dose after

absorption, D=the dose, Fp=fraction of parent reaching systemic circulation after absorption,

Kap=absorption constant for the parent, Kam=absorption constant for the metabolite, Vp=volume

of distribution for the parent, Vm=volume of distribution for the metabolite, CLpo=clearance of

the parent by other pathways, CLpm=clearance of the parent into the metabolite, CLmo=clearance645

of the metabolite by other pathways, CLmp=clearance of back-transformation of the metabolite

into the parent drug.

Figure 3. Spaghetti plot of the observed concentrations of parent drug and metabolite versus

time collected on two occasions, four and eight weeks after the treatment onset (W4 and W8) on

a normal (a, b) and semi-log scale (c, d). The solid lines represent profiles from patients with a650

dose of 5 mg, dashed lines profiles from patients with a dose of 10 mg and dotted lines profiles

from patients with a dose of 20 mg.

Figure 4. Confidence interval visual predictive check plots of the selected structural and variability

model including the dose effect, on a semi-log scale. The 90% confidence interval around the 5th,

50th and 95th prediction percentiles from 250 simulated data sets are overlaid on the observed 5th,655

50th and 95th percentiles for the parent drug (top) and the metabolite (bottom) at W4 and W8

for a dose of 5 mg (a), 10 mg (b) and 20 mg (c).

Figure 5. Boxplots of the parent drug (a) and metabolite (b) concentrations in the study, at

the three dose levels. The 10th percentile corresponds to the lower whisker, the 25th percentile to

the lower hinge, the median to the thick bar, the 75th percentile to the upper hinge and the 90th
660

percentile to the upper whisker.

Figure 6. Normalized prediction distribution errors versus time from the final covariate model

using the model building data set for the parent drug (top) and the metabolite (bottom) at W4

and W8. The corresponding 90% interval and the median are overlaid on the plot, and the dashed

lines represent the 90% interval and median of the normal distribution.665
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Figure 7. Normalized prediction distribution errors versus time from the final covariate model

using the external evaluation data set for the parent drug (top) and the metabolite (bottom). The

corresponding 90% interval and the median are overlaid on the plot, and the dashed lines represent

the 90% interval and median of the normal distribution.

Figure 8. Classic visual predictive check plots of the final covariate model using the external670

evaluation data set for the parent drug (top) and the metabolite (bottom), on a semi-log scale.

The plain lines in grey represent the 5th, 50th and 95th predicted percentiles and the dark dots

jointed by dashed lines represent the 5th, 50th and 95th observed percentiles for the parent drug

(top) and the metabolite (bottom) for a dose of 10 mg (a), 20 mg (b) and 30 mg (c).
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Table IV. Population pharmacokinetic parameters of the parent drug and its active metabolite
for the model without and with the genetic covariate: estimates and relative standard errors (in

grey, %) using the SAEM algorithm in MONOLIX and encoding in closed form

Without With

the genetic covariate the genetic covariate

(N=101) (N=99)

f 1.00 - 1.00 -

βf,D ∗ (nmol−1) -0.02 28 -0.02 24

Fp∗ 0.85 2 0.87 2

βFp,D ∗ (nmol−1) -0.04 29 -0.06 27

Ka (h−1) 8.06 - 8.06 -

V ∗ (L) 19.2 4 19.4 5

CLpo ∗ (L.h−1) 0.84 11 0.67 11

CLpm ∗ (L.h−1) 1.94 5 2.09 5

CLmo ∗ (L.h−1) 0.46 6 0.50 7

βCLmo,CY P2D6 ∗ (log(L.h−1)) - - -0.42 40

CLmp ∗ (L.h−1) 0.09 12 0.09 12

ωf∗ 0.25 13 0.27 12

ωKa
∗ 1.50 21 1.41 25

ωV ∗ 0.19 18 0.26 13

ωCLpo
∗ 0.52 29 0.46 38

ωCLmo
∗ 0.51 8 0.50 8

γCLpo
∗ 0.79 12 0.82 12

bp 0.31 3 0.30 3

am (nmol.L−1) 66.9 14 66.5 14

bm 0.06 9 0.06 9

V = Vp = Vm

ω: between-subject standard deviation

γ: within-subject standard deviation

a: additive coefficient in nmol.L−1

b: multiplicative coefficient

ap was fixed to 0

* Estimates that rely on the assumption that Vm = Vp
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APPENDIX675

In all the equations below, Cp is the parent drug concentration in plasma and Cm is the active

metabolite concentration in plasma following a single oral administration of a dose D of the parent

drug.

The ordinary differential equation system and the corresponding closed form solution

correspond to the last model on the right hand side of Figure 2, with similar absorption rates680

Ka = Kap = Kam.

Ordinary differential equation system

dCp

dt
=

KafD Fp e−Kat

Vp

− (kpo + kpm)Cp + kmp

Vm

Vp

Cm

dCm

dt
=

KafD (1 − Fp) e−Kat

Vm

− (kmo + kmp)Cm + kpm

Vp

Vm

Cp

(4)

In the ordinary differential equation system (4), f is the fraction of dose after absorption, D is

the dose, Fp is the fraction of parent reaching systemic circulation after absorption, Ka is the

absorption constant for the parent and the metabolite, Vp is the volume of distribution for the685

parent, Vm is the volume of distribution for the metabolite, kpo is the parent rate constant of

elimination by other pathways (= CLpo/Vp), kpm is the parent rate constant of transformation into

the metabolite (= CLpm/Vp), kmo is the metabolite rate constant of elimination by other pathways

(= CLmo/Vm), and kmp is the metabolite rate constant of back-transformation into the parent

(= CLmp/Vm).690

Closed form solutions

Cp =
fDKa ((E2 − Ka) + kmp(1 − Fp)/Fp)

(Vp/Fp)(λ1 − Ka)(λ2 − Ka)
e−Kat +

fDKa ((E2 − λ1) + kmp(1 − Fp)/Fp)

(Vp/Fp)(Ka − λ1)(λ2 − λ1)
e−λ1t

+
fDKa ((E2 − λ2) + kmp(1 − Fp)/Fp)

(Vp/Fp)(Ka − λ2)(λ1 − λ2)
e−λ2t

(5)
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Cm =
fDKa ((E1 − Ka) + kpmFp/(1 − Fp))

(Vm/(1 − Fp))(λ1 − Ka)(λ2 − Ka)
e−Kat +

fDKa ((E1 − λ1) + kpmFp/(1 − Fp))

(Vm/(1 − Fp))(Ka − λ1)(λ2 − λ1)
e−λ1t

+
fDKa ((E1 − λ2) + kpmFp/(1 − Fp))

(Vm/(1 − Fp))(Ka − λ2)(λ1 − λ2)
e−λ2t

(6)

In both equations (5) and (6), E1 is the parent drug total rate constant of elimination (=

kpo + kpm), E2 is the metabolite total rate constant of elimination (= kmo + kmp), and λ1 and λ2

are the initial and terminal slopes of elimination, respectively defined in equations (7) and (8).

λ1 =
(E1 + E2) +

√

(E1 + E2)2 − 4(E1E2 − kmpkpm)

2
(7)

695

λ2 =
(E1 + E2) −

√

(E1 + E2)2 − 4(E1E2 − kmpkpm)

2
(8)

Parameter identifiability

From the model slopes, the following parameters may be identified: Ka, λ1 and λ2.

From the model intercepts, we can identify the following equations:

V =
(E2 − λ1) + kmp(1 − Fp)/Fp

Vp/fFp

(9)

W =
(E2 − λ2) + kmp(1 − Fp)/Fp

Vp/fFp

(10)

700

Y =
(E1 − λ1) + kpmFp/(1 − Fp)

Vm/f(1 − Fp)
(11)

Z =
(E1 − λ2) + kpmFp/(1 − Fp)

Vm/f(1 − Fp)
(12)

From (7) and (8) we can write:

λ1 + λ2 = E1 + E2 (13)

λ1λ2 = E1E2 − kpm(Fp/(1 − Fp))kmp((1 − Fp)/Fp) (14)

This yields a system of 6 equations, where V, W, Y and Z are four reals like λ1 and λ2. We

can estimate the following parameters: Vp/fFp, Vm/f(1 − Fp), E1 = kpo + kpm, E2 = kmo + kmp,705

kpmFp/(1 − Fp) and kmp(1 − Fp)/Fp, with the following solutions:
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E1 = (λ1 + λ2 − λ1λ2/T2 − T1)/(1 − T1/T2)

E2 = λ1 + λ2 − E1

kmp(1 − Fp)/Fp = (λ2 − λ1(W/V ))/(1 − W/V ) − E2

kpmFp/(1 − Fp) = (λ2 − λ1(Z/Y ))/(1 − Z/Y ) − E1

Vp/fFp =
(E2 − λ1) + kmp(1 − Fp)/Fp

V

Vm/f(1 − Fp) =
(E1 − λ1) + kpmFp/(1 − Fp)

Y

(15)

where T1 = (λ2

W
−

λ1

V
)/( 1

W
−

1
V

) and T2 = (λ2

Z
−

λ1

Y
)/( 1

Z
−

1
Y

). Alternatively, the following

parameterization may be used instead:

Vp/fFp

Vm/f(1 − Fp)

CLptot/fFp = E1 × Vp/fFp

CLmtot/f(1 − Fp) = E2 × Vm/f(1 − Fp)

CLpm/Vm = kpmVp/Vm = kpmFp/(1 − Fp) × Vp/fFp × f(1 − Fp)/Vm

CLmp/Vp = kmpVm/Vp = kmp(1 − Fp)/Fp × Vm/f(1 − Fp) × fFp/Vp

(16)
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