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Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity

Keywords: FXR, bile acids, obesity, glucose homeostasis, insulin resistance, energy metabolism, triglyceride metabolism, bile acid sequestrants

Objective: Bile acids (BA) participate in the maintenance of metabolic homeostasis acting through different signaling pathways. The nuclear BA receptor farnesoid X receptor (FXR) regulates pathways in BA, lipid, glucose and energy metabolism which become dysregulated in obesity. However, the role of FXR in obesity and associated complications, such as dyslipidemia and insulin resistance, has not been directly assessed.

Research Design and Methods: Here, we evaluate the consequences of FXR-deficiency on body weight development, lipid metabolism and insulin resistance in murine models of genetic and diet-induced obesity.

Results: FXR-deficiency attenuated body weight gain and reduced adipose tissue mass in both models. Surprisingly, glucose homeostasis improved due to an enhanced glucose clearance and adipose tissue insulin sensitivity. In contrast, hepatic insulin sensitivity did not change, and liver steatosis aggravated due to the repression of β-oxidation genes. In agreement, liverspecific FXR-deficiency did not protect from diet-induced obesity and insulin resistance indicating a role for non-hepatic FXR in the control of glucose homeostasis in obesity.

Decreasing elevated plasma BA concentrations in obese FXR-deficient mice by administration of the BA sequestrant colesevelam improved glucose homeostasis in a FXRdependent manner indicating that the observed improvements by FXR-deficiency are not due to indirect effects of altered BA metabolism.

Conclusions: Overall, FXR-deficiency in obesity beneficially affects body weight development and glucose homeostasis.

Obesity is characterized by an excess of adipose tissue mass which predisposes to metabolic perturbations, including insulin resistance, hyperlipidemia and fatty liver, promoting the development of type 2 diabetes and cardiovascular disease. Dysregulation of various metabolic pathways in tissues such as adipose tissue, skeletal muscle, the pancreas and the liver lay at the basis of these metabolic complications, but the exact mechanisms are still not well understood [START_REF] Cornier | The metabolic syndrome[END_REF].

Nuclear receptors are ligand-activated transcription factors, which regulate gene expression by binding to specific response elements in the promoters of target genes. The farnesoid X receptor (FXR) is a key regulator of bile acid (BA) metabolism. By promoting BA efflux from the liver, inhibiting hepatic BA synthesis and intestinal absorption, FXR controls the enterohepatic cycling of BA [START_REF] Lefebvre | Role of bile acids and bile acid receptors in metabolic regulation[END_REF]. Additionally, FXR regulates lipid metabolism, insulin sensitivity and energy homeostasis [START_REF] Prawitt | How to modulate FXR activity to treat the Metabolic Syndrome[END_REF]. FXR activation lowers plasma and liver triglycerides by repressing sterol regulatory element binding protein (SREBP)1c-mediated hepatic lipogenesis [START_REF] Watanabe | Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c[END_REF] and by enhancing plasma triglyceride clearance via apolipoprotein (apo)CII induction [START_REF] Kast | Farnesoid X-activated receptor induces apolipoprotein C-II transcription: a molecular mechanism linking plasma triglyceride levels to bile acids[END_REF] and apoCIII inhibition [START_REF] Claudel | Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression[END_REF] in the liver, resulting in an increased lipoprotein lipase (LPL) activity. Consequently, FXR-deficient (FXR -/-) mice are dyslipidemic, displaying elevated plasma triglycerides, total and HDL-cholesterol [START_REF] Sinal | Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis[END_REF][START_REF] Cariou | The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice[END_REF][START_REF] Lambert | The farnesoid X-receptor is an essential regulator of cholesterol homeostasis[END_REF].

The characterization of FXR -/-mice further revealed an important function of FXR in the control of glucose homeostasis. FXR -/-mice are transiently hypoglycemic when fasted [START_REF] Cariou | The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice[END_REF][START_REF] Van Dijk | An increased flux through the glucose 6phosphate pool in enterocytes delays glucose absorption in Fxr-/-mice[END_REF], exhibit a delayed intestinal glucose absorption [START_REF] Van Dijk | An increased flux through the glucose 6phosphate pool in enterocytes delays glucose absorption in Fxr-/-mice[END_REF] and a reduced hepatic glycogen content [START_REF] Van Dijk | An increased flux through the glucose 6phosphate pool in enterocytes delays glucose absorption in Fxr-/-mice[END_REF][START_REF] Duran-Sandoval | The farnesoid X receptor modulates hepatic carbohydrate metabolism during the fasting-refeeding transition[END_REF][START_REF] Cariou | Transient impairment of the adaptive response to fasting in FXR-deficient mice[END_REF]. Hepatic gluconeogenic gene expression is decreased in the absence of FXR [START_REF] Duran-Sandoval | The farnesoid X receptor modulates hepatic carbohydrate metabolism during the fasting-refeeding transition[END_REF][START_REF] Cariou | Transient impairment of the adaptive response to fasting in FXR-deficient mice[END_REF][START_REF] Ma | Farnesoid X receptor is essential for normal glucose homeostasis[END_REF] and induced upon FXR activation in vivo [START_REF] Stayrook | Regulation of carbohydrate metabolism by the farnesoid X receptor[END_REF]. Moreover, FXR -/-mice display peripheral insulin resistance with an impaired insulin signaling response in adipose tissue and skeletal muscle [START_REF] Cariou | The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice[END_REF][START_REF] Ma | Farnesoid X receptor is essential for normal glucose homeostasis[END_REF]. Additionally, FXR may control adipose tissue biology. FXR -/-mice exhibit a decrease in adipose tissue mass with smaller adipocytes [START_REF] Cariou | The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice[END_REF]. Conversely, FXR activation in vitro stimulates adipocyte differentiation [START_REF] Rizzo | The farnesoid X receptor promotes adipocyte differentiation and regulates adipose cell function in vivo[END_REF] by promoting PPARγ activity and inhibiting the Wnt/β-catenin pathway [START_REF] Abdelkarim | The Farnesoid X Receptor Regulates Adipocyte Differentiation and Function by Promoting Peroxisome Proliferator-activated Receptor-{gamma} and Interfering with the Wnt/{beta}-Catenin Pathways[END_REF].

BA act as regulators of metabolic homeostasis also through FXR-independent pathways [START_REF] Thomas | Targeting bile-acid signalling for metabolic diseases[END_REF].

Apart from FXR, BA have been reported to activate the G-protein coupled BA receptor (TGR5), the pregnane X receptor (PXR), the vitamin D receptor (VDR) or the formyl peptide receptor (FPR) [START_REF] Thomas | Targeting bile-acid signalling for metabolic diseases[END_REF]. TGR5 activation by BA increases energy expenditure in thermogenic tissues by inducing deiodinase 2 (D2) [START_REF] Watanabe | Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation[END_REF] and improves glucose homeostasis by stimulating glucagon-like peptide 1 (GLP-1) secretion from intestinal L-cells [START_REF] Katsuma | Bile acids promote glucagon-like peptide-1 secretion through tgr5 in a murine enteroendocrine cell line stc-1[END_REF][START_REF] Thomas | TGR5-mediated bile acid sensing controls glucose homeostasis[END_REF]. Hence, since FXR controls plasma BA concentrations, the metabolic actions of FXR can be due to direct FXRmediated and/or indirect BA-mediated effects [START_REF] Lefebvre | Role of bile acids and bile acid receptors in metabolic regulation[END_REF]. BA metabolism can be pharmacologically modulated by BA sequestrants (BAS), such as colesevelam, which bind BA in the intestinal lumen and interrupt their enterohepatic cycling. BAS lower plasma cholesterol levels by stimulating hepatic BA synthesis from cholesterol and increasing LDL receptor activity [START_REF] Prawitt | How to modulate FXR activity to treat the Metabolic Syndrome[END_REF]. In diabetic patients, BAS improve glycemic control [START_REF] Staels | Bile acid sequestrants for lipid and glucose control[END_REF], associated with an activation of the incretin system due to an enhanced GLP-1 secretion as shown in rodent models of diabetes [START_REF] Chen | Cholestyramine reverses hyperglycemia and enhances GLP-1 release in Zucker Diabetic Fatty rats[END_REF][START_REF] Shang | Colesevelam improves insulin resistance in a dietinduced obesity (F-DIO) rat model by increasing the release of GLP-1[END_REF].

Studies on the metabolic function of FXR have so far been limited to lean FXR -/-mice.

However, the role of FXR in the adaptation to obesity and its metabolic complications has not yet been assessed. To address this issue, we investigated the impact of FXR-deficiency in murine models of genetic (ob/ob) and diet-induced obesity. Our results show that FXRdeficiency protects from excessive body weight gain in both models by reducing adipose tissue mass. Interestingly, hyperglycemia and glucose tolerance improved associated with improved peripheral glucose clearance and adipose tissue insulin sensitivity. Liver insulin sensitivity was not altered by FXR-deficiency and hepatic steatosis became even more pronounced associated with elevated plasma triglyceride levels and reduced expression of genes implicated in β-oxidation. Furthermore, liver-specific FXR-deficient mice were not protected from diet-induced obesity and insulin resistance, indicating a role for non-hepatic FXR in the improvement of glucose metabolism. Finally, to assess the contribution of elevated plasma BA concentrations observed in FXR-deficient models of obesity, plasma BA levels were reduced by administration of the BAS colesevelam. Colesevelam treatment improved glucose homeostasis in genetic obesity only in the presence of FXR, indicating that the changes in BA concentrations are not responsible for the improved glucose homeostasis in obese FXR-deficient mice. Thus, selective FXR antagonism or elimination of ligands, e.g. by BAS, may be an interesting pharmacological option for the therapy of metabolic disorders associated with obesity.

Research Design and Methods

Animals.

All experiments were performed with the approval of the Institut Pasteur de Lille review board. Animals were housed in a 12h-light/12h-dark cycle and maintained on a standard chow (A03, SAFE). Unless stated otherwise, male mice were used for experimentation. FXR -/- [START_REF] Sinal | Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis[END_REF] and FXR-floxed mice [START_REF] Sinal | Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis[END_REF] were backcrossed for seven or ten generations, respectively, onto a C57Bl/6J background. FXR +/+ ob/ob and FXR -/-ob/ob mice and lean littermates were generated by crossing FXR -/-and leptin-deficient mice (B6.V-Lep ob /J, Charles River). Liver-specific FXR -/-mice (FXR flox/flox Alb-Cre +/-=LFXR -/-) and wildtype littermates (FXR flox/flox Alb-Cre -/-=LFXR +/+ ) were generated by crossing FXR-floxed and Albumin-Cre recombinase expressing mice (C57BL/6-Tg(Alb-cre)21Mgn/J, Charles River). To study diet-induced obesity, mice received a high-fat diet (HFD) (D12492, Research Diets; 60% kcal fat) and controls a low-fat diet (D12450B, Research Diets; 10% kcal fat), 20w-old FXR +/+ and FXR -/-mice for 20w and 10w-old LFXR -/-and LFXR +/+ mice for 9w.

The BAS colesevelam (Daiichi Sankyo) was administered with the diet (2% in standard chow) ad libitum to 10w-old FXR +/+ ob/ob and FXR -/-ob/ob mice for 3w. Body weight was monitored weekly. Fat and lean mass were determined by dual x-ray absorptiometry (Piximus, GE Medical Systems LUNAR). Food intake was estimated during 6 periods of 2d.

Animals were sacrificed after a 6h-fast by cervical dislocation. Tissues were removed and snap-frozen in liquid nitrogen.

Plasma parameters.

Blood was sampled after a 6h-fast and parameters determined as followed: blood glucose (Accu-Check, Roche Diagnostics), insulin (Mercodia), non-esterified fatty acids (FFA) (Wako), triglycerides (Biomerieux), leptin (R&D Systems) and total BA as described [START_REF] Murphy | A fluorimetric and enzymatic method for the estimation of serum total bile acids[END_REF]. Lipoprotein profiles in plasma pools were generated by fast protein liquid chromatography (FPLC; Superose 6 HR 10/30, Amersham GE Healthcare) with subsequent determination of triglycerides. Indirect calorimetry. Mice were housed individually in metabolic cages (Oxylet, PanLab) for 48h to measure O 2 -consumption (V O2 ) and CO 2 -production (V CO2 ). Energy expenditure was calculated as described [START_REF] Elia | Energy expenditure and fuel selection in biological systems: the theory and practice of calculations based on indirect calorimetry and tracer methods[END_REF].

VLDL production. Mice were intravenously injected with 500mg/kg Tyloxapol (Sigma) after a 6h-fast and triglycerides were measured in plasma sampled as indicated.

Assessment of glucose metabolism. For tolerance tests 1g/kg glucose or 2IU/kg insulin (Actrapid Penfill, Novo Nordisk), respectively, were injected intraperitoneally and blood glucose measured as indicated. The metabolic clearance rate (MCR) was determined by stable isotope dilution as described [START_REF] Laskewitz | Chronic prednisolone treatment reduces hepatic insulin sensitivity while perturbing the fed-to-fasting transition in mice[END_REF]. To measure the insulin signaling response, tissues were harvested 10min after intraperitoneal injection of 1IU/kg insulin (Actrapid Penfill, Novo Nordisk) or 0.9% NaCl into overnight-fasted female mice. Serine473-phosphorylated Akt and total Akt protein expression (Cell Signaling Technology) were detected by Western Blot and signals quantified by GeneTool software (Syngene). Pancreas morphometry was analyzed as described [START_REF] Popescu | The nuclear receptor FXR is expressed in pancreatic beta-cells and protects human islets from lipotoxicity[END_REF].

Quantitative RT-PCR (qPCR). Total RNA was isolated from tissue samples by GSCN/phenol/chloroform extraction [START_REF] Chomczynski | Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction[END_REF] and reverse transcribed into cDNA (Superscript II kit, Applied Bioscience). QPCR was performed with the BrilliantII SYBR Green QPCR Master Mix (Agilent) and specific primers (Supplementary Table1) on a mx3005 (Agilent).

Gene expression was normalized to 28S and the value in FXR +/+ ob/ob samples set to 1.

Lipidomics. Lipidomics analysis of adipose tissue was performed as described [START_REF] Laaksonen | A systems biology strategy reveals biological pathways and plasma biomarker candidates for potentially toxic statin-induced changes in muscle[END_REF].

Statistical analysis.

All values are reported as means±SEM. Statistical significance was analyzed as indicated by 2way-ANOVA and Bonferroni posthoc test or Mann-Whitney test using Prism (GraphPad). Differences were considered significant when p<0.05. Partial least squares discriminant analysis (PLS/DA) was performed using Matlab, version 7.5 (Mathworks) and PLS Toolbox, version 4.2 (Eigenvector Research).

Results

FXR-deficiency attenuates weight gain in genetic obesity.

As a first approach to assess the role of FXR in obesity, FXR -/-mice were crossed into the ob/ob background to produce FXR -/-ob/ob mice which were subsequently compared to FXR +/+ ob/ob controls.

The weight gain observed in FXR +/+ ob/ob mice was significantly attenuated by FXRdeficiency, already from 7w of age onwards (Fig. 1A) (p<0.0001; 2way-ANOVA). Dual x-ray absorptiometry revealed a decrease in fat (22%) and less pronounced in lean (10%) mass of FXR -/-ob/ob mice (Fig. 1B). Concordantly, the estimated food intake tended to decrease in FXR -/-ob/ob mice (15.5±1.1 vs. 18.9±0.8 kcal/d/mouse). Indirect calorimetry demonstrated that O 2 -consumption (V O2 ) and CO 2 -production (V CO2 ) were equally reduced in FXR -/-ob/ob mice compared to FXR +/+ ob/ob controls (Fig. 1C and1D), resulting in nearly identical values for the respiratory quotient (data not shown). Consistent with the decrease in V O2 and body weight, calculated energy expenditure was lower in FXR -/-ob/ob than in FXR +/+ ob/ob mice (7.1±0.3 vs. 8.7±0.7 kcal/d/mouse) even though the difference did not reach statistical significance.

Overall, FXR-deficiency leads to a decreased storage of energy in form of adipose tissue resulting in a lower total body weight.

FXR-deficiency improves glucose homeostasis in genetic obesity by increasing peripheral glucose disposal.

Since lean FXR -/-mice develop peripheral insulin resistance [START_REF] Cariou | The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice[END_REF][START_REF] Ma | Farnesoid X receptor is essential for normal glucose homeostasis[END_REF], it was next assessed whether FXR-deficiency in obesity affects glucose homeostasis. In contrast to hyperglycemic FXR +/+ ob/ob mice, FXR -/-ob/ob mice displayed normal blood glucose levels (Fig. 2A) (p<0.0001; 2way-ANOVA). In addition, the hyperinsulinemia typically observed in FXR +/+ ob/ob mice was significantly reduced in the absence of FXR (Fig. 2B). Concordant with the decreased hyperglycemia and hyperinsulinemia, glucose tolerance was significantly improved in FXR -/-ob/ob mice (Fig. 2C), due to a combination of lower fasting glycemia and improved glucose handling as evident from the significantly smaller integrated area under the curve (iAUC) (Fig. 2D). The MCR of glucose was further significantly improved in FXR -/- ob/ob mice (Fig. 2E) indicative of a higher glucose disposal in the periphery. In line, an insulin tolerance test showed that FXR -/-ob/ob mice are more insulin sensitive than FXR +/+ ob/ob mice (Fig. 2F and2G) with a more drastic decline of blood glucose levels in response to the administered insulin bolus (p<0.0001; 2way-ANOVA). Insulin resistant FXR +/+ ob/ob mice exhibited enlarged islets of Langerhans (Fig. 2H, compare arrows) due to compensatory hypertrophy. In contrast, islets of FXR -/-ob/ob mice were significantly smaller likely (Fig. 2I) reflecting the relieved metabolic pressure due to the improved insulin sensitivity. These findings indicate that, in contrast to lean mice, FXR-deficiency might improve glucose homeostasis in genetic obesity.

Adipose tissue, but not hepatic insulin sensitivity is improved in FXR -/-ob/ob mice.

To analyze the contribution of peripheral tissues and the liver to the improvement of insulin sensitivity, the phosphorylation of Akt, a key mediator of insulin's metabolic action, was measured in response to an in vivo administered insulin bolus (Fig. 3A). Akt phosphorylation was increased in adipose tissue of FXR -/-ob/ob compared to FXR +/+ ob/ob mice (2.8x vs. 1.5x).

In contrast, the response in skeletal muscle (4.5x vs. 4.8x) and liver (2.0x vs. 1.7x) was not different between both genotypes. Hepatic insulin resistance is often associated with a fatty liver [START_REF] Kotronen | Fatty liver: a novel component of the metabolic syndrome[END_REF]. Since FXR regulates lipogenesis in lean mice (2), hepatic gene expression and lipid content were determined. No changes were seen in the mRNA expression of the key regulator of lipogenesis, SREBP1c (Fig. 3B). Expression of genes involved in FA synthesis were only modestly induced (ACC1, FAS, SCD1) in livers of FXR -/-ob/ob mice (Fig. 3B). Nevertheless, the hepatic triglyceride content was doubled in the absence of FXR (Fig. 3C). The expression of PPARα, a key regulator of FA oxidation, and CPT1A, which ensures the FA entry into the mitochondria, were significantly decreased in FXR -/-ob/ob compared to FXR +/+ ob/ob mice (Fig. 3B).

Expression of ACC2, which indirectly inhibits CPT1A, was significantly higher, indicating that a reduced FA oxidation likely contributes to the increased steatosis in FXR -/-ob/ob mice.

Thus, an improvement of adipose tissue insulin sensitivity seems to account for the observed changes in glucose homeostasis. Hepatic insulin sensitivity was not altered by FXRdeficiency, even though liver steatosis increased.

FXR -/-ob/ob mice exhibit hypertriglyceridemia due to an impaired intravascular triglyceride clearance.

Since FXR -/-ob/ob mice display increased liver steatosis and reduced adipose tissue mass, it was tested whether this phenotype was associated with alterations in triglyceride or FA metabolism. Plasma FFA concentrations were not different between genotypes (Fig. 4A). In contrast, plasma triglyceride levels were strongly elevated in FXR -/-ob/ob compared to FXR +/+ ob/ob mice (Fig. 4B). Analysis of the lipoprotein profile revealed that triglycerides were mainly increased in VLDL, but also IDL/LDL-sized particles (Fig. 4C). To determine whether this was due to altered hepatic triglyceride secretion, plasma triglyceride accumulation was assessed after inhibition of intravascular lipolysis (Fig. 4D). Hepatic VLDL production was similar between FXR -/-ob/ob and FXR +/+ ob/ob mice, suggesting that an impairment of intravascular triglyceride clearance by LPL underlies the elevated plasma triglycerides. Consistently, hepatic mRNA levels of apoCII and apoAV, activators of LPL, were markedly repressed (by 65% and 74%, respectively) in FXR -/-ob/ob mice (Fig. 4E).

Hence, the repression of plasma triglyceride clearance regulators combined with the reduction of adipose tissue mass might result in the development of hypertriglyceridemia.

Total but not liver-specific FXR-deficiency protects from diet-induced obesity and insulin resistance.

To assess the impact of FXR-deficiency in obesity in a model expressing functional leptin, lean FXR -/-and FXR +/+ mice were fed a HFD for 20w. Whereas FXR +/+ mice rapidly gained weight upon HFD-feeding, body weight remained significantly lower in FXR -/-mice (Fig. 5A).

Consistently, plasma leptin levels were lower in FXR -/-mice (Fig. 5B). Plasma triglycerides were significantly higher in FXR -/-mice upon HFD-feeding (Fig. 5C). FXR -/-mice further displayed lower blood glucose (Fig. 5D) and plasma insulin (Fig. 5E) concentrations and showed an improved glucose tolerance (p<0.0001; 2way-ANOVA) (Fig. 5F andG). Hence, similar as in ob/ob mice, FXR-deficiency protects from diet-induced obesity and insulin resistance.

To determine the contribution of hepatic FXR to the protection from diet-induced obesity and insulin resistance, liver-specific FXR -/-mice (LFXR -/-) and wildtype littermates (LFXR +/+ ) were fed a HFD for 9w. Both LFXR -/-and LFXR +/+ mice developed obesity (Fig. 6A) and displayed significantly elevated plasma leptin levels upon HFD-feeding (Fig. 6B). LFXR -/- mice had significantly higher basal plasma triglycerides than LFXR +/+ littermates but were unaffected by HFD-feeding (Fig. 6C). HFD-fed LFXR -/-and LFXR +/+ mice became insulin resistant displaying hyperglycemia (p<0.0001; 2way-ANOVA) (Fig. 6D) and elevated plasma insulin levels (Fig. 6E). In addition, the diet-induced glucose intolerance was similar in both genotypes (Fig. 6F and6G). These findings indicate that liver-specific FXR-deficiency does not protect from diet-induced obesity and insulin resistance.

Modulation of BA metabolism by sequestration does not affect glucose homeostasis in FXR -/-

ob/ob mice.

FXR-deficiency led to elevated plasma BA concentrations in genetic (394±86µM vs. 44±13µM, p<0.001) and diet-induced obesity (119±50µM vs. 22±6µM). Since BA exert regulatory functions independent of FXR [START_REF] Thomas | Targeting bile-acid signalling for metabolic diseases[END_REF], we evaluated whether this increase may account for the observed alteration of body weight and glucose homeostasis.

The increased availability of plasma BA may lead to the activation of the TGR5 signaling pathway subsequently increasing energy expenditure in brown adipose tissue (BAT) [START_REF] Watanabe | Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation[END_REF].

However, the expression of the TGR5 target genes UCP1 and D2 was decreased or unchanged, respectively, in BAT of FXR -/-ob/ob compared to FXR +/+ ob/ob mice (Fig. 7A), indicating that TGR5 activity was not induced.

To assess whether reducing the elevated plasma BA levels in FXR -/-ob/ob mice would affect glucose homeostasis, the BAS colesevelam was administered to FXR -/-ob/ob and FXR +/+ ob/ob mice for 3w. Colesevelam successfully reduced plasma BA concentrations in both genotypes by around 80% already within 9d of treatment (Fig. 7B). Body weight slightly but significantly increased with colesevelam treatment only in FXR -/-ob/ob mice (Fig. 7C). Colesevelam decreased blood glucose levels in FXR +/+ ob/ob, but not FXR -/-ob/ob mice (Fig. 7D). The glucose intolerance observed in untreated FXR +/+ ob/ob mice improved upon colesevelam treatment, whereas such effect was not observed in FXR -/-ob/ob mice (Fig. 7E and7F).

However, both genotypes displayed increased plasma insulin concentrations upon treatment (Fig. 7G). Since BAS may lower glycemia by activating the incretin system [START_REF] Shang | Colesevelam improves insulin resistance in a dietinduced obesity (F-DIO) rat model by increasing the release of GLP-1[END_REF], the expression of implicated intestinal genes was measured (Supplementary Table2). The expression of proglucagon, coding for GLP-1, and ProGIP, coding for GIP, were induced and repressed, respectively, by FXR-deficiency. However, only PC1/3, the enzyme activating both incretins, was moderately induced by colesevelam in FXR +/+ ob/ob mice, unlikely explaining the observed improvement of glucose homeostasis. Thus, reducing plasma BA concentrations had no effect on glucose homeostasis in the absence of FXR, suggesting that the alterations of glucose metabolism observed in FXR-deficiency are not mediated by circulating BA.

FXR-deficiency differentially affects the abundance of long-and medium-chain triglyceride species in adipose tissue of lean and ob/ob mice.

FXR-deficiency improves glucose homeostasis in obesity, due at least in part to an increase in adipose tissue insulin sensitivity. To investigate changes in adipose tissue lipid composition linked to FXR-deficiency before the metabolic phenotype fully develops, high-resolution lipidomics was performed in subcutaneous adipose tissue from 6w-old lean and ob/ob (obese) FXR -/-and FXR +/+ mice.

Overall, 133 lipid species were quantified. Total phospholipid and sphingomyelin content was significantly lower in obese than in lean mice, whereas total triglycerides were similar (Supplementary Fig. 1). These lipid classes were unaffected by FXR-deficiency. Of interest, a number of triglyceride species was differentially affected by FXR-deficiency in lean and obese mice. The concentration of medium-chain triglycerides with a high saturation level was significantly higher in obese than lean FXR +/+ mice (Fig. 8A-C) and tended to increase by FXR-deficiency in both. In contrast, long-chain, unsaturated triglycerides were also significantly elevated in obese compared to lean FXR +/+ mice, however increased by FXRdeficiency in lean but decreased in obese mice (Fig. 8D-F). Further, long-chain triglycerides containing few double-bounds, which were similar between lean and obese FXR +/+ mice, only decreased by FXR-deficiency in lean mice (Fig. 8G-I).

PLS/D analysis revealed that the global subcutaneous adipose tissue lipid profiles clustered according to their genotype (Fig. 8J). Lipid profiles are significantly different between lean and obese mice whether deficient or not for FXR, visualized as a clear separation by the latent variable (LV)1 plotted on the x-axis. Interestingly, the LV2 demonstrated an additional separation of lean FXR +/+ and obese FXR -/-from lean FXR -/-and obese FXR +/+ mice, indicating that FXR-deficiency modulates lipid profiles in an opposite manner in the lean versus obese background.

Discussion

The nuclear receptor FXR is a metabolic regulator which controls BA and lipid as well as glucose and energy metabolism [START_REF] Lefebvre | Role of bile acids and bile acid receptors in metabolic regulation[END_REF]. FXR can exert direct transcriptional control or indirectly influence metabolic pathways by modulating the homeostasis of BA, which control metabolism also independent of FXR [START_REF] Thomas | Targeting bile-acid signalling for metabolic diseases[END_REF]. The characteristics of FXR -/-mice -dyslipidemia (7-9), transient hypoglycemia upon fasting [START_REF] Cariou | The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice[END_REF][START_REF] Van Dijk | An increased flux through the glucose 6phosphate pool in enterocytes delays glucose absorption in Fxr-/-mice[END_REF], peripheral insulin resistance [START_REF] Cariou | The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice[END_REF][START_REF] Ma | Farnesoid X receptor is essential for normal glucose homeostasis[END_REF] and reduced adipose tissue mass [START_REF] Cariou | The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice[END_REF][START_REF] Rizzo | The farnesoid X receptor promotes adipocyte differentiation and regulates adipose cell function in vivo[END_REF] -reflect the importance of FXR for the maintenance of metabolic homeostasis. Yet, the impact of FXR-deficiency on obesity and associated metabolic disorders has not been assessed. In the current study we demonstrate, that FXRdeficiency in murine models of genetic and diet-induced obesity attenuated weight gain by reducing adipose tissue mass. FXR-deficiency further improved glucose homeostasis by enhancing peripheral glucose disposal and increasing adipose tissue insulin sensitivity. This improvement is not mediated by hepatic FXR, since liver insulin sensitivity was unchanged and liver-specific FXR -/-mice were not protected from diet-induced obesity and insulin resistance. The administration of the BAS colesevelam, which reduced the elevated plasma BA levels resulting from FXR-deficiency in obesity, further revealed that the improved glucose homeostasis was independent of BA-mediated pathways. FXR-deficiency thus exerts a beneficial effect on body weight development and glucose homeostasis in obesity.

FXR -/-mice display peripheral insulin resistance, but reported results on the liver are contradicting [START_REF] Cariou | The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice[END_REF][START_REF] Ma | Farnesoid X receptor is essential for normal glucose homeostasis[END_REF][START_REF] Zhang | Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice[END_REF]. Surprisingly, we observed an improvement of glucose homeostasis by FXR-deficiency in genetic and diet-induced obesity, revealing a differential role for FXR in glucose homeostasis in basal (lean) and challenged (obese) metabolic conditions. The reduction of hyperglycemia in FXR -/-ob/ob mice resulted from an increased peripheral glucose disposal associated with an improved adipose tissue insulin sensitivity. This suggests that FXR in adipose tissue contributes to the dysregulation of glucose metabolism in obesity.

Hypertrophic adipocytes develop insulin resistance [START_REF] Biddinger | From mice to men: insights into the insulin resistance syndromes[END_REF]. Hence the reduced adipocyte size in FXR -/-ob/ob mice ( 16) might explain the increased insulin sensitivity. In addition to adipose tissue, skeletal muscle is the main peripheral tissue accounting for glucose uptake. However, the insulin signaling response in skeletal muscle was unaffected by FXR-deficiency. Moreover, FXR is not expressed in skeletal muscle [START_REF] Cariou | The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice[END_REF] and muscle mass strongly reduced in genetic obesity. We can therefore exclude the involvement of skeletal muscle in the FXRdeficiency-mediated changes of glucose homeostasis.

FXR exerts a key function in the control of hepatic glucose and lipid metabolism [START_REF] Lefebvre | Role of bile acids and bile acid receptors in metabolic regulation[END_REF]. In hepatic insulin resistance, increased endogenous glucose production contributes to hyperglycemia and the continuous insulin-mediated activation of lipogenesis leads to hyperlipidemia and may cause a fatty liver [START_REF] Biddinger | From mice to men: insights into the insulin resistance syndromes[END_REF]. In contrast to adipose tissue, FXR-deficiency did not improve hepatic insulin sensitivity in genetic obesity and liver-specific FXRdeficiency did not protect from diet-induced insulin resistance, a rather surprising result regarding the importance of hepatic FXR for the metabolic control of lean mice. Further, hepatic steatosis often associated with hepatic insulin resistance increased in FXR -/-ob/ob mice due to a repression of β-oxidation. Moreover, the repression of hepatic LPL cofactors led to an impaired intravascular triglyceride clearance resulting in elevated plasma triglycerides. Overall, the changes in lipid metabolism appear to be primarily due to altered liver function, while the results on insulin sensitivity emphasize a role for non-hepatic FXR in the dysregulation of glucose homeostasis in obesity -most probably in adipose tissue.

Several studies have shown that FXR controls adipocyte differentiation and function [START_REF] Cariou | The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice[END_REF][START_REF] Rizzo | The farnesoid X receptor promotes adipocyte differentiation and regulates adipose cell function in vivo[END_REF][START_REF] Abdelkarim | The Farnesoid X Receptor Regulates Adipocyte Differentiation and Function by Promoting Peroxisome Proliferator-activated Receptor-{gamma} and Interfering with the Wnt/{beta}-Catenin Pathways[END_REF]. FXR expression occurs early and transiently during adipocyte development, inhibiting the Wnt/β-catenin pathway, thus allowing optimal PPARγ activation [START_REF] Abdelkarim | The Farnesoid X Receptor Regulates Adipocyte Differentiation and Function by Promoting Peroxisome Proliferator-activated Receptor-{gamma} and Interfering with the Wnt/{beta}-Catenin Pathways[END_REF]. Since the lack of hepatic FXR does not seem to mediate the improvement of glucose homeostasis in obesity, it would be of great interest to study adipose tissue-specific FXR-deficiency in obesity. Unfortunately, in the currently available mouse models Cre recombinase expression is driven by promoters from late and/or non-specific adipocyte genes (i.e. adiponectin or aP2), rendering them inappropriate to study the influence of genes acting earlier in the differentiation process, such as FXR. FXR-deficiency in obesity was associated with elevated plasma BA levels. BA have been reported to improve glucose homeostasis independent of FXR by TGR5-mediated stimulation of GLP-1 secretion [START_REF] Katsuma | Bile acids promote glucagon-like peptide-1 secretion through tgr5 in a murine enteroendocrine cell line stc-1[END_REF][START_REF] Thomas | TGR5-mediated bile acid sensing controls glucose homeostasis[END_REF]. The administration of the BAS colesevelam to ob/ob mice successfully reduced plasma BA concentrations, but had no effect on glucose homeostasis in the absence of FXR. Thus, elevated circulating BA in FXR-deficiency do not mediate the observed improvement in glucose homeostasis. BAS improve glycemic control in type 2 diabetes, partly via a TGR5-mediated increase of GLP-1 secretion [START_REF] Chen | Cholestyramine reverses hyperglycemia and enhances GLP-1 release in Zucker Diabetic Fatty rats[END_REF][START_REF] Shang | Colesevelam improves insulin resistance in a dietinduced obesity (F-DIO) rat model by increasing the release of GLP-1[END_REF]. The observed FXR-dependent improvement of glycemic control by colesevelam in ob/ob mice suggests that FXR-mediated pathways contribute to the beneficial effect of BAS. Contradictory to our observation that FXR-deficiency is beneficial for glucose homeostasis in obesity, FXR activation has been shown to improve insulin resistance in rodent models of diabetes [START_REF] Cariou | The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice[END_REF][START_REF] Zhang | Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice[END_REF][START_REF] Cipriani | FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats[END_REF]. The reason for this apparent inconsistency is currently unclear. However, the pharmacological activation of a nuclear receptor does not always and necessarily have the opposite effects than the knockout of its expression. The specific pharmacodynamics of the used compounds may also affect FXR in tissue-specific manner (sBARM effect), whereas our study focused on whole-body FXR-deficiency.

Both genetic and diet-induced obesity are attenuated in the absence of FXR. FXR-deficiency leads to reduced adipose tissue mass [START_REF] Cariou | The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice[END_REF][START_REF] Rizzo | The farnesoid X receptor promotes adipocyte differentiation and regulates adipose cell function in vivo[END_REF][START_REF] Abdelkarim | The Farnesoid X Receptor Regulates Adipocyte Differentiation and Function by Promoting Peroxisome Proliferator-activated Receptor-{gamma} and Interfering with the Wnt/{beta}-Catenin Pathways[END_REF] and adipocyte size [START_REF] Abdelkarim | The Farnesoid X Receptor Regulates Adipocyte Differentiation and Function by Promoting Peroxisome Proliferator-activated Receptor-{gamma} and Interfering with the Wnt/{beta}-Catenin Pathways[END_REF] in lean and ob/ob mice limiting energy storage capacity. Since food intake and energy expenditure only tended to decrease in FXR -/-ob/ob mice, the decreased adipose tissue mass most likely accounts for the reduced weight gain. With regard to the moderate decrease in energy expenditure, a central effect of FXR seems unlikely, additionally since FXR expression in hypothalamus is only very weak [START_REF] Gofflot | Systematic gene expression mapping clusters nuclear receptors according to their function in the brain[END_REF]. Further, the lack of TGR5 target gene induction in BAT of FXR -/-ob/ob mice argues against the implication of a TGR5-cAMP-D2-mediated mechanism [START_REF] Watanabe | Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation[END_REF]. If the reduced body weight was a direct effect of a decreased food intake in the hyperphagic model of FXR -/- ob/ob mice, the hepatic triglyceride content would have also been reduced and not elevated as observed.

Interestingly, the analysis of adipose tissue lipid profiles by lipidomics revealed a differential alteration of certain triglyceride classes in lean and obese mice by FXR-deficiency, e.g. longchain, unsaturated triglycerides are lowered by FXR-deficiency in obese but increased in lean mice. This observation demonstrates that FXR-deficiency specifically and opposingly affects adipose tissue metabolism as it does glucose homeostasis in lean and obese conditions.

Overall, in contrast to lean mice, FXR-deficiency in obesity improves energy and glucose homeostasis. The selective inhibition of FXR activity may thus be an appealing option for the therapy of obesity and the related dysregulation of glucose homeostasis. plasma TG, D. blood glucose and E. plasma insulin were determined at the end of the feeding period (n=4-9/group). F. Blood glucose excursion and G. integrated AUC after administration of an i.p. glucose bolus (1g/kg glucose) were measured at the end of the feeding period (n=6-9/group). Significance of the overall effect of genotype (p<0.0001) and time (p<0. LFXR -/-mice and LFXR +/+ littermates (n=7-12/group) were fed a high-fat diet (HFD) or a control diet (CD) for ten weeks (LFXR +/+ CD = vertically-hatched bars or circles; LFXR -/-CD = diagonally-hatched bars or squares; LFXR +/+ HFD = white bars or diamonds; LFXR -/-HFD = black bars or triangles). A. Body weight was monitored weekly. Significance of the effect of diet (p<0.0001) and age (p<0.0001) as well as their interaction (p<0.0001) was calculated by 2way-ANOVA. B. Plasma leptin and C. plasma TG were determined at the end of the feeding period. D. Fasting blood glucose was measured weekly. Significance of the overall effect of diet (p<0.0001) and age (p<0.0001) as well as their interaction (p=0.0217) was calculated by 2way-ANOVA. E. Plasma insulin was measured after six weeks of feeding. F. Blood glucose excursion and G. integrated AUC after administration of an i.p. glucose bolus (1g/kg glucose) were measured after five weeks of feeding (n=6/group). Values are means±SEM. Differences between diet groups over time were analyzed by 2way-ANOVA and Bonferroni post-hoc test, differences between genotypes or diet groups were calculated by Mann-Whitney test (*compares genotypes of the same diet group; $ compares diet groups for LFXR +/+ ; § compares diet groups for LFXR -/-; $ or §<0.05, ** or $$ or § § <0.01, $$$ or § § §<0.001). TG, triglyceride. 
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 1 Figure 1. FXR-deficiency attenuates weight gain in ob/ob mice.A. FXR +/+ ob/ob (white bars or diamonds) and FXR -/-ob/ob mice (black bars or triangles)
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 2 Figure 2. FXR-deficiency improves glucose homeostasis in ob/ob mice. A. Fasting blood glucose was measured weekly in FXR +/+ ob/ob (white bars or diamonds) and FXR -/-ob/ob mice (black bars or triangles) (n=9-10/group). Significance of the overall effect
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 3 Figure 3. FXR-deficiency improves adipose tissue, but not hepatic insulin sensitivity in
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 4 Figure 4. FXR-deficiency in ob/ob mice results in the accumulation of plasma
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 5 Figure 5. FXR-deficiency protects from diet-induced obesity and insulin resistance.

  FXR +/+ (white bars or diamonds) and FXR -/-mice (black bars or triangles) (n=7-11/group) were fed a high-fat diet (HFD) for twenty weeks. A. Body weight was monitored weekly (n=7-11/group). Significance of the overall effect of genotype (p<0.0001) and age (p<0.0001) as well as their interaction (p<0.0001) was calculated by 2way-ANOVA. B. Plasma leptin, C.

  0001) was calculated by 2way-ANOVA. Values are means±SEM. Differences between genotypes over time were analyzed by 2way-ANOVA and Bonferroni post-hoc test, differences between genotypes were calculated by Mann-Whitney test (*<0.05, **<0.01, ***<0.001). TG, triglyceride.
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 6 Figure 6. Liver-specific FXR-deficiency does not protect from diet-induced obesity and
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 7 Figure 7. Modulation of bile acid metabolism does not affect glucose homeostasis in FXR -/-ob/ob mice. Ten week old FXR +/+ ob/ob and FXR -/-ob/ob mice were administered 2% colesevelam mixed in the diet or plain diet for three weeks (n=13/group) (FXR +/+ ob/ob control = white bars or diamonds; FXR +/+ ob/ob treated = vertically-hatched bars or circles; FXR -/-ob/ob control = black bars or triangles; FXR -/-ob/ob treated = diagonally-hatched bars or squares). A. TGR5
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 8 Figure 8. FXR-deficiency differentially affects the abundance of long-chain, unsaturated
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Table 1 . Primer pairs used for quantitative RT-PCR.
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