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Abstract

Integrins are transmembrane receptors involved in crucial cellular biological
functions such as migration, adhesion and spreading. Upon the modulation
of integrin affinity towards their extracellular ligands by cytoplasmic proteins
(inside-out signaling) these receptors bind to their ligands and cluster into
nascent adhesions. This clustering results in the increase in the mechanical
linkage between the cell and substratum, cytoskeleton rearrangements, and
further outside-in signaling. Based on experimental observations of the dis-
tribution of focal adhesions in cells attached to micro-patterned surfaces, we
introduce a physical model relying on experimental numerical constants de-
termined in the literature. In this model, allosteric integrin activation works
in synergy with the stress build by adhesion and the membrane rigidity to
allow the clustering to nascent adhesions independently of actin but depen-
dent on the integrin diffusion onto adhesive surfaces. The initial clustering
could provide a template to the mature adhesive structures. Predictions of
our model for the organization of focal adhesions are discussed in comparison
with experiments using adhesive protein microarrays.

Keywords: Integrin, Activation, Clustering, Mechanotransduction, Nano-
patterning, Mathematical Modeling.
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Introduction

Integrins(1) are allosteric transmembrane adhesive proteins with a key role
in cell-substrate adhesion and in mechanotransduction, a process by which
mechanical forces are transducted into biochemical signals(2). This inside-
outside signaling relies on intracellular soluble factors such as talin able to
bind to the integrin cytoplasmic tail(3–5). They induce a conformational
change from an inactivated to an activated state with an increase in affinity
for the extracellular matrix(6). A general property of all adhesive structures
- in their nascent, focal or fibrillar states - is the recruitment and the clus-
tering of integrins together with compositional changes depending on their
maturation stage. Understanding the coupling between integrin activation
and integrin clustering is of crucial importance, since integrin activation and
clustering regulate cell adhesion and migration through mechanotransduc-
tion.

In this paper, we focus on the physical mechanisms that regulate lat-
eral assembly of integrins, i.e. initial clustering, in the absence of F-actin(7)
but that are talin dependent. Talin binding mediated activation of integrins
is β subunit specific and occurs with a weak affinity(8–10). In this limit,
we show that integrin activation and integrin clustering can be described
within the same inside-outside signaling framework. The essential ingredi-
ent of our model is the switch between the two integrin affinity states when
this switch is induced by a diffusible factor. Previous work(11) has shown
that talin binding in the absence of force or other proteins is sufficient to
induce the activated form of integrin. To this end, we develop an elemen-
tary mechanotransduction model based on an activator field to mimic the
role of talin regulating integrin binding to the extracellular matrix. Due the
competition between the stress and the allosteric activation, talin concentra-
tion is increased by diffusion on stressed integrins. This, in turn, provides
a robust mechanism for integrin clustering into stationary structures. The
existence of such clusters can be experimentally tested by modifying the el-
ementary molecular modules for integrins activation and adhesion(12). As a
result, we show that affinity regulation can induce by itself the clustering in
nascent adhesion complexes that provide the template of mature focal ad-
hesion patterns(7, 13). The principal result reported in this paper is that
neither direct nor indirect interaction with actin cytoskeleton is necessary
to trigger the initial clustering which results only from the activation field
sensed by the stressed integrins.
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By comparison, former theoretical works have already emphasized the
role of acto-myosin mechanical forces for the maturation focal adhesions(14).
Stress-sensing models such as the clutch model studied in (15), anisotropic
growth of focal adhesions in the direction of the applied force(16, 17), force-
induced recruitment of integrin partners (18), or integrin redistribution caused
by substrate rigidity have already been modelized(19). The present work in-
troduces however, a new mechanotransduction model which should be valid
for nascent focal adhesions and which does not require the acto-myosin ac-
tivity but only talin binding to integrins.

To make connections with experimental studies, we include in this paper
experimental results for cells adhering on adhesive protein microarrays. In
the last section, our model will be discussed in the light of these experimental
findings by predicting different geometries integrin clusters depending on the
size of the adhesive spots.

Methods

Materials

Alexa 488-, 546-, and 633-conjugated secondary antibodies were from Invit-
rogen Carlsbad, CA. TRITC conjugated phallöıdin and Pluronic F127TM is
from Sigma Aldrich (l’isle d’Abeau, France).

Cell culture

NIH 3T3 fibroblasts were cultured in α-MEM (Gibco-InVitrogen, Oxon, UK)
supplemented with 10% inactivated fetal calf serum, penicillin and strepto-
mycin and were harvested with trypsin/EDTA. Cells were plated with 60,000
cells in 2 ml on micro structured arrays (area of 440 mm2) in 30-mm Petri
dishes and were left to spread for 4 h.

Micro-patterning and functionalization

Patterned protein glass cover slips were performed according to (20) with
slight modifications. Glass cover slips (22 × 22 mm) were washed in a solu-
tion of sulfuric acid and hydrogen peroxide (7:3, vol:vol) for 30 min, dried,
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and then dipped for 1 h in a solution of octadecyltrimethoxysilane and amino-
propyltrimethoxy silane (3:1, mol:mol) (Sigma-Aldrich) in toluene. Positive
photoresist resin (Shipley, S1805, Rhom & Haas Electronic Materials, Villeur-
bane, France) was spin-coated and cured according to the manufacturer’s pro-
tocol to form a uniform, UV-sensitive film 0.5-?m thick. The coated cover
slips were then insolated with UV light using a Karl Süss aligner (MJB3,
SUSS MicroTec, Saint-Jeoire, France) at 436 nm and 15 mJ/cm2 through a
chromium mask. The irradiated pattern was revealed with microposit de-
veloper concentrate in deionized water (1:1, vol:vol) (Shipley, MF CD-26,
Rhom & Haas Electronic Materials). The patterned cover slips were incu-
bated for 1 h at 37◦C in a solution of gelatin-RITC and 10 µg/ml vitronectin
in phosphate-buffered saline (PBS). Substrates were rinsed in PBS and then
in absolute ethanol in an ultrasonic water bath to dissolve the photoresist
resin. Finally, either antiadhesive triblock copolymer Pluronic F127TM at
a concentration of 4% in water for 1 h 30 min at 37◦C, or a solution of
FN7–10-FITC (Fibronectin type 1II domains 7-10 conjugated to FITC) at
5-15 µg/ml in PBS was adsorbed to the complementary pattern revealed
after resin dissolution by ethanol for 1 hour at 37◦C. Following a last rinse in
PBS, 155 cells/mm2 were seeded and incubated overnight, prior to fixation
and staining.

Results

Cell were spread on protein microarrays with adhesive spots of either 4×4µm
or 2 × 2µm made of the fibronectin cellular attachment domain (FN 7-10)
and separated by anti adhesive surfaces of polyethylene oxide as described in
the supplemental section. On these surfaces, the final shape of spread cells
is not predetermined since the cells can use one adhesive spot or another.
Indeed, when the lateral distance between two consecutive islands was no
more than 8µm, NIH 3T3 cells attached and spread on the array in a manner
similar to that usually observed on uniformly coated surfaces (not shown),
whereas when the distance between adhesive islands increased up to 16µm,
most of the cells adopted simplified shapes corresponding to thermodynamic
metastable states(21). Vinculin staining of focal adhesions that are sustained
by integrin clusters revealed that only external adhesive islands where used
as attachment sites. This is due to pattern symmetries which imply that
the resulting force applied by the stress fibers on an internal adhesive island
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is zero. Therefore, the lack of mechanical cues did not allow focal adhesion
assembly on these spots. On 4 × 4µm adhesive islands with 16µm spacing
(Figure 1, left panels), however, one could always detect two focal adhesions
by adhesive island even when the cells were only using two fibronectin spots.
This latter result clearly demonstrates that tensions along actin stress fibers
connected to focal adhesions are not the driving forces for integrin clustering.
Surprisingly, when the dimensions of the adhesive plots were reduced to 2×
2µm, a single integrin clustering connected to fuzzier actin stress fibers was
observed on external adhesive islands (Figure 1, right panels). Even in the
angles where orthogonal forces occurred, a single focal adhesion was detected.
These experimental data indicated that beside the tensions that promote
focal adhesion growth, an additional mechanism is required to explain the
splitting of adhesive clusters at constant tension.

Discussion and theory

Preliminaries

For what follows, it will be useful to consider the cycle of elementary reac-
tions for talin as shown in Figure 2. In the cytosol, talin is in the inactivated
state with concentration φc. When adsorbed on the membrane, talin changes
conformation and is activated by binding to PiP2(22). Once activated, talin
diffuses on the membrane and interacts with integrin receptors under the
control of other proteins such as RIAM(5) and kindlins(23). Finally, down-
stream of integrin activation, talin ubiquitination and degradation leads to
disassembly of adhesive clusters(24). In particular, as shown in Ref. (24),
increasing the rate of talin degradation by increasing the affinity of talin to
ubiquitin ligase Smurf1 not only increases the turnover of focal adhesions
but, additionally, increases noticeably their number and their size (see Fig.
3 in (24)). This indicates that talin degradation may also be involved at the
early stages of nascent adhesions and focal adhesion maturation processes.

Overall, the cycle can be represented as follows

. . .

ν1
GGGGGA φ

γ1

GGGGGGA φd

φ+ I

k+1
GGGGGGGBF GGGGGGG

k−1

φI

γ2

GGGA φd + I

(1)
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where talin is activated at a rate ν1 with concentration φ and can reversibly
bind to an integrin I with rate constants k±1. Membrane bound talin is also
irreversibly inactivated at a rate γ1. Finally, γ2 is an irreversible dissociation
rate and simulates adhesion complex disassembly by degradation.

Table 1 gives the order of magnitude of key physical constants used in
our model. Among them, the life time 1/b � 100 s of talin in its activated
state gives a characteristic diffusion length λ =

�
Dφ/b � 2 − 4µm. This

characteristic length is comparable to critical size wc of the adhesive spots
above which the focal adhesion clusters split into two clusters. Henceforth,
the ratio of the diffusion length, λ, to the spot size, w0, will play a key role
in determining different families of solutions for integrin clustering.

In general, the concentrations depend both on space coordinates x and
on time t. If x is taken along the cell adhesive substrate, φ(x, t) is the surface
concentration of talin in the activated state and φI(x, t) the average number
of talin per integrin. If n0(x, t) is the total concentration of integrins, n0φI

is the concentration per unit of surface of talin-integrin complexes. We will
refer to this state as the adsorbed phase.

In what follows, we will work in the quasi-steady state approximation
where φI is in equilibrium with the local concentration of talin φ(x, t). When
talin is bound to an engaged integrin, it cannot diffuse and local equilibrium
fixes an algebraic condition between φ(x) and φI . This relationship is found
from the last step of Eq. (1) and reads as

φI = φ/(φ+Km) with Km =
k−1 + γ2

k+1
� γ2

k+1
(2)

where Km is a Michaelis-Menten constant with the dimension of a concentra-
tion. The last approximation points out the importance of two pathways for
talin unbinding, one of which being stress sensitive. Typically, the dissocia-
tion rate k−1 is of the order of 7.4 10−4

s
−1(25) and if γ2 is of the same order

of b � 10−2
s
−1, the variations of Km with k−1 can be neglected. Thus, Km

is independent of the strain which influences the off-rate of talin unbinding.
Using k+1 � 103l ·Mol

−1(25), we find Km = 103−4 molecules per µm2.
Two limit cases will be of interest. For small concentrations φ, φI is

simply proportional to φ. In the saturated limit, however, φI is independent
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of φ and approaches unity. To summarize for later use, we have :

φI � φ/Km when φ � Km (3)

φI � 1 when φ � Km (4)

Other non-linearities with φI = aφ
γ
/(1+φ

m) where a, γ, m positive numbers
can be included in the model without qualitative changes.

Model for integrin activation and engagement

Step (3) of Fig. 2 corresponds to the reversible binding of talin to integrin.
In our model, these kinetic rate constants are determined by talin allosteric
activation of integrins and by elasticity.

We recall that talin binding to an integrin induces a conformational
change for the integrin receptor proteins. According to (10), the integrin
extracellular domain is in its extended conformation in the activated state
with talin bound to the intracellular tail. In this state, an integrin is bound
to its ligand. By contrast, in the other state, the head is in the bend confor-
mation. In this unactivated state, the integrin has a smaller probability to
bind to its ligand. Henceforth, we will consider the very large affinity limit for
extracellular ligand binding where an activated integrin is engaged, whereas
an unactivated one is free to diffuse. To summarize, binding talin to an inte-
grin introduces a conformational change between two states with respective
density nu,b, where the density of integrin is conserved nu + nb = n0.

Local equilibrium between these two states is always achieved at a time
scale much smaller than the typical time scale for concentration changes due
to diffusion. Let Ke(φI , h) be the effective equilibrium constant for integrin
engagement. Ke(φI , h) depends both on the adsorbed talin field φI(x, t) and
on a strain field h(x) and local equilibrium implies that the density of bound
integrins obeys

nb(φ, h) =
n0

1 +Ke(φI , h)
−1 (5)

All together φI(x, t) and h(x) play antagonistic roles for adhesion when the
concentration of talin φ(x) is homogeneous. On the one side, binding talin
favors adhesion and thus increases the affinity constant for the extracellular
matrix. On the other side, stretching the integrin extracellular head with a
length l(x) that differs from a reference length l0 � 10nm induces a stretch-
ing energy 1

2kbh(x)
2 with h(x) = l(x) − l0. By definition, kb is an effective
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rigidity constant which includes substrate deformability. Following Bell(26)
and other(27, 28), this energy is of the order of few kBT � 4 pN.nM and
adds up to the bare energy difference ∆fu,b between the two integrin states.
This regime is only valid for l smaller than a maximum extension (� 25nm)
and we will henceforth restrict ourselves to this range.

Since binding talin decreases the free energy of the activated state, we
have ∆fu,b = −AIφI where −AI is the interaction energy between talin and
the cytoplasmic β-subunit. In the zero stress limit where φI = φ

0
I , we have

AIφ
0
I � 2.5 kBT (9, 29). Summing the allosteric and the elastic contributions

gives the enthalpy difference between the two states

∆Hu,b = ∆fu,b +
1

2
kbh(x)

2 (6)

Using Van’t Hoff law, the equilibrium constant follows

Ke(φI , h) = Ke,0e
−β( 1

2kbh(x)
2−AIφI) (7)

where K
0
e = Ke,0 exp (AIφ

0
I) is the equilibrium constant in the absence of

stress. This state is a reference state and the principle of the model is to
perturb this reference state by strain elasticity with h(x) > 0. K

0
e fixes the

number of bound integrins by Eq. (5) and is thus a small number (K0
e = 10−3

in this work).
To comment Eq. (7) further, we note that NMR studies as in Ref. (10)

indicate that the interaction between the two different talin isoforms and the
membrane-proximal domain of an integrin is specific of the integrin species.
In parallel, small variations of the talin-integrin interaction AI lead to very
different values of the equilibrium constant (7) when the talin concentration
varies. This, in turn, will demonstrate that integrin clustering behavior is
specific of the integrin family.

Integrin engagement is stress dependent

In our model, allosteric activation and tail elasticity contribute to the chemi-
cal potential µ(φI , h) per integrin. This chemical potential will influence the
desorption rate k−1 in Eq. (1) and, thus, will modify the equation of motion
for talin diffusing on the membrane. To compute the chemical potential, we
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neglect all entropic contributions and retain the most singular part as

µ(φI , h) �
δ

δφI

�
1

2
nb(φI , h(x))kbh(x)

2

������
gI(φ,φI)=0

(8)

which follows from Eq. (6) times the probability density to find an integrin
in its activated-engaged state. From Eq. (5), nb(φI , h) is step like when φ

varies at constant strain h(x) = h0. Taking the derivative as done in Eq.
(8) introduces a delta-like singularity in the chemical potential when talin
allosteric activation compensates strain elasticity

AIφI =
1

2
kbh

2
0 −

1

β
ln(K0

e ) (9)

which is approximately equal to 10kBT for h0 = 5− 10nm.
Since the chemical potential depends on the strain h(x) by Eq. (8),

varying h(x) influences integrin engagement and talin concentration. Ex-
perimentally, h(x) can be varied in numerous ways. For example, the use
of micro-patterned substrates concentrates the stress at the margin of the
adhesive spots. An other way is to probe directly h(x) using single molecule
assays to stretch the integrin head in the nm range.

Henceforth, we will work in the thermodynamic ensemble where the strain
is fixed at a given function h(x). For numerical and analytical convenience,
h(x) will be taken as a gaussian h0 exp (−x

2
/2w2

0) of width w0 and height
h0. As shown below, the state of the system is globally independent of exact
analytical form of h(x) as long as h(x) can be greater than some threshold
value on a region of size w0 larger than the diffusion length

�
D/b.

Talin equation of motion

Step 3 of Fig. 2 is the adsorption-desorption process for the dynamic of the
activated talin φ(x) which is otherwise allowed to diffuse on the membrane
with diffusion constant Dφ. The chemical potential of Eq. (6) influences
the desorption rate of talin-integrin bound state to the free state. At the
end, the theory is self-consistent, since this desorption rate for talin-integrin
unbinding depends on the local concentration φ.

To derive this self-consistent equation, we define a reference state concen-
tration φ0 of talin at zero stress (h(x) = 0, see Appendix A). When measured
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with respect to this reference state, φ → φ + φ0, the equation of evolution
for the relative excess of concentration φ is written as

∂tφ = Dφ∆φ− bφ+
1

2
ΓIkbh

2 ∂nb

∂φI

�����
g(φ,φI)=0

(10)

where the last term is proportional to the excess of chemical potential in the
bound phase due to strain elasticity. Physically, this term describes how an
excess of talin compensates for the increase of the desorption rate due to
integrin engagement. Using the model of Eq. (1), this equation is derived
in Appendix A under the assumption that the kinetic rate constant for talin
desorption is influenced by the chemical potential of Eq. (8) which contains
stress elasticity. The diffusion-reaction equation (10) is thus equivalent to
the one used to study the growth of focal adhesions(18), but with a talin
dependent strain elasticity.

In Eq. (10), ΓI is a kinetic coefficient between the talin bound and free
states and is proportional to the off-rate of the talin-integrin unbinding. Since
ΓI is proportional to AI , ΓI reflects the talin affinity for an integrin, ΓI is
also β-subunit specific. The last term is proportional to the density n0 of
integrins. As the bare affinity K

0
e is small, nb(φI , h) is a step function when

φI varies. Thus, ∂nb/∂φI has a singularity to mimic the switch in integrin
affinity toward its ligand(30). This term depends on φ by the quasi-steady
state condition gI(φ,φI) = 0. Thus the dynamic of the field φ(x) depends on
diffusion by Dφ, on the residence time of talin in its activated state by b and,
finally, on the strain h(x). This equation describes how elasticity provides a
positive feedback loop for integrin activation when the source term in (10) is
maximum.

Integrin equation of motion

Eq. (10) gives the correct evolution of φ(x) as long as the integrin density
n0(x) does not respond to the variations of φ(x). Since the integrin diffusion
constant is smaller than the one for talin, this approximation holds at very
short times. At longer times, however, there is a change in integrin concen-
tration n0 = nu + nb, since unbound integrins nu diffuse (diffusion constant
Dn). Because of local equilibrium, the equilibrium constant gives the fraction
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of bound to unbound integrins as

nb(x, t)

nu(x, t)
= Ke(φI , h) (11)

As a result, the effective diffusion equation for the integrin concentration
field n0(x, t) reads as

∂n0

∂t
= Dn∆

�
n0

1 +Ke(φI , h)

�
(12)

Eq. (12) together with Eq. (10) gives a complete system for a given strain
profile h(x).

Effective diffusion-reaction equation

The essential property of our model is that its describes integrin activation
in cooperation with changes in talin concentration. From now on, we will
concentrate in the small talin concentration limit with φI = φ, see Eq. (3).
The large φ limit of Eq. (4) where φI saturates is studied in the last section.
Mathematical analysis will focus on the one-dimensional case when the typi-
cal radius of curvature of the adhesive spot is larger than de diffusion length�

D/b.
Using the two equations of motion, we solve the problem as follows. In

the symmetric case h(x) = h(−x), Eq. (12) has the unique solution

n0(x, t) =
n∞

1 +K0
e

[1 +Ke(φI , h)] (13)

Since Eq. (10) is valid for an arbitrary integrin density n0, we use (13) in
Eq. (10). As a result, we solve the effective reaction-diffusion equation

∂φ

∂t
= Dφ∆φ+ f(φ, h) (14)

with the source function f(φ, h)

f(φ, h) = −bφ+
1

2
kbh(x)

2 ΓI

1 +K0
e

n∞

1 +Ke(φI , h)−1

�����
φI=φ/Km

(15)
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In order to mimic adhesive spots surrounded by non-adhesive islands, bound-
ary conditions are chosen so that both the strain h(x) and the concentration
φ(x) vanish at infinity.

The characteristic shapes of f(φ, h) are given in Fig. 3 in the small and
large h(x) = h0 limits. For h0 < hc1 , f(φ, h(x)), has only one zero whereas,
for h0 > hc1 , it has three zeros φ1,2,3. In that case, the system is again
bistable. Thus, for an homogeneous strain profile h(x) = h0 > hc1 , the effec-
tive diffusion equation can be used to describe lateral excitation of a signal
which propagates with a threshold response. The existence of three zeros
for the source functions f(φ, h) at fixed h = h0 is a characteristic property
of reaction-diffusion systems with propagating wave solutions. Henceforth,
we will study stationary solutions of (14) with ∂φ/∂t = 0. These solutions
may be seen as waves pinned by strain elasticity, since they are concentrated
where the stress is maximum.

Integrin Clustering is stress dependent and is charac-
terized by two families of solutions

In the allosteric model for integrin activation of Eq. (6), the elastic stress
competes with the talin field to regulate integrin activation and engagement.
When activated talin diffuses on the membrane, however, this competition
leads on an amplification loop. To bias this competition, we vary the strain
profile by changing h0 and compute the stationary solutions for φ(x) and
nb(x). Stability of these solutions with respect to variations in integrin con-
centration is checked using the equivalent equations (10) and (12) for different
initial conditions in the regime where φ

�
3 in Fig. 3 tends smoothly to zero

when x goes to infinity. Other strain functions h(x) with characteristic vari-
ations on a width w0 have been tested without qualitative changes. Solving
the model amounts to comparing numerical solutions with asymptotic results
as done in the next section.

Small stress regime φI � φ/Km : Numerical results

Fig. 4-a,b,c for the talin and integrin concentration fields demonstrate that
stress leads to integrin clustering. Depending on the strain, this clustering is
described by two families of solutions.

1. For small stress values, h < hc1 , clustering corresponds to a unique



stress, integrin activation/clustering 13

centered distribution of φ which increases rapidly with h0. These so-
lutions correspond to the long dashed curves shown in the figure and
they will be compared to the analytical solution in the next section.
Type 1 solutions are always characterized by a centered maximum of
talin concentration at the origin The distribution of bound integrins
follows from the solution of φ(x) since :

nb

n∞
=

Ke(φ, h)

1 +K0
e

(16)

where n∞ is fixed by the condition at infinity. Type 1 solutions for nb

are characterized by a maximum at the origin. Only near bifurcation
points, type 1 solutions for nb may exhibit a local minimum.

2. At larger strain, h > hc1 where the source function (15) possesses three
zeros, there is a new family of solutions. Type 2 solutions are charac-
terized by a distribution of talin with a double symmetric maximum.
These maxima merge with the centered maximum of type 1 solution
when h = hc1 . Using (16), the distribution of bound integrins is always
symmetric with respect to the origin and concentrates rapidly at the
margin of the zone where the stress is applied when h0 is increased
above hc1 . Type 1 and 2 solutions exist for h > hc1 if the diffusion
length is small enough with respect to the characteristic width w0 of
the strain h(x), D/bw

2
0 � 1. They are both stable for a large class of

initial conditions (using (10) and (12)).

Small stress regime φI � φ/Km : Analytical results

To get insights into the two families of stationary solutions, we approximate
the source function f(φ, h) by its β → ∞ limit. In this case, the Bolzmann
function converges to the Heaveside θ[x] function with two inclines (see red
curve of Fig. 3). The source function in Eq. (15) becomes

f�(φ, h) =− bφ+

1

2

ΓI

1 +K0
e

n∞kbh (x)
2
θ
�
AIφ/Km − 1/2kbh(x)

2 + 1/β lnK0
e

� (17)

We call this model the β∞ model and solve exactly for φ(x) as done in the
supplemental data section. From this solution, we find n0(x) and nb(x) using
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Eqs. (11) and (13). Plots of solutions of this asymptotic model are also given
in Fig. 4-a,b for comparison with numerical data.

Type 1 solutions

Fig. 4-a corresponds to this case. This solution has a maximum (Eq. (??)
of the supplemental data section). In the small diffusion length limit D/bw

2
0,

we find (see thin curve in Fig. 4-a)

φ1(x = 0) � 1

2
kbh

2
0

ΓIn∞

b(1 +K0
e )

(18)

As expected, the concentration of talin increases with rigidity. Decreasing b,
or equivalently increasing the life time of activated talin, has the same effect.
From this, we find that the density of bound integrins for type 1 solution is
asymptotically given by

nb,1(x = 0)

n∞
� K

0
e exp

�
1

2
βkbh

2
0

�
AIΓIn∞

bKm(1 +K0
e )

��
(19)

What the model predicts is thus a local increase of φ, and therefore of
φI , to counterbalance the negative effect of the strain h0 on integrin engage-
ment. Because of the exponential dependence, Eq. (19) is very sensitive to
variations in strain h0 and to changes in parameters. If the talin-integrin
interaction energy AI is multiplied by a factor 2, ΓI changes by a factor of
4 and the exponential in (19) is raised to the same power. Such a sudden
increase in integrin density upon small changes in AI is the distinctive mark
of a positive feedback loop contained in the model.

Type 2 solutions

In contrast to type 1 solutions, solutions of type 2 are characterized by a
minimum of talin concentration at the origin. The width of this depletion
zone is set by the diffusion length λ with φ(x) ∝ cosh(x/λ). Thus, for
type 2 solutions, the effect of the strain is to exclude talin proteins from the
center with a maximum of concentration at a characteristic distance ±w0.
The calculation reported in the supplemental data section demonstrates that
type 2 solutions cannot be constructed if the ratio λ/w0 is to small. In
this regime, diffusion smoothes out any irregularity in the strain profile h(x)
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and, by symmetry, the concentration field of talin can only have a centered
maximum.

Fig. 5-a shows how the distribution of talin evolves when w0 decreases at
fixed strain h0. Starting at large width w0, the distribution shrinks and the
minimum is less pronounced as diffusion is more and more effective. At a
critical width wc, the two maxima merge at the origin. Below wc, the unique
solution is of type 1 with a centered maximum. Fig. 5-b is the accompanying
figure for the distribution of bound integrins. Although the distribution of
talin is centered below the bifurcation point, the distribution nb(x) may have
a minima in its immediate vicinity.

The condition for existence of type 2 solution of the supplemental data
section is given by the matching conditions of the two branches below and
above the singularity given by the θ function in Eq. (17) when φ2(x) satisfies
condition (9). These conditions result from conservation laws which imply
that concentration and current are conserved quantities when φ(x) passes
through the singularity at x = x0. For all curves of Fig. 4-b, this point
is indicated by a dot. At bifurcation, this point coincides with the origine.
From this, we compute the critical width wc at given h0 (see Eq. (??) with
x0 = 0)

λ
2

ω2
c

=
1

2
kb

ΓIAI

b(1 +K0
e )

n∞

Km

�
1− 2

lnK0
e

βkbh
2
0

�
(20)

As a result, the critical width decreases with AI and with the strain h0. Using
Table 1, Fig. 5-a gives a value for wc of the order of 2-3 µm.

Eq. (20) is derived for a gaussian profile h(x) = h0 exp [−x
2
/(2w2

0)].
Numerical experiments with other strain profiles show small changes in the
critical width wc for different strain functions h(x). A reason for this is that
the source function (17) is independent of the strain profile near the origin,
so that the cosh(x/λ) solution is universal and independent of the profile
h(x).

Large stress regime : Extension of the linear model to include the
saturation limit of the bound talin field φI

Clearly, the linear regime φI = φ/Km is only valid at small strain h0 and φI

must saturate above a critical value fixed by the equivalent Michaelis-Menten
constant as in Eq. (4). Since φ increases with h0, see Eq. (18) for type 1
solutions, the boundary value φ above which the linear regime breaks down
sets an equivalent condition for h0.
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In this saturated limit where φI tends to 1, the equilibrium concentration
of talin bound to integrin is independent of φ, since all integrins are already
activated. In that case, the equivalent source function for reaction-diffusion
has only one fixed point instead of being tooth shaped as in Fig.3. Let us
call hc2 , the value of h0 above which the equivalent source function f(φ, h0)
has only one zero. For h0 > hc2 , type 1 solutions cease to exist. Numerically,
adding Langevin noise to the equation of motion or steric repulsion between
integrins leads to the same effect when n0(x) is large since the saturated limit
for type 1 solutions is very sensitive to fluctuations in integrin density.

Discussion and conclusion

To conclude, our approach leads to integrin clustering and embodies collec-
tive effects between different families of integrins. Thermodynamic provides
an effective activation potential so that there is no need for direct or indirect
interactions between the integrin receptors for clustering. The model can be
represented as an effective reaction-diffusion system with the conclusion that
integrin clustering is driven by integrin activation imposed by mechanical
constraints. Mixing elasticity and chemical reactions reproduces the charac-
teristic properties of excitable media which has already been evoked in the
biological literature for the mechanical activation of Src(31).

Activation mediated by talin binding depends on the β integrin cyto-
plasmic subunits and this dependence is explicit in the model through the
interaction energy parameter AI . Small variations of this parameter lead
to exponential variations of talin concentration and influences markedly the
locus of bifurcation lines. Testing the role of α5β1 and αvβ3 integrins for
mechanotransduction has already be proposed in recent works(32). Because
our model links integrin activation to mechanical stress, we propose to test
further these differences by varying other parameters such as the width of
the zone where the stress is applied.

These results are with respect the experimental findings of the first sec-
tion. In our work, advanced lithography techniques allow to control the size
of the adhesive spots at the cell-substrate contact interface. For this, we take
the width w0 as the typical size of the adhesive spots which thus corresponds
in the model to the parts of the contact zone where the integrins are submit-
ted to a stress. Although our model applies only at short time scales after the
first contacts and integrin ligation, we propose that it serves as a template
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to discuss more mature focal adhesion complexes which develop from these
nascent adhesion clusters.

In short, by imposing a mechanical constraint, the model predicts dif-
ferent spatial organization for cell receptors which, thereby, may alter the
specificity of their signaling functions. This hypothesis is explicit in the bio-
logical literature (33, 34) and a mark of our model is to define a framework
from only three experimentally accessible quantities.
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Appendix A

To find the local free energy per unit surface area, we work in the framework
of a lattice gas model where each site can be occupied by an integrin of density
n0. Activated talin is free to diffuse on the membrane seen an adlayer and it
can get reversibly adsorbed on the sites occupied by the integrins.

f(φI , h) =

�
−AIφI +

1

2
kbh(x)

2

�
nb(φI , h)− AIφInu(φI , h) (21)

To evaluate µ([φI ], h) as (8), we consider only the most singular term

n0∆µ(φI , h) =
1

2
kbh(x)

2 ∂nb

∂φI

����
φI=φ/Km

− AIn0 (22)

Note that the derivative disappears if talin had a very high affinity for inte-
grin, since nb would not vary.

Introducing the rate of production ν1 for activated talin, the equation of
motion follows :

∂φ

∂t
= D∆φ+ ν1 − γ1φ− n0k+1φ+ n0k−1,0e

β∆µ(φI ,h)φI (23)

which together with Eq. (2) can be used to find the stationary solutions.
A convenient way to solve Eq. (23) is to introduce a reference state at

zero stress h(x) = 0. This reference state φ0 is homogeneous and solves the
equation of motion :

ν1 − γ1φ0 − n0k+1φ0 + n0k−1,0e
β∆µ(φI,0,0)φI,0 = 0 (24)

with the steady state condition Eq. (2) at zero stress. Thus φ0 is an increasing
function of the rate of ν1 with which talin is activated by binding talin to the
membrane with PIP2. If this rate is large enough, as it is generally the case,
since PIP2 is produced at a very large rate, this state can used as a reference
state.

Making the change of variable φ → φ0 + φ, we look for a solution φ(x, t)
proportional to the rigidity kb. To linear order, eβ∆µ � 1 + β∆µ, since ∆µ

is linear in kb. We find that the relative excess of concentration φ(x, t) is
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solution of the equation used in text

∂φ

∂t
= D∆φ− bφ+

1

2
ΓIkbh(x)

2∂nb

∂φ
(25)

b = γ1 + n0k+1 − n0k−1,0 (26)

ΓI = β
2
k−1AIφI,0 (27)

φI,0 =
k−1,0 + γ2

k+1
φ0 (28)

∂nb

∂φ
= n0

K
0
e
−1
e
β(1/2kbh(x)2−AIφ)

�
1 +K0

e
−1
eβ(1/2kbh(x)

2−AIφ)
�2 (29)

with K
0
e evaluated in the reference state at zero stress.

K
0
e = Ke,0e

βAIφI,0 (30)

Note that to make this evolution equation as simple as possible, we have
neglected terms φ∂nb/∂φ which are next order in kb and saturate in the large
φ limit by the condition Eq. (2). Finally, less singular contributions to the
chemical potential such as nb(φ, h) which appear when taking the derivative
Eq. (8) will change the low φ limit of f(φ, h0) in Figure 3 without affecting
the bistable characteristic property.
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Table

Symbol Meaning Typical value
kb Effective spring constant for integrin-substrate rigidity 0.3 mN.m−1(35)
1/b Effective residence time of talin 80-100 s (36, 37)
h0 Range for the elastic strain 1− 15nm
Dn Integrin Diffusion constant 10−3 − 10−2

µm
2
.s

−1(38)
Dφ Effective diffusion constant of PIP2 bound talin 0.2µm2

.s
−1(39)

n∞ Averaged integrin density at zero stress 100− 500µm−2(13)
l0 Length of the extracellular domain of an integrin 10nm(5, 40)
k−1 Rate dissociation constant for the talin-integrin complex 10−4 − 10−3

s
−1(41)

AI Interaction energy between talin and integrin � 10− 20kBT (42)
AIφI,0 Talin-integrin interaction energy at zero stress � 1− 5kBT
K

0
e = nb/n0 = Ke,0e

βAIφI,0 at zero stress 10−3

Km Equivalent Michaelis-Menten constant for talin degradation � 103 − 104µm−2

1/β kBT � 4.1 pN.nm

Table 1: List of symbols with typical values used in this work.
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Figure Legends

Figure 1.

Fibroblasts adhering on fibronectin patterned substrates. The left panel cor-
responds to cells adhering to 4×4µm fibronectin plots and the right panel to
2×2µm plots. Adhesive plots are visualized by alexa350 labeled fibronectin,
actin filaments are labeled with TRIRC phallöıdin and focal adhesion by a
monoclonal anti vinculin antibody and a Alexa488 labeled secondary anti-
body (see supplemental section). For the largest plots the focal adhesion
complexes split into two parts with two stress fibers connecting opposite
plots. For the smallest plots, however, the focal adhesive clusters appear ho-
mogeneous with only one stress fiber emerging from the adhesion complexes.
The transition from one to two adhesive spots on the same plot is geometry
independent since all cells adhering to square or triangular lattices exhibit
the same behavior.

Figure 2.

Schematic view of the talin activation cycle (after (43)). (1) Talin in its
inactivated state (φc) in the cytosol. Talin is recruted at the membrane
(φm) and is activated by binding to PIP2. In this activated state, φ, talin
interacts with the integrins (step 3). The equilibrium between activated talin
φ and the integrin (the bound complex is denoted φI) is crucial. In (4), talin
unbinds from the integrin and goes back to its cytosolic state (φc).

Figure 3

Plot of the effective source function f(φ, h0) as a function of φ for different
values of h0. The figure shows f(φ, h0) for four different values of the strain
index h0. The dotted and dashed lines are for h0 < hc1 . For h0 > hc1 , f(φ, h0)
has three roots instead of one. The ”shark” teeth shaped curve corresponds
to the β∞ approximation as taken in the text when passing from Eq. (15)
to Eq. (17). Finally, the last curve for hc2 < h0 corresponds to the nearly
saturated regime where φI = φ/(Km + φ) instead of φI = φ/Km as in the
three previous plots. In this case, the source function f(φ, h0) has only one
zero for some value of h(x0).
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Figure 4

(a) Plot of the type 1 family talin concentration AIφ1(w0x)/Km for parameter
values taken from Table 1. The dashed curve is the approximate analytical
solution with c = 0 (see the supplemental data section). Otherwise, numer-
ical solutions and thick curves corresponding to type 1 solutions of the β∞
model coincide on the scale of the figure. Finally, the thin curve corresponds
to the asymptotic expansion of the analytical solution given by Eq. (??). It
shows that asymptotic results are already reliable even if

�
D/b = 0.28w0 as

in the case of this figure. Color code indicates that 1/2βkbh2
0 decreases step-

wise (15, 7.5, 4.5 to 3) with the largest value in green. (b) Plot of the type
2 family solutions AIφ2(w0x)/Km. Dashed curves correspond to numerical
solutions. Thick and dashed curves coincide when φ

�
3 goes to zero smoothly

as |x| goes to infinity. Plain circles correspond to the boundary points x0 for
type 2 solutions where the solution passes through the singularity of the β∞
model. Decreasing h0 changes the solution till it matches a type 1 solution at
the bifurcation point. The color code for Fig. 4-b is the same as for Fig. 4-a.
(c) Plot of the density of engaged integrin nb(w0x) for centered type 1 and
type 2 solutions for the same parameters (1/2βkbh2

0 = 4.5). For convenience,
type 1 solutions have been scaled down by a factor 10 (w0 = 10µm).

Figure 5

(a) Plot of of the talin density AIφ(w0x)/Km as a function of x. Decreasing
the ratio w0/λ at fixed strain h0 decreases the characteristic distance between
the two maxima. Decreasing this ratio further leads to a critical width where
type 2 solutions stop existing. For w0 < wc, the only solution is of type
1 and corresponds to the centered distribution shown in the Figure. (b)
Plot of nb(w0x)/n∞. Although AIφ1(w0x)/Km is always maximum at the
origin, nb(x) for type 1 solution can be minimum in the near vicinity of the
bifurcation point. In both figures, wc � 2.5µm (for both figures, λ � 2.8µm
and the color code indicates that w0 decreases in steps of 1µm from 6 to
2µm).
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Figure 1:
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Figure 3:
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Figure 5:
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Appendix A

To find the local free energy per unit surface area, we work in the framework
of a lattice gas model where each site can be occupied by an integrin of density
n0. Activated talin is free to diffuse on the membrane seen an adlayer and it
can get reversibly adsorbed on the sites occupied by the integrins.

f(φI , h) =

�
−AIφI +

1

2
kbh(x)

2

�
nb(φI , h)− AIφInu(φI , h) (21)

To evaluate µ([φI ], h) as (8), we consider only the most singular term

n0∆µ(φI , h) =
1

2
kbh(x)

2 ∂nb

∂φI

����
φI=φ/Km

− AIn0 (22)

Note that the derivative disappears if talin had a very high affinity for inte-
grin, since nb would not vary.

Introducing the rate of production ν1 for activated talin, the equation of
motion follows :

∂φ

∂t
= D∆φ+ ν1 − γ1φ− n0k+1φ+ n0k−1,0e

β∆µ(φI ,h)φI (23)

which together with Eq. (2) can be used to find the stationary solutions.
A convenient way to solve Eq. (23) is to introduce a reference state at

zero stress h(x) = 0. This reference state φ0 is homogeneous and solves the
equation of motion :

ν1 − γ1φ0 − n0k+1φ0 + n0k−1,0e
β∆µ(φI,0,0)φI,0 = 0 (24)

with the steady state condition Eq. (2) at zero stress. Thus φ0 is an increasing
function of the rate of ν1 with which talin is activated by binding talin to the
membrane with PIP2. If this rate is large enough, as it is generally the case,
since PIP2 is produced at a very large rate, this state can used as a reference
state.

Making the change of variable φ → φ0 + φ, we look for a solution φ(x, t)
proportional to the rigidity kb. To linear order, eβ∆µ � 1 + β∆µ, since ∆µ
is linear in kb. We find that the relative excess of concentration φ(x, t) is
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solution of the equation used in text

∂φ

∂t
= D∆φ− bφ+

1

2
ΓIkbh(x)

2∂nb

∂φ
(25)

b = γ1 + n0k+1 − n0k−1,0 (26)

ΓI = β2k−1AIφI,0 (27)

φI,0 =
k−1,0 + γ2

k+1
φ0 (28)

∂nb

∂φ
= n0

K0
e
−1eβ(1/2kbh(x)

2−AIφ)
�
1 +K0

e
−1eβ(1/2kbh(x)2−AIφ)

�2 (29)

with K0
e evaluated in the reference state at zero stress.

K0
e = Ke,0e

βAIφI,0 (30)

Note that to make this evolution equation as simple as possible, we have
neglected terms φ∂nb/∂φ which are next order in kb and saturate in the large
φ limit by the condition Eq. (2). Finally, less singular contributions to the
chemical potential such as nb(φ, h) which appear when taking the derivative
Eq. (8) will change the low φ limit of f(φ, h0) in Figure 3 without affecting
the bistable characteristic property.
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Table

Symbol Meaning Typical value
kb Effective spring constant for integrin-substrate rigidity 0.3 mN.m−1(35)
1/b Effective residence time of talin 80-100 s (36, 37)
h0 Range for the elastic strain 1− 15nm
Dn Integrin Diffusion constant 10−3 − 10−2µm2.s−1(38)
Dφ Effective diffusion constant of PIP2 bound talin 0.2µm2.s−1(39)
n∞ Averaged integrin density at zero stress 100− 500µm−2(13)
l0 Length of the extracellular domain of an integrin 10nm(5, 40)
k−1 Rate dissociation constant for the talin-integrin complex 10−4 − 10−3s−1(41)
AI Interaction energy between talin and integrin � 10− 20kBT (42)

AIφI,0 Talin-integrin interaction energy at zero stress � 1− 5kBT
K0

e = nb/n0 = Ke,0eβAIφI,0 at zero stress 10−3

Km Equivalent Michaelis-Menten constant for talin degradation � 103 − 104µm−2

1/β kBT � 4.1 pN.nm

Table 1: List of symbols with typical values used in this work.


