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Abstract

Background: Gene expression profiling studies of mastitis in ruminants have provided key but fragmented

knowledge for the understanding of the disease. A systematic combination of different expression profiling studies

via meta-analysis techniques has the potential to test the extensibility of conclusions based on single studies. Using

the program Pointillist, we performed meta-analysis of transcription-profiling data from six independent studies of

infections with mammary gland pathogens, including samples from cattle challenged in vivo with S. aureus, E. coli,

and S. uberis, samples from goats challenged in vivo with S. aureus, as well as cattle macrophages and ovine

dendritic cells infected in vitro with S. aureus. We combined different time points from those studies, testing

different responses to mastitis infection: overall (common signature), early stage, late stage, and cattle-specific.

Results: Ingenuity Pathway Analysis of affected genes showed that the four meta-analysis combinations share

biological functions and pathways (e.g. protein ubiquitination and polyamine regulation) which are intrinsic to the

general disease response. In the overall response, pathways related to immune response and inflammation, as well

as biological functions related to lipid metabolism were altered. This latter observation is consistent with the milk

fat content depression commonly observed during mastitis infection. Complementarities between early and late

stage responses were found, with a prominence of metabolic and stress signals in the early stage and of the

immune response related to the lipid metabolism in the late stage; both mechanisms apparently modulated by

few genes, including XBP1 and SREBF1.

The cattle-specific response was characterized by alteration of the immune response and by modification of lipid

metabolism. Comparison of E. coli and S. aureus infections in cattle in vivo revealed that affected genes showing

opposite regulation had the same altered biological functions and provided evidence that E. coli caused a stronger

host response.

Conclusions: This meta-analysis approach reinforces previous findings but also reveals several novel themes,

including the involvement of genes, biological functions, and pathways that were not identified in individual

studies. As such, it provides an interesting proof of principle for future studies combining information from diverse

heterogeneous sources.
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Background
In the last decade, gene expression profiling microarrays

have been widely used in animal genomics and this

technique has enabled researchers to monitor, on a

broad scale, the effects of pathogens on host cells and

tissues, aiming to gain insight into the molecular

mechanisms that are involved in the host-pathogen

interactions. Mastitis is one of the most costly diseases

of the dairy industry, which makes it among the major

concerns for the livestock sector [1]. As a consequence,

numerous gene expression studies on mastitis in differ-

ent host species infected with various pathogens are

publicly available. However, due to the high costs of this

approach, most individual studies have been carried out

on limited numbers of technical and biological repli-

cates. Furthermore, different and improved microarray

platforms have been used over time, due to the

increased availability of improved microarray tools tai-

lored to the genome sequence of most livestock species.

Meta-analysis can be used to combine or integrate the

data or results of independent studies. It allows a more

objective appraisal of evidence than individual studies

and has been widely used to interpret contradictory

results from various studies or overcome the problem of

reduced statistical power in studies with small sample

sizes (reviewed by [2,3]). The applicability of meta-analy-

sis to microarrays was initially demonstrated by [4,5].

Subsequently, several different meta-analysis applications

have been developed in order enable the integration of

independent microarray expression studies, e.g. through

the combination of effect sizes [6], the comparison of

data intersections (comparative meta-profiling) [7,8], the

integration of data from Affymetrix arrays through re-

annotation and common pre-processing methods [9],

the quantification of similarities in the literature (with

an algorithm called LAMA, Literature-Aided Meta-Ana-

lysis) [10], the development of a ranking aggregation

approach [11], and the application of improved and

meta-analysis adapted normalization methods [12-14].

Meta-analysis methods have also been applied to charac-

terize the properties of promoters to regulate transcrip-

tion of up-regulated genes [15].

As p-values are usually available for each gene in each

study, the main focus of the current meta-analysis

approach was to increase the reliability of statistical evi-

dence, by combining p-values across several, often het-

erogeneous, experiments. Various statistics have been

suggested to combine p-values [2,4,16-19]. In particular,

the meta-analysis tool chosen for this study, Pointillist

[20,21], uses and extends the Fisher inverse chi-square

method for p-value combination (reviewed by [22]) by

calculating different weights (i.e. reliability/representa-

tiveness parameters which represent relative measures of

statistical power of all datasets analysed) that are used to

transform the p-values of each experiment. By doing so,

Pointillist takes into consideration the various experi-

mental design differences and the high heterogeneity of

the datasets, including the use of different platforms,

that has been a major hindrance to meta-analysis so far.

The large quantity of microarray data available for

mastitis in ruminants provides an attractive opportunity

for a meta-analysis approach. Gene expression common-

alities shared across pathogens and host species may

contribute to understanding the disease and its physiol-

ogy, as well as pinpoint the most promising direction of

research to identify effective biomarkers. Indeed, several

innate immune responses, especially to pathogen-asso-

ciated molecular patterns, show evolutionary conserva-

tion, thus increasing the feasibility of meta-analysis of

gene expression data across species [23]. In controlled

in vitro cultures of macrophages [24] and dendritic cells

[25], a similar shared induction of common gene expres-

sion patterns in responses to a broad range of bacteria

has been observed. Furthermore, previous meta-analysis

results [26] showed common clusters of affected genes

across larger numbers of pathogens and studies.

The aim of this project was to identify common sets

of differentially expressed genes regulated by three mas-

titis pathogens (S. aureus, S. uberis, and E. coli) in three

affected ruminant species (cattle, goat, and sheep). Econ-

omy-wise, these three species are by far the most impor-

tant for the dairy industry. For this purpose we used the

program Pointillist [20,21] and, by combining similar

time points of different experiments, we created four

main lists of genes differentially modulated by mastitis

infection. In vitro experiments were treated in the same

way as in vivo experiments as the weighting mechanism

of Pointillist provided protection against potential

response-dependant biases.

We then used the Ingenuity Pathways Analysis (IPA;

http://www.ingenuity.com) software to retrieve the cano-

nical pathways, biological functions and networks that

were most significantly associated with the lists of

affected genes. IPA is a curated database and web-based

analysis system that delivers an assessment of signaling

and metabolic pathways, molecular networks, as well as

key biological and disease processes that are most signifi-

cantly perturbed in a gene set of interest. For each meta-

analysis combination tested with IPA, the five most

affected canonical pathways and the five most affected

biological functions belonging to the sub-group “molecu-

lar and cellular functions” are discussed in detail.

All the meta-analysis combinations highlighted a pre-

dominance of gene pathways and biological functions

related to immune response and to lipid metabolism.

The results show common but also combination-specific

affected genes and pathways and provide new avenues

for future studies.
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Results and discussion
Combination of time points of mastitis experiments with

Pointillist

Different combinations of time points from individual

experiments (Table 1) were selected to represent four

main categories of response to mastitis infection. These

combinations were performed with Pointillist and were

named: (I) overall response, (II) early stage response,

(III) late stage response, and (IV) cattle-specific response

(Table 2). No goat- or sheep-specific responses were

studied because of the more limited number of experi-

ments and time points for those species.

The combination (I) overall response included each

animal species (cattle, sheep, goat) and all the time

points (see Tables 1 and 2) in order to capture the het-

erogeneity of all datasets. In order to avoid bias towards

cattle, for which more datasets were available, the list of

combined p-values, or so-called “Combined Effective

Significances”, for each probe was obtained by a step-

wise process. First, species-specific p-value lists were

obtained. A single Pointillist run was applied to obtain

the goat-specific (combination of time points {12}+{13}

+{16}) and the sheep-specific (combination of time

points {14}+{15}) p-value lists. To obtain the cattle-spe-

cific p-value list, (IV) cattle-specific response, two Poin-

tillist processing steps were required. Firstly, the time

points for each separate bovine microarray experiment,

e.g. 1A (combination of time points {1}+{2}+{3}), 1B

(combination of time points {4}+{5}+{6}), 1C (combina-

tion of time points {7}+{8}), 2 (time point {9}), and 3

(combination of time points {10}+{11}) were analyzed

separately with an initial Pointillist run. Subsequently,

the resulting p-values of each experiment were com-

bined with a second Pointillist run. The final combined

p-values for (I) overall response were obtained by com-

bining with an additional Pointillist run the three spe-

cies-specific p-value lists.

The combined p-value lists for (II) early stage and (III)

late stage responses were obtained by combining the

time points for which respectively “no signs” or “clear

signs” of mastitis were observed. In particular, inclusion

of in vivo time points {1}+{6}+{7}+{12} in list (II) and {3}

+{8}+{13} in list (III) (Table 2), was supported by the

absence or the clear presence, respectively, of clinical

signs of acute mastitis such as increased SCC count,

decreased milk yield, leukopenia, fever, and udder swel-

ling (Table 1). The absence of clinical signs in time

points {1}, {6}, and {7} had been confirmed by real-time

PCR of indicators for acute mastitis (TLR2, TLR4, and

b-defensins; [27]). The early time points {10} and {14} of

the in vitro studies were assigned to the early stage

response because minimal or no reaction or cell death

was observed, while the later time points {11} and {15}

were included in the late stage response because clear

reaction or physiological deformation and death of the

cells were observed. Time point {9} was neither included

in the early stage nor in the late stage response because

it was the only available time point for the pathogen S.

uberis.

Overall response to mastitis infection

Because we pooled microarrays of different designs, only

13,162 probes could be analyzed in combination (I)

overall response. Of the 498 probes identified by Pointil-

list as being significantly altered (p ≤ 0.05), a total of

298 unique genes were present in the IPA knowledge

database [Additional file 1]. The relative weights

assigned by Pointillist to each species-specific experi-

ment were 0.82 for cattle (experiments 1, 2, and 3), 0.08

for goat (experiments 4 and 6), and 0.09 for sheep

(experiment 5). This indicates that the cattle data had

greater statistical power than the goat- and sheep-speci-

fic data, which were similar in terms of statistical power.

Affected canonical pathways

The 5 canonical pathways identified by IPA as being

most significantly associated to this list of 298 genes

were protein ubiquitination, acute phase response sig-

naling, lipid antigen presentation by CD1, oncostatin M

signaling, and antigen presentation pathway [Additional

file 2].

The protein ubiquitination pathway has a fundamental

role in a myriad of cellular processes, including cell pro-

liferation, antigen presentation, and regulation of both

innate and adaptive immune responses [28,29]). This

pathway was present within the 5 most significant cano-

nical pathways of the other 3 main gene lists [Additional

file 2], confirming its role in defence against pathogens,

including bacteria [30]. The acute phase response is a

rapid, non-specific inflammatory response that provides

protection against microorganisms, and is associated

with the expression of several cytokines [31]. Further-

more, bovine acute phase response has been shown to

be activated by lipopolysaccharide (LPS) [32] and by E.

coli [33], possibly through its LPS. The lipid antigen pre-

sentation by CD1 and the antigen presentation pathways

are important to the development of innate and adaptive

immunity [34]. Finally, oncostatin M signaling is known

to be responsible for the initiation and progression of

inflammation and the acute phase response [35]. These

findings suggest that the alteration of immune response

and lipid metabolism are hallmarks of the response to

infections causing mastitis.

Affected biological functions

[Additional file 3] reports the complete lists of affected

biological functions for all the sub-groups “Diseases and

disorders”, “Physiological system development and
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Table 1 Summary of the microarray datasets on mastitis infection included in meta-analysis

Experiment
#

(Institution)

Host
species
(# of

biological
replicates)

Pathogen Challenge system Bovine cDNA
microarray

Time
after

infection
{time
point}

Signs of infection References

1A (RI/
RIBFA)

Cattle (4) E. coli Intramammary challenge.
Sampled material: lobulo-
alveolar mammary tissue

(in vivo)

ARK-genomics
20 k

6 h {1} No clinical signs and no alteration of
TLR2, TLR4,
and b-defensins expressions.

[27,63,64]

12 h {2} Mild clinical signs and small changes of
TLR2, TLR4, and b-defensins expressions.

24 h {3} Acute clinical signs (including increased
SCC count, decreased milk yield,
leukopenia, fever, udder swelling) and
up-regulation of TLR2, TLR4, and b-
defensins expressions

1B (RI/
RIBFA)

Cattle (4) S. aureus Intramammary challenge.
Sampled material: lobulo-
alveolar mammary tissue

(in vivo)

ARK-genomics
20 k

6 h {4} No clinical signs and no alteration of
TLR2, TLR4, and b-defensins expressions.

[27,63,64]

12 h {5} No clinical signs and no alteration of
TLR2, TLR4, and b-defensins expressions.

24 h {6} No clinical signs and no alteration of
TLR2, TLR4, and b-defensins expressions.

1C (RI/
RIBFA)

Cattle (4) S. aureus Intramammary challenge.
Sampled material: lobulo-
alveolar mammary tissue

(in vivo)

ARK-genomics
20 k

12 h {7} No clinical signs and no alteration of
TLR2, TLR4, and b-defensins expressions.

[27,63,64]

72 h {8} Acute clinical signs (including increased
SCC count, decreased milk yield,
leukopenia, fever, udder swelling) and
up-regulation of TLR2, TLR4, and b-
defensins expressions

2 (CVI-L) Cattle (3) S. uberis Udder samples containing
all layers including

epithelia, muscle tissue
and mammary gland

tissue. In affected samples
neutrophils were also

present (in vivo)

ARK-genomics
20 k

36 h-72 h
{9}

Culling when clear clinical signs were
seen. Sample selection from various
locations of control and infected
mammary gland quarters based on clear
microscopic and macroscopic
observations

-

3 (NSVS) Cattle (6) S. aureus Blood derived primary
macrophage cells (in vitro)

ARK-genomics
17 k

2 h {10} Few genes responding, no cell death. -

6 h {11} Many genes responding, beginning
signs of cell deformation and death

4 (UNIMI/
PTP/CNR)

Goat (3) S. aureus Leukocytes in milk (in vivo) NBFGC 12 h {12} No clinical signs and no alteration of
milk.

[65,66]

24 h {13} Clear clinical signs (increased SCC count,
decreased milk yield, fever)

5 (INRA) Sheep (8) S. aureus Bone marrow derived
primary dendritic cells (in

vitro)

ARK-genomics
17 k

3 h {14} No cell death. -

8 h {15} Clear deformation and death of
dendritic cells

6 (UNIMI/
PTP/CNR)

Goat (10) S. aureus Leukocytes in milk (in vivo) Combi-Matrix 24 h {16} Clinical signs (increased SCC count,
decreased milk yield, fever, udder
swelling)

-

The experimental numbers are reported with the names of the institution where they were conducted, host species and number of replicates, pathogens,

challenge systems, microarrays names, time period of observations after infection {in parenthesis the time point #, see also Table 2}, signs of infection, and

corresponding references.

Note: ARK-genomics: centre for comparative & functional genomics, Scotland; CNR: Institute of Agricultural Biology and Biotechnology, National Research Council,

Italy; CVI-L: Central Veterinary Institute of Wageningen UR, Lelystad, NL; INRA: Institute National de la Recherche Agronomique, France; NBFGC: National Bovine

Functional Genomics Consortium, USA; NSVS: Norwegian School of Veterinary Science, Norway; PTP: Parco Tecnologico Padano (PTP), Italy; RI: Roslin Institute and

R(D)SVS, University of Edinburgh (UEDIN), UK; RIBFA: Research Institute for the Biology of Farm Animals, Germany; UNIMI: Università degli Studi di Milano,

Department of Veterinary Pathology, Hygiene and Public Health, Italy. Microarrays are described in the Materials and Methods section of text.
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function” and “Molecular and cellular functions”. The

five most significant molecular and cellular functions

altered during the overall response to mastitis were cell

death, cellular movement, cellular growth and prolifera-

tion, cell-to-cell signaling and interaction, and lipid

metabolism. The first three altered functions were

among the 5 most affected in all 4 main responses [in

bold in Additional file 3].

Perturbation of the lipid metabolism might affect the

lipid antigen presentation by CD1 pathway [Additional

file 2], which consists of a conserved family of MHC-

like glycoproteins specialized in capturing lipid and gly-

colipid antigens for presentation to T lymphocytes [36].

A relevant correlation between lipid metabolism and

mastitis infection caused by S. uberis in mammary tis-

sues has indeed been reported [37]. Furthermore, lipid

metabolism has been identified as one of the most

altered biological functions in cows fed at different

energy balance diets [38] and it has been associated with

differentially regulated proteins detected in cows

infected with E. coli and S. aureus [39]. Consequently,

IPA was used to further dissect the main sub-functions

linked to lipid metabolism. Metabolism of long chain

fatty acids, accumulation of oleic acids, internalization

of lipids, and uptake of fatty acids and arachidonic acid

were the top 5 annotated functions related to lipid

metabolism and altered during the overall response to

mastitis [Additional file 4]. The affected biological func-

tions further confirm a relevant role of the lipid metabo-

lism during response to infections causing mastitis.

Early stage and late stage responses to mastitis infection

Of the 20,527 probes analyzed by Pointillist for the early

and late stage responses, 1,129 and 1,046, respectively,

were significantly altered (p ≤ 0.05). Of these, a total of

639 and 631 unique genes, respectively, were present in

the IPA knowledge database [Additional file 1].

Affected canonical pathways

In addition to the protein ubiquitination and polyamine

regulation pathways that were common for both combi-

nations, the early stage response was characterized by

pathways closely related to metabolic regulation, includ-

ing hypoxia signaling, pyruvate metabolism, and endo-

plasmic reticulum (ER) stress [Additional file 2].

Hypoxia inducible factors are known to control innate

immunity and gene expression of pro-inflammatory

molecules [40], and correlations between ER stress,

immune response and apoptosis have been reported

[41]. Also, pyruvate accumulation caused by inhibition

of lipid metabolism has indeed been shown to prompt

hypoxia signaling in mastitis in cattle [37]. The signifi-

cant alterations of these closely linked pathways suggests

that stress signals are launched by the host cells as part

of the activation of the immune response early during

infection, i.e. prior to observation of clear phenotypes

related to mastitis.

On the other hand, the late stage response was specifi-

cally represented by pathways directly involved in the

immune response, i.e. IL-6 signaling, LXR/RXR activa-

tion and IL-10 signaling [Additional file 2]. A close rela-

tionship between polyamine regulation, in particular the

sub-group spermine, and IL-10 signaling has been

reported in macrophages [42]. Other studies reported an

increase of IL-6 and IL-10 expression during mastitis

infection [43,44]. As persistence or over-prolongation of

inflammation is harmful for cells [45], the activation of

the IL-10 signaling might be a beneficial mechanism

Table 2 Combination of experiments and time points to create the 4 main responses to mastitis infection

Time after infection

Experiment # 2 h 3 h 6 h 8 h 12 h 24 h 36 h-72 h 72 h

1A: E. coli in cattle (in vivo) {1}
I, II, IV

{2}
I, IV

{3}
I, III, IV

1B: S. aureus in cattle (in vivo) {4}
I, IV

{5}
I, IV

{6}
I, II, IV

1C: S. aureus in cattle (in vivo) {7}
I, II, IV

{8}
I, III, IV

2: S. uberis in cattle (in vivo) {9}
I, IV

3: S. aureus in cattle macrophages (in vitro) {10}
I, II, IV

{11}
I, III, IV

4: S. aureus in goat (in vivo) {12}
I, II

{13}
I, III

5: S. aureus in sheep dendritic cells (in vitro) {14}
I, II

{15}
I, III

6: S. aureus in goat (in vivo) {16}
I

Combination of microarray data from a total of 6 different experiments and 16 different time points ({in parentheses}, see also Table 1 and text for details) to

analyse 4 different responses to mastitis infection: (I) overall response, (II) early stage response, (III) late stage response, and (IV) cattle-specific response.
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adopted by the cells during this stage of mastitis infec-

tion to limit and terminate the inflammatory response.

Affected biological functions

Cellular growth and proliferation, cell death and cellular

movement were 3 of the top 5 significant molecular and

cellular functions identified by IPA for both time-depen-

dant responses [Additional file 3]. Two protein-related

functions (post-translational modification and protein

folding) were specific for the early stage response, while

cellular functions (cellular assembly and organization,

cell-to-cell signaling and interaction) were specific for

the late stage response [Additional file 3].

Lipid metabolism was significantly altered during both

early (p = 3.5E-04) and late stage (p = 3.1E-06) infec-

tions, although it was not among the five most signifi-

cant. The altered LXR/RXR signaling pathway

[Additional file 2] is known to be implicated in the reg-

ulation of the lipid metabolism [46]. Since lipid metabo-

lism was among the top 5 affected molecular and

cellular functions in the overall analysis (gene list I), the

main altered sub-functions of the lipid metabolism were

identified by IPA. Hydrolysis of phosphatidylinositol

phosphate, phosphatidylinositol 4,5-diphosphate, and

phosphtidylinositol 5-phosphate, as well as metabolism

of fatty acid and lipids were the most significant affected

sub-functions for the early stage response [Additional

file 4]. For the late stage response on the other hand,

quantity of fatty acid, oleic acid, and lipid, as well as

synthesis of lipid and cholesterol were the identified top

affected sub-functions. These results seem to suggest

that whilst during the early stage response there might

be a “general” deregulation of the lipid metabolism, dur-

ing the late stage response the cells might react to the

infection by synthesizing, taking up, or incorporating

lipids and fatty acids.

Relevance of the XBP1 gene during the early stage of

infection

The lists of affected genes during the early and late

stage responses were analyzed with the IPA feature

“pathway building”, which shows the main relationships

and connections among affected genes belonging to

altered canonical pathways. The two genes X-box bind-

ing protein 1 (XBP1) and sterol regulatory element bind-

ing transcription factor 1 (SREBF1) are of particular

relevance in early and late stage infection, respectively.

Both belong to canonical pathways that were among the

5 most affected (XBP1 to ER stress and SREBF1 to

LXR/RXR activation) [Additional file 2] and, in agree-

ment with their function as transcription factors, they

were directly linked to the highest number of other

affected genes [Additional file 5: Supplemental Figures

S1B and S2].

XBP1 and the additional transcription factors ATF4, as

well as the molecular chaperone DNAJB3 and the heat-

shock protein gene HSPA5, which are key molecules of ER

stress, one of the 5 most significantly affected pathways

[Additional file 2], were altered during the early stage

response. Comparable results have been reported in other

studies in dairy cows where expressions of ATF4, XBP1,

and DNAJB3 were altered in ER stress generated by a

negative energy balance [47]. Hence, XBP1 might have a

central role in launching stress signals in preparation for

an adequate immune response during the early stage of

mastitis infection, as it is also involved in cytokine produc-

tion in different cell types, including macrophages [48,49].

This gene directly regulates the expression of the affected

genes COPZ1, DDOST, KDELR2, KDELR3, RPN1,

SEC23B, SEC24D, SEC61A1, SRPR, as well as genes of the

proteasome and the MHC Class II complex [Additional

file 5: Supplemental Figure S1B]. Indirectly, XBP1 is also

linked to many more affected genes [Additional file 5:

Supplemental Figure S1A]. In line with our results, altera-

tion of several genes that directly interact with XBP1 (e.g.

COPZ1, DDOST, KDELR3, RPN1, SEC23B, SEC24D,

SEC61A1, and SRPR) have also been reported in fibro-

blasts over-expressing XBP1 [50].

Relevance of the SREBF1 gene during the late stage of

infection

In the late stage response, SREBF1 directly interacts

with several affected lipogenic genes, i.e. TRAF3IP3,

CD36, SCD, SOD1, IDH1, THRB, RETN, PMVK, DBI,

UCP2, HBS1, SC4MOL, and CYP27A1 [Additional file 5:

Supplemental Figure S2]. Among these, expressions of

TRAF3IP3, CD36, and SCD were also reported to be

altered during infection of cattle mammary tissues with

S. uberis [37]. SREBF1 is a component of the LXR/RXR

pathway, one of the 5 most affected pathways, confirm-

ing the relationship between LXR/RXR signalling and

lipid metabolism. This relationship might explain the

observed depression of milk fat synthesis during mastitis

infection in ruminants.

Early and late stage specific responses

In order to better understand the differences between the

two different time-related responses, the (II) early stage

and the (III) late stage responses were subjected to IPA

analysis taking into account only the subset of affected

genes differentiating the two lists. While 375 genes

belonged to list (II) and not list (III) (list V early specific

response), 367 genes belonged to list (III) and not list (II)

(list VI late specific response) [Additional file 1].

Affected canonical pathways

The results of the canonical pathway analysis confirmed

that during early specific response there is
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intensification of cell metabolism (exemplified by the

pyruvate and butanoate metabolism), the protein ubiqui-

tination pathway, as well as the stress signal pathways, e.

g. hypoxia in the cardiovascular system and Ataxia Tel-

angiectasia Mutated (ATM) signaling [Additional file 2].

During the late specific, the top affected pathways (IL-6

signaling, polyamine regulation, acute phase response

signaling, “role of macrophages, fibroblasts and endothe-

lial cells in rheumatoid arthritis”, and Fc receptor-

mediated phagocytosis in macrophages and monocytes)

indicated an intense activity of the immune response,

with the possible involvement of macrophages.

Affected biological functions

None of the top 5 molecular and cellular functions were

in common between the two time-specific gene lists (V)

and (VI) [Additional file 3]. Similarly to the previous

analysis of gene list (II) early stage response and (III)

late stage response, the early specific response genes

showed molecular and cellular functions related to

metabolism (carbohydrate and lipid), biochemistry and

protein synthesis (post translational modification and

folding), while the late specific response were mainly

involved in cellular functions (movement, growth and

proliferation, assembly and organization, function and

maintenance), as well as cell morphology.

Cattle-specific response to mastitis infection

Pointillist identified 669 out of 19,448 common probes

that were significantly altered (p ≤ 0.05) in the cattle-

specific response to mastitis. The weights given by Poin-

tillist to experiments 1A, 1B, 1C, 2, and 3 were 0.27,

0.23, 0.28, 0.17, and 0.04, respectively, showing that the

in vitro data set had a lower statistical power than the

other data sets. Of the 669 probes, a total of 421 unique

genes were present in the IPA knowledge database.

Affected canonical pathways

Besides polyamine regulation and protein ubiquitination,

the top canonical pathways characterizing the cattle-speci-

fic response were acute phase response, lipid antigen pre-

sentation by CD1 (also identified in the overall response),

two highly relevant pathways for immune response, and

the inositol metabolism [Additional file 2], which is

involved in T-cell, B-cell, and neutrophil development and

function [51]. These results indicate a link between masti-

tis and immune response involving T and B cells.

Affected biological functions

In accordance with the top canonical pathway analysis,

the altered molecular and cellular functions identified by

IPA (i.e. antigen presentation, cell death, cell to cell

interaction, and cellular growth, proliferation and move-

ment) reflected an intensification of the immune

response during cattle-specific response to mastitis

infection [Additional file 3].

Alteration of the expression of genes involved in

immune response, antigen presentation, apoptosis, and

acute phase response have been also reported in a simi-

lar study [52].

Lipid metabolism was also significantly affected (p =

4.9E-05), although it was not included among the five

most significant. Sub-functions of lipid metabolism that

were altered during the cattle-specific response included

uptake of arachidonic acid, metabolism of long chain

fatty acid, internalization of cholesterol, transport and

quantity of fatty acid [Additional file 4]. These findings

further underline that lipid metabolism is tightly linked

to immune response and that lipid antigen presentation

might represent an interesting candidate pathway for

future work to gain new insights into the host-pathogen

interplay in mastitis.

Comparison of the host expression profiles in the

different experiments and time points

Next, we compared the different cattle microarray data-

sets, focusing on the impact of the use of different infec-

tive agents (three of the major mastitis-causing

pathogens: E. coli, S. aureus, and S. uberis) and the pat-

terns of gene response that they caused in the host.

When clustering the expression profiles of the cattle-

specific response time points (see heat map in Figure 1)

the first clustering step is primarily based on experiment

number (Tables 1 and 2) (experiment 1A time points

{1-3} clustered together, experiment 1B time points {4-

5} clustered together, experiment 1C time points {7-8}

clustered together along with experiment 1B time point

{6}, and experiment 3 time points {10-11} clustered

together). It is not unexpected that expression profiles

of different time points of the same microarray experi-

ment cluster together. The final clustering steps indi-

cated a pathogen-specific pattern as all S. aureus time

points (along with the S. uberis time point {9}) clustered

together, separately from the E. coli time points. No

inter-laboratory or inter-array clustering was observed.

For instance, the E. coli data (experiment 1A) did not

cluster with the data from the other experiments (1B

and 1C) performed in the same institution (Figure 1).

This provides reassurance that the data were not signifi-

cantly biased towards the experimental conditions used.

Comparison of the strength of the host response to the 3

different pathogens

We also compared the magnitude of fold change differ-

ences in gene expression in the cattle host caused by E.

coli, S. aureus, or S. uberis infections with the MaSigPro

package [53]. Figure 2 shows that, in general, the E. coli

infection caused a stronger response in the host than
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the S. aureus and S. uberis infections. High fold change

differences were induced by E. coli, especially at 24 h

post infection (experiment 1A, time point {3}), and to a

lesser extent by S. uberis between 36 and 72 h post

infection (experiment 2, time point {9}).

Although this finding might be related to the specific

experimental conditions used in the different experi-

ments, it reflects previous observations that E. coli infec-

tion is very acute at 24 h, but not yet at 6 h PI [52], and

that it is very acute compared to other pathogens

[39,54]. Furthermore, the results suggest that S. aureus,

but not E. coli, frequently causes subclinical, chronic

infections of the mammary gland and hence elicits an

inadequate mammary immune response [27,55].

Comparison between meta-analysis of (IV) cattle-specific

response and individual experiments

To better quantify the additional power of the proposed

meta-analysis approach, we compared the list of 421

affected genes identified with the meta-analysis of (IV)

Figure 1 Heat map showing cluster analysis of the microarray experiments used in the cattle-specific response to three different

pathogens (E. coli, S. aureus, and S. uberis). The x-axis shows the time points {from 1 to 11} of each different cattle experiment (1A, 1B, 1C, 2,

and 3; Table 2), while the y-axis displays the clustered genes. The map itself contains gene fold changes Z-score normalized over all time points.

They are color coded, with red corresponding to down-regulation and green to up-regulation. White lines in experiment 3 represent missing

genes not present on the microarray. The first clustering step is primarily based on experiment number (Tables 1 and 2) (experiment 1A {1-3}

clustered together, 1B {4-5} clustered together, 1C {7-8} clustered together along with the 1B time point {6}, and 3 {10-11} clustered together).

The final clustering steps indicated a pathogen-specific pattern as all S. aureus time points (along with the S. uberis time point {9}) clustered

together, separately from the E. coli time points.

Figure 2 Magnitude of fold change expression characterizing E. coli, S. aureus, and S. uberis infections in cattle. The x-axis shows the

time points {from 1 to 11} of each different cattle experiment (1A, 1B, 1C, 2, and 3; Table 2), while the y-axis shows the fold changes for each

gene (each line). High differences are observed especially during infection with E. coli (1A {3}), and to a lesser extent with S. uberis (2 {9}).
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cattle-specific response with the lists of affected genes

(using the Benjamini-Hochberg FDR-correction [56], p

≤ 0.05) in individual experiments (i.e. experiment 1A

time point {3} and experiment 2 time point {9}). The

results showed that 25 affected genes were in common

between the three lists, while 268, 581, and 15 genes

were specific for (IV) cattle-specific response, experi-

ment 1A time point {3}, and experiment 2 time point

{9}, respectively [Additional file 5: Supplemental Figure

S3 and the corresponding gene lists in Additional file 6].

Next, applying IPA on the lists of affected genes, we

identified the 5 most affected canonical pathways and

molecular and cellular functions of the individual

experiments. The canonical pathways protein ubiquiti-

nation (p = 2.9E-09), ephrin receptor signaling (p =

1.1E-06), regulation of actin-based motility by Rho (p =

5.7E-06), actin cytoskeleton signaling (p = 3.6E-05), and

germ cell-Sertoli cell junction signaling (p = 5.5E-05), as

well as the molecular and cellular functions cell death,

cellular growth and proliferation, cell signaling, cellular

movement, and lipid metabolism were the most affected

within the 745 affected genes of experiment 1A time

point {3}. Canonical pathways and molecular and cellu-

lar functions in common with the five most affected

identified by meta-analysis of the (IV) cattle-specific

response [Additional files 2 and 3] included polyamine

regulation, as well as cell death, cellular growth and pro-

liferation, and cellular movement, respectively.

The IPA canonical pathways iCOS-iCOSL signaling in

T Helper cells (p = 4.7E-04), activation of IRF by cyto-

solic pattern recognition receptors (p = 1.1E-03), dendri-

tic cell maturation (p = 1.8E-03), production of nitric

oxide and reactive oxygen species in macrophages (p =

1.8E-03), and communication between innate and adap-

tive immune cells (p = 3.0E-03), as well as the molecular

and cellular functions cellular growth and proliferation,

cell death, cell-to-cell signaling and interaction, cellular

function and maintenance, and gene expression were

the most affected within the 55 genes of experiment 2

time point {9}. None of the canonical pathways were in

common with the most affected of the meta-analysis of

the (IV) cattle-specific response; whereas cell death, cel-

lular growth and proliferation, and cell-to-cell signaling

and interaction were common molecular and cellular

functions.

The retrieval of common molecular and cellular func-

tions and/or pathways by the two approaches (meta-

analysis vs. individual experiments) confirms the statisti-

cal power of the meta-analysis and its complementary to

the FDR correction with regard to the pruning of false

positives. Furthermore, the identification of novel

affected biological functions and pathways further shows

the added value of the meta-analysis approach.

Comparison between E. coli and S. aureus infections

To better evaluate the pathogen-specific characteristics,

we further compared the responses to infection with E.

coli (experiment 1A) or S. aureus (experiments 1B and

1C) in the cattle host. We excluded the S. uberis data

(experiment 2) as we had only one single time point {9}

available.

We used the PAMR package to identify the genes

which were most dissimilar in terms of their activation

in response to the two different pathogens. Of the

retained 34 most dissimilar genes, 21 were down-regu-

lated by E. coli infection and up-regulated by S. aureus

infection, while 13 showed the opposite trend (Table 3).

This list of dissimilar genes was further analyzed with

IPA to identify altered biological functions and net-

works. The 5 most significant molecular and cellular

functions identified were cellular development, cellular

growth and proliferation, cellular function and mainte-

nance, cell death, and lipid metabolism [Additional file

7]. Both cell death and lipid metabolism were previously

found to be among the 5 most significant molecular

functions altered in proteins of cows infected with either

E. coli or S. aureus [39]. The IPA network called “anti-

gen presentation, inflammatory response, cell-to-cell sig-

naling and interaction” was the most significantly

represented by the list of dissimilar genes. Of the 34

genes, 9 are included in this network: BTG1, CD74,

CSDA, FKBP5, IGFBP5, GLUL, HSPD1, LCN2, and PHB.

IGFBP5 and CD74 were up-regulated after E. coli infec-

tion and down-regulated after S. aureus infection, while

the others showed the opposite trend (Table 3).

Pathogen-dependent differences in the time kinetics of

induced receptors and defense molecules (e.g. TLR2,

TLR4, IL-8, TNF, and NFkB), as measured by real-time

PCR, have been reported between E. coli and S. aureus

[27,55]. Although none of these defense genes were in

the list of the 34 most dissimilar genes, our results were

in general agreement with these findings as we found

that the majority of genes with opposed regulation were

associated with immune response and mainly belonged

to the antigen presentation, inflammatory response, cell-

to-cell signaling and interaction network.

These findings suggest that, at least at the transcrip-

tomic level, these two pathogens cause distinct forms of

mastitis infection by the differential modulation of genes

belonging to similar molecular pathways and biological

functions.

Comparisons of the 4 lists (I - IV) of affected genes

In order to have an accurate global view of the lists of

genes belonging to the 4 different responses to mastitis

infection (I to IV), we drew a Venn diagram (Figure 3)

that provides a graphical representation of the number
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of affected genes, as inferred by Pointillist, that are in

common, exclusive, or at the various intersections

between 2 or 3 lists. The corresponding gene lists with

the gene names can be found in [Additional file 8].

Interestingly, we identified a family of antimicrobial

genes (S100A11, S100A12, S100A8, and S100A9) that

were affected in all but the early stage response. This

finding was in line with a recent study in cattle, where

microarray analysis using Affymetrix gene chip revealed

that these genes were differentially expressed after 24 h,

but not 6 h, of E. coli infection [52].

However, the vast majority of the listed genes have

not previously been reported to be implicated in the

mastitis infection process. Of particular interest are

those genes, a total of 92 [Additional file 8], in common

between the 4 (overall, early stage, late stage, and cattle-

specific) responses to mastitis (Figure 3), providing pos-

sible clues for valuable candidate biomarkers.

Altered pathways and biological functions related to the

92 genes in common for all 4 responses

The 3 most affected canonical pathways underlying

these 92 common genes [Additional file 2] were polya-

mine regulation, protein ubiquitination, and molecular

mechanisms of cancer. The pathways LXR/RXR activa-

tion and factors promoting cardiogenesis in vertebrates

Table 3 Dissimilar genes between E. coli and S. aureus infections in cattle

Gene Gene Name E. coli shrunken
centroid

S. aureus shrunken
centroid

ABCG2 ATP-binding cassette, sub-family G WHITE, member 2 -1.007 0.671

IDH1 Isocitrate dehydrogenase 1 NADP+, soluble -0.929 0.619

AGPAT1 1-acylglycerol-3-phosphate O-acyltransferase 1 lysophosphatidic acid acyltransferase, alpha -0.894 0.596

PCGF1 Polycomb group ring finger 1 -0.795 0.53

GALNTL4 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase-like 4 -0.52 0.346

CD74 CD74 molecule, major histocompatibility complex, class II invariant chain -0.496 0.33

TMEM164 Transmembrane protein 164 -0.42 0.28

RHOF Ras homolog gene family, member F -0.391 0.261

MFSD4 Major facilitator superfamily domain containing 4 -0.263 0.175

DGCR2 DiGeorge syndrome critical region gene 2 -0.217 0.145

FEZ1 Fasciculation and elongation protein zeta 1 zygin I -0.204 0.136

PAOX Polyamine oxidase exo-N4-amino -0.154 0.103

PMEPA1 Prostate transmembrane protein, androgen induced 1 -0.106 0.07

HIGD1B HIG1 hypoxia inducible domain family, member 1B -0.134 0.089

DNAJC12 DnaJ Hsp40 homolog, subfamily C, member 12 -0.132 0.088

VWF Von Willebrand factor -0.131 0.088

KIAA1467 KIAA1467 -0.131 0.087

SENP2 SUMO1/sentrin/SMT3 specific peptidase 2 -0.068 0.046

IGFBP5 Insulin-like growth factor binding protein 5 -0.06 0.04

SCP2 Sterol carrier protein 2 -0.018 0.012

NPAL2 NIPA-like domain containing 2 -0.009 0.006

LRRN3 Leucine rich repeat neuronal 3 0.732 -0.488

FKBP5 FK506 binding protein 5 0.7 -0.466

SLC38A7 Solute carrier family 38, member 7 0.641 -0.427

HSPD1 Heat shock 60 kDa protein 1 chaperonin 0.56 -0.373

GLUL Glutamate-ammonia ligase glutamine synthetase 0.352 -0.235

CSDA Cold shock domain protein A 0.174 -0.116

INO80E INO80 complex subunit E 0.142 -0.095

SAT1 Spermidine/spermine N1-acetyltransferase 1 0.118 -0.079

PHB Prohibitin 0.075 -0.05

STAT3 Signal transducer and activator of transcription 3 acute-phase response factor 0.061 -0.04

MAX MYC associated factor X 0.051 -0.034

BTG1 B-cell translocation gene 1, anti-proliferative 0.033 -0.022

LCN2 Lipocalin 2 0.024 -0.016

List of the 34 most dissimilarly regulated genes identified with the PAMR software, showing opposite fold change responses during E. coli and S. aureus

infections in cattle in vivo (experiment 1A, B, and C). For each gene, the PAMR shrunken centroid values (using a threshold parameter of 3.77) for the E. coli and

the S. aureus experiments are reported. Twenty-one of the listed genes were up-regulated during infection with S. aureus, while 13 were up-regulated during E.

coli infection.
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only approached statistical significance (0.05 < p < 0.1).

Altered molecular and cellular functions identified by

IPA [Additional file 3] showed general cell related func-

tions (cellular function and maintenance, cellular growth

and proliferation, cellular movement, and nucleic acid

metabolism) as well as, once again, lipid metabolism.

Conclusions
To the best of our knowledge this study is the first that

statistically combines heterogeneous microarray data

realized with different ruminant host species and

infected with different mastitis-causing pathogens. The

results reinforced previous findings but also revealed

several novel themes, including the involvement of

genes and pathways that were not identified in indivi-

dual studies.

Among the 5 most significant molecular and cellular

functions common to all 4 gene lists of differential

responses to mastitis were cell death, cellular movement,

and cellular growth and proliferation, i.e. functions

which are intrinsic to general disease response. This

indicates that the described procedure of meta-analysis

could cope well with the high heterogeneity of the bio-

logical systems and the different microarrays used.

Indeed, this was confirmed by the analysis of the

reduced list of 92 genes in common to all lists that also

identified cellular growth and proliferation and cellular

movement as being altered.

The results show that protein ubiquitination and poly-

amine regulation, two pathways involved in immune

response modulation and represented by different indivi-

dual genes, possibly represent a common biological

manifestation during mastitis infection in different bio-

logical systems. Furthermore, strong complementarities

between the early stage and late stages of infection was

found, showing a prominence of metabolic and stress

signals in the early stage and of the immune response

related to the lipid metabolism in the late stage, Both

mechanisms were apparently triggered by a small num-

ber of genes, including XBP1 and SREBF1. The cattle-

specific response showed an intensification of the

immune and inflammatory responses through T lym-

phocyte involvement. Furthermore, we found several

strands of evidence suggesting a correlation between

immune response and lipid metabolism as a hallmark of

the response of ruminants against mastitis infection.

Overall, the reported meta-analysis approach success-

fully combined heterogeneous data sets and extracted

information of value from individual microarray studies

of limited size and statistical power. As such, it provides

a global transcriptomic reference which could be useful

for the development of novel therapeutics and vaccines

for mastitis in ruminants. Furthermore, these data and

methodology provide an interesting proof of principle

for future studies combining information from diverse

sources.

Methods
Collection and analysis of microarray data

Microarray data on host responses to infection by masti-

tis-causing pathogens for various challenge systems were

selected to represent contrasting pathogens, hosts, chal-

lenge systems (i.e. host tissues or cells, in vivo and in

vitro), sample sizes, time period of observations, micro-

arrays, and signs of infection (summarized in Table 1

with the corresponding references). The experiments

were performed with the approval of appropriate ethics

committees. Experiment 1 was conducted under the

approval of the ethics committee of the regional govern-

ment in Hannover, Germany (No 509.6-42502-03/678).

Experiment 2 was approved by the ethical committee of

the Central Veterinary Institute of Wageningen UR in

accordance with the Dutch law on animal experiments

(registered under number 870.474.05.00.01). Experiment

3 only involved bleeding bovine heifers for 300 ml

blood. According to Norwegian legislation no special

approval was necessary. The experiments 4 and 6 were,

according to the Italian legislation, successfully notified

and hence approved by the Italian ethics committee. In

experiment 5 ewes were sacrificed in accordance with

local regulations (agreement number 31-2010-67) and

the study was approved by the INRA animal ethics com-

mittee (France).

Spot analysis and quality control of the microarray

data for all experiments were done with BlueFuse ver-

sion 3.1 (BlueGnome, Cambridge, UK; http://www.cam-

bridgebluegnome.com), except for experiment 5

(dendritic cells, DCs) in sheep which was analyzed using

SAS ANOVA. The Bioconductor package Limma (Lin-

ear Models for Microarray Analysis) in R was used for

data normalization and differential expression analyses,

comparing gene expression at given times after infection

Figure 3 Venn diagram showing the number of common and

combination-specific affected genes. Venn diagram illustrating

the number of significantly affected genes in common (92) and

distinct for the four meta-analysis combinations (red: 298 genes of

the overall response, green: 631 genes of the late stage response,

blue: 639 genes of the early stage response, and pink: 421 genes of

the cattle-specific response). The lists of corresponding genes can

be found in [Additional file 8].
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with gene expression in non-infected controls. For each

of these analyses p-values were assigned to all genes,

indicating the probability that the observed difference in

expression occurred by chance. These p-values were

then used for the meta-analysis using the Pointillist soft-

ware. Fold change differences were also calculated and

used for specific analyses, in particular for the cattle-

specific response.

Meta-analysis procedures

The 6 datasets from the three ruminant species were

obtained from different bovine microarrays, including

cDNA arrays (ARK-genomics and National Bovine

Functional Genomics Consortium, NBFGC) and com-

mercial oligonucleotide arrays containing 43,768 unique

probes (CombiMatrix CustomArray®, CombiMatrix

Corporation, Seattle, WA, USA) (Table 1).

The preprocessing of the ARK-genomics array data

entailed two noteworthy clone ID mapping steps to

obtain clone ID consistency throughout all ARK-geno-

mics datasets: the mapping of the clone IDs of a 17K

array design onto those of a 20K array design and the

mapping of child clone IDs onto the corresponding

master clone IDs. The p-values of all groups of master

and child clones were averaged, to obtain one value for

each master clone ID. Further, the control probes were

left out of the meta-analysis, as this was also done for

the data stemming from the other microarray platforms.

To compare the probes of the ARK-genomics arrays

to those of goat experiment 4 (NBFGC bovine cDNA

array, [57]) or goat experiment 6 (CombiMatrix array), a

blast comparison between all the spotted sequences was

performed. A contiguous perfect match segment of 100

nucleotides (nt) was considered sufficient for probes to

be similar. This is a conservative threshold, since perfect

matching segments of 30 nt can already cause cross-

hybridization in cDNA microarray experiments [58] and

since according to the Baldino formula [59] 100 nt long

segments under standard conditions can still hybridize

while having a mismatch of 15%. A total of 8,302 and

8,293 probes, respectively, were found to be in common.

After evaluation of different meta-analysis methods

and programs, an appropriate statistical program called

Pointillist (http://magnet.systemsbiology.net/software/

Pointillist; [20,21]) that allowed us to account for the

relevant experimental differences and the heterogeneity

of the datasets, was used to perform meta-analysis.

Pointillist is a general-purpose tool that predicts

whether system elements are affected by a system per-

turbation, by integrating different items of evidence of

that perturbation. The evidence contains p-values for

each addressed element, can address different subsets of

the system’s elements and may be derived from any type

of experiment. In our case the elements are the

microarray clones and the items of evidence are the dif-

ferential expression analyses carried out for selected

time points. In a first step Pointillist classifies elements

as “affected”, if for any of the items of evidence the

quantile value of the element’s p-value is below a chosen

threshold alpha (0.05 in our case). “Combined effective

significances (CES)” are calculated by weighting, normal-

izing, transforming, and combining the element’s speci-

fic p-values into one single element significance using a

Fisher-like transformation (with the Pointillist option

called “power”) and by finally smoothing the distribution

of these significances using a smoothed Gaussian kernel

density function. In each step the overlap between the

“combined effective significance” distribution for the

group of affected and for the group of non-affected ele-

ments is iteratively minimized. This process, which is an

alternative method to the FDR-adjustment commonly

used in the analysis of single data sets, ultimately mini-

mizes the number of false positives and false negatives.

The weights used during the transforming operation are

also calculated for each item of evidence in each itera-

tion step by comparing the current classification in

affected and non-affected elements with the p-value dis-

tribution of that evidence. Every Pointillist run con-

tained a row for each probe having a p-value in at least

two of the included time points. A special scenario was

followed for the final 3-step Pointillist run of the overall

analysis, in which the probes common to the cattle and

sheep were combined with the probes used in the goat

experiments.

Probe annotation

A probe annotation was performed to transform the

microarray probe IDs into gene IDs recognized by Inge-

nuity Pathways Knowledge Base (IPA, Ingenuity Sys-

tems, Mountain View, CA; http://www.ingenuity.com).

The annotation started from the probes’ EMBL or Gen-

Bank accession: the ARK-genomic and CombiMatrix

arrays contained probes with references to EMBL acces-

sions in the arrays’ GAL files, while the NBFGC array

probe names contained references to Genbank acces-

sions. Several probes spotted on the arrays did not have

any accession reference due to the incomplete informa-

tion available at the time of microarray construction. In

case these had protein-like names, they were presented

as such to IPA. Otherwise they had to be discarded

from further analyses. For the probes having an acces-

sion reference, an automated stepwise annotation was

performed with an in-house script based on sigReannot

[60] which took advantage of the recent re-annotation

of the cattle genome [61]. A first step verified whether

the probes were known to be situated within genomic

regions of genes in the Ensembl bovine database (ver-

sion 52). If this was not the case, in a second step the
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extracted EMBL or GenBank sequences were mapped to

the Ensembl bovine transcripts with a blast cutoff

threshold of e-10. In a final step, still unmatched clones

were mapped to the complete RefSeq RNA database at

NCBI http://www.ncbi.nlm.nih.gov/projects/RefSeq with

a blast cutoff threshold of e-5. When the probe coordi-

nates were found to overlap with more than one gene

or when blasting against the Ensembl bovine database

returned multiple blast hits with a difference in nucleo-

tide coverage between the first and second best hit of

<10%, the probe was discarded. For multiple blast hits

against the Ensembl bovine database with higher cover-

age differences, the best covering BLAST hit was never-

theless retained. Next, the Ensembl gene IDs were

themselves mapped onto entries from several other tar-

get gene databases. For a mapped entry to become the

final probe annotation fed to IPA, it obviously had to be

recognized by IPA. An arbitrary preference order of the

target gene databases was used when screening for IPA

recognition: human HGNC, human Entrez, RefSeq Pro-

tein, RefSeq RNA, bovine Unigene and bovine Entrez.

Also, preference was given to one-to-one mappings.

Assignment of affected genes to pathways, networks and

biological functions

Each gene symbol of the affected genes identified with

Pointillist was mapped to its corresponding gene object

in the Ingenuity Pathways Knowledge Base. Feeding the

aforementioned lists of affected genes as input to the

IPA library, significantly associated canonical pathways,

biological functions and networks were identified in

order to gain biological context and understanding.

Affected biological functions included the sub-groups

“Diseases and disorders”, “Physiological system develop-

ment and function” and “Molecular and cellular func-

tions”. While the two first sub-groups are highly linked

to human diseases and physiology and IPA mainly relies

on human data, the third sub-group is relatively general

and was better suited for our meta-analysis data. In

order to summarize and reduce the vast amount of data

generated, which is reported in [Additional files 2 and

3], we focused and discussed in the text the 5 most

affected pathways and the 5 most affected biological

functions belonging to the sub-group “Molecular and

cellular functions”.

The found IPA library items were ranked based on

significance of association with the input list of genes.

For the canonical pathways this significance was deter-

mined based on two parameters: (a) ratio of the number

of genes from the input data set that map to the canoni-

cal pathway divided by the total number of genes of that

pathway and (b) p-values calculated using Fischer’s exact

test determining the probability that the association is

explained by chance alone. For the biological functions

and networks the significance was linked to the p-value

only, calculated by right-tailed Fisher’s exact test. The p-

values for the network analysis take into account the

number of affected genes in the network and the size of

the network. Identified networks are presented as a

graph indicating the molecular relationships between

genes/gene products. Genes are represented as nodes,

and the biological relationship between two nodes is

represented as an edge (line). All edges are supported by

at least one reference from the literature, from a text-

book, or from information stored in the IPA Knowledge

Base. The intensity of the node color indicates the

degree of up- (red) or down-regulation (green). Genes

in uncolored nodes were not identified as differentially

expressed in the experiment. The intrinsic size of net-

works, functions and pathways, used in the calculation

of the significance of association, depend on the chosen

IPA gene “universe”. We did not change the IPA default

“universe”, basically containing all genes and endogen-

ous chemicals of the IPA library.

The additional IPA function called “building pathway”

was used to graphically show the relationship and inter-

actions between genes belonging to significantly affected

IPA gene networks during the early stage response to

mastitis, and to connect all lipogenic genes identified

during the late stage response.

Venn diagram and heat map building, and visualization

of fold change variations in different cattle experiments

The Venn diagram was built using R script overLapper.

R http://faculty.ucr.edu/~tgirke/Documents/R_BioCond/

My_R_Scripts/overLapper.R.

The heat map was constructed with the “heatmap”

function of the R package “stats”. The R package MaSig-

Pro [53] was used to visualize the magnitude of fold

change expressions during the time course of the differ-

ent cattle microarray experiments 1A {time points 1, 2,

3}, 1B {time points 4, 5, 6}, 1C {time points 7, 8}, 2

{time point 9}, and 3 {time points 10, 11}.

Fold change dissimilarities between E. coli and S. aureus

infections in cattle in vivo

The R package PAMR was used to detect dissimilarities

among fold change responses to E. coli and S. aureus

pathogen infections in vivo in cattle (experiment 1A, 1B,

and 1C, Table 1). The PAMR algorithm performs an

expression-profile based sample class prediction [62]. In

a first step, average within-class expression profiles, so

called “centroids”, are calculated for all sample classes.

In a next step, these centroids are shrunken, shifting the

average within-class expression of each gene towards

the gene’s overall expression average, and taking a gene

out of the centroid when its within-class expression

average coincides with the overall one. The extent of
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gene expression shrinkage is proportional to the gene’s

within-class standard deviation, and is also determined

by the chosen “threshold” or “shrinkage” parameter. The

higher the threshold, the fewer genes that are retained

in the class shrunken centroids and the more dissimilar

they are. Finally, samples can then be classified by map-

ping them to the shrunken centroid that is nearest to

the sample’s expression profile. Here we used PAMR to

construct shrunken centroids of the two classes of the

E. coli and S. aureus infected samples. For a range of

threshold parameters, PAMR evaluated the classification

accuracy and the size of the resulting shrunken cen-

troids. Out of the threshold parameters yielding the

highest classification accuracy, we selected the lowest

threshold parameter that brought the shrunken cen-

troid’s size below an arbitrarily chosen limit of 50 dis-

similar genes. In this specific case, a threshold

parameter of 3.77 was selected, and this resulted in the

34 most dissimilar genes being retained in the resulting

shrunken centroids. These dissimilar genes were further

examined with IPA.

Additional material

Additional file 1: Lists of affected genes during different responses

to mastitis infection. Complete lists of affected genes and

corresponding “Combined Effective Significances (CES)” identified with

pointillist for the 4 main responses to mastitis (I) overall response, (II)

early stage response, (III) late stage response, (IV) cattle-specific response,

as well as the two additional time dependent responses (V) early specific

and (VI) late specific.

Additional file 2: Lists of all affected canonical pathways and

corresponding affected genes. Complete lists of affected canonical

pathways (p < 0.05) and corresponding affected genes identified with

IPA for the meta-analysis combinations (I) overall response, (II) early stage

response, (III) late stage response, (IV) cattle-specific response, (V) early

specific response and (VI) late specific response, as well as for the

common affected genes between the 4 meta-analysis responses (I) to

(IV) (Figure 3, n = 92). The identified canonical pathways are listed from

the lowest to the highest p-value. An asterisk indicates that the pathway

approached statistical significance (0.05<p < 0.1).

Additional file 3: Lists of all affected biological functions and

corresponding affected genes. Complete lists of all affected biological

functions (p < 0.05) and corresponding affected genes identified with

IPA for the meta-analysis combinations (I) overall response, (II) early stage

response, (III) late stage response, (IV) cattle-specific response, (V) early

specific response and (VI) late specific response, as well as for the

common affected genes between the 4 meta-analysis responses (I) to

(IV) (Figure 3, n = 92). The biological functions include all the sub-groups

“Diseases and disorders”, “Physiological system development and

function” and “Molecular and cellular functions” and are listed from the

lowest to the highest p-value. The five most affected molecular and

cellular functions, which are discussed in the text, are in bold.

Additional file 4: Affected sub-functions of lipid metabolism during

different responses to mastitis infection. Five most significant sub-

functions of lipid metabolism that are altered during (I) overall, (II) early

stage, (III) late stage, and (IV) cattle-specific responses. The results were

obtained by IPA using the lists of significantly affected genes for each

specific response. The sub-functions of the lipid metabolism are listed

from the lowest to the highest p-value, and are reported with the

involved genes.

Additional file 5: Supplemental Figure S1 - Relationship between

XBP1 and additional affected genes during the early stage response

to mastitis. Gene network showing the connections, as identified with

the IPA option “building pathways”, between the gene XBP1 and other

affected genes during (II) early stage response to mastitis infection. A.

XBP1 is related and linked to several other affected genes. B. XBP1 is

directly linked to the genes COPZ1, DDOST, KDELR2, KDELR3, RPN1,

SEC23B, SEC24D, SEC61A1, and SRPR, as well as to genes of the

proteasome and the MHC Class II complex. Supplemental Figure S2 -

Relationship between SREBF1 and additional affected genes during the

late stage response to mastitis. Gene network showing the connections,

as identified with the IPA option “building pathways”, between affected

genes involved in lipid metabolism during (III) late stage response to

mastitis infection. The gene SREBF1 seems to play an important role and

is directly linked to other affected genes (violet colour), i.e. TRAF3IP3,

CD36, SCD, SOD1, IDH1, THRB, RETN, PMVK, DBI, UCP2, HBS1, SC4MOL, and

CYP27A1. Supplemental Figure S3 - Venn diagram showing the number

of common and experiment-specific affected genes between (IV) cattle-

specific response and the individual experiments 1A time point {3} and 2

time point {9}. Venn diagram illustrating the number of significantly

affected genes in common (25) and distinct for the (IV) cattle-specific

response (red: 421 genes), experiment 1A time point {3} (green: 745

genes), and experiment 2 time point {9} (blue: 55 genes). The lists of

corresponding genes can be found in [Additional file 6]. The list of

experiments and time points can be found in Table 1 and the list of

meta-analysis combinations in Table 2.

Additional file 6: Lists of affected genes that are distinct or in

common between (IV) cattle-specific response, experiment 1A time

point {3}, and experiment 2 time point {9}. Complete lists of affected

genes corresponding to the Venn diagram [Additional file 5:

Supplemental Figure S3], including genes that are distinct or in common

at the intersections between (IV) cattle-specific response, experiment 1A

time point {3}, and experiment 2 time point {9}. The list of experiments

and time points can be found in Table 1 and the list of meta-analysis

combinations in Table 2.

Additional file 7: Affected molecular and cellular functions of the

most dissimilar genes between E. coli and S. aureus. Five most

significant molecular and cellular functions identified with IPA using the

34 most dissimilar genes between E. coli and S. aureus infections in cattle

in vivo (experiment 1A, 1B, and 1C), as found with the PAMR software

(Table 3). The identified molecular and cellular functions are listed from

the lowest to the highest p-value, and are reported with the involved

genes.

Additional file 8: Lists of affected genes that are distinct or in

common between the 4 main responses to mastitis infection.

Complete lists of affected genes corresponding to the Venn diagram in

Figure 3, including genes that are distinct or in common at the

intersections between the 4 different responses (I) overall, (II) early stage,

(III) late stage, and (IV) cattle-specific.
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