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ABSTRACT

Arterial spin labeling (ASL) is an MRI method for imaging brain perfusion by magnetically labeling blood in
brain feeding arteries. The perfusion is obtained from the difference between images with and without prior
labeling. TImage noise is one of the main problems of ASL as the difference is around 0.5-2% of the image
magnitude. Usually, 2040 pairs of images need to be acquired and averaged to reach a satisfactory quality. The
images are acquired shortly after the labeling to allow the labeled blood to reach the imaged slice. A sequence
of images with multiple delays is more suitable for quantification of the cerebral blood flow as it gives more
information about the blood arrival and relaxation. Although the quantification methods are sensitive to noise,
no filtering or only Gaussian filtering is used to denoise the data in the temporal domain prior to quantification.
In this article, we propose an efficient way to use the redundancy of information in the time sequence of each pixel
to suppress noise. For this purpose, the vectorial NL-means method is adapted to work in the temporal domain.
The proposed method is tested on simulated and real 3T MRI data. We demonstrate a clear improvement of the
image quality as well as a better performance compared to Gaussian and normal spatial NL-means filtering.

1. INTRODUCTION

Arterial spin labeling (ASL) is an MRI method for imaging brain perfusion by magnetically labeling blood in
brain feeding arteries. The main advantage of ASL is the absence of contrast agents or ionizing radiation. This
complete noninvasiveness makes it especially suitable for healthy patients and for repetitive follow-ups.!

There are two basic labeling schemes used for ASL — pulsed and continuous. They both function on a similar
principle and differ in the design of acquisition sequence. In this article, we focus on pulsed ASL (PASL).
However, the proposed filtering method can be as well applied on continuous ASL (CASL).

In PASL, an 180° RF pulse is applied before the acquisition to a thick slab inferior to the imaged slice to
magnetically label the arterial blood. The labeled blood then continuous its movement in the vascular system,
it reaches the slice of interest and perfuses the brain tissue. At a specified time after the labeling (inversion time
— TIms) a standard EPI sequence is used to acquire a so-called labeled image. Such labeled image has slightly
decreased intensity as a result of the presence of 180° inverted spins from the labeled blood.

The same acquisition without prior blood labeling is repeated to obtain a control image. The difference image
(control-labeled) reflects the magnetization of the inflowing blood in each voxel and it is directly proportional
to the tissue perfusion. As the difference is usually around 0.5-2% of the control image magnitude, its signal-to-
noise-ratio (SNR) is not sufficient for further analysis. Typically, 2040 pairs of control and labeled images are
acquired (for each slice and TT) and averaged to obtain SNR sufficient for cerebral blood flow (CBF) quantification
or for visual analysis of the perfusion.

Several parameters need to be estimated to allow correct quantification of the CBF (tissue and blood re-
laxation times, equilibrium blood magnetization, arrival time of blood to tissue etc.). Values of most of these
parameters were estimated for 1.5T and 3T scanners or they can be easily estimated for each individual from the
standard ASL data. However, the arrival time TA of the labeled blood varies in population, it is non-uniform
across the brain? and it cannot be extracted from an ASL image with a single 77 that is the common mode
to study the brain perfusion. A special labeling sequence called QUIPSS** was introduced to overcome this
limitation. In QUIPSS, the labeled blood bolus is saturated at a certain time TS after the labeling and before
the acquisition. The temporal length of the bolus is thus precisely defined to be TS. The inversion time is then
chosen to be TT > TS + TA for all pixels to ensure that the blood bolus has entirely passed through all pixels at



the moment of acquisition. This renders the perfusion-weighted images less dependent on the arrival time and
allows the correct quantification of CBF without the precise knowledge of TA.

This approach however does not work for the case of too long arrival times (for example patients with
atherosclerosis). The solution in this case is to obtain more information about the inflow of blood by acquiring
images for several different TIs. CBF can then be estimated using deconvolution® or by fitting a perfusion
model®® to the data. Since all of these methods are sensitive to noise, a reliable denoising method can be of
great importance for increasing quantification precision as currently only Wiener® or Gaussian filtering'® is used
for this purpose.

We propose a model-free method that uses redundancy of information in the time domain to denoise the
multi-7T PASL sequence. The method searches for pixels with similar perfusion properties whose measured
values differ only in noise. Averaging the intensities of those similar pixels then results in noise suppression. For
this purpose, the NL-Means method'!~!? is adapted to use the time neighborhood of each pixel instead of the
spatial neighborhood. The performance of the method is validated first on a simulated dataset created by fitting
a perfusion model® to data from a healthy volunteer and also on a dataset obtained using more 140 pairs of
control-labeled images instead of the usual 30 pairs. The proposed method is tested for different levels of noise
and improved SNR is demonstrated.

2. METHODS
2.1 The NL-means algorithm

The NL-Means algorithm was first introduced by Buades et a and it was successfully applied in the field
of medical imaging.'?> Contrary to the principle of most denoising methods which average intensities of voxels
in the spatial neighborhood, NL-means reconstructs the value of each pixel by weighted averaging intensities of
similar pixels that can be located anywhere in the image and not necessarily in the neighborhood. The weights
reflect the similarity between pixels and are estimated by comparing the intensities in their neighborhoods.
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Each filtered value NL, (i) is thus a weighted average of intensities of all pixels v(j) from the noisy image I
NL, (i) =Y " w(i, j)v(j), (1)
Jjel

where the weights w quantify the similarity between the pixels ¢ and j using their spatial neighborhood. The
square Euclidean distance of the intensities with Gaussian weighting is employed:
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w(i, j) =

where K defines the spatial neighborhood, Z(i) is a normalization constant such that Z(i) = >_, w(é,j) and h
is a smoothing parameter.

2.2 NL-means in time

The shape of the arterial input function as well as the tissue relaxation times and perfusion differ across the
brain. However, we assume that there are regions or individual pixels with similar or equal behavior.? Their
intensities measured by ASL thus differ only in noise, see Figure 1. To use this property for denoising, we extend
the vectorial NL-means'? to include a time neighborhood. The filtered value NL,(i,t) on position i in image V
and with 7T equal to ¢ is obtained as

NL,(i,t) = > w(i, j, t)o(j, t). (3)
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The weights w are estimated using the following equation that quantifies the pixel similarity
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Figure 1. Illustration of the temporal NL-means filtering. Three different curves are on the left image — three samples of
each curve with random noise are displayed. Averaging all nine curves together with appropriate weighting generates the
result on the right with considerably lower level of noise.

where Z(i,t) = >_,w(i,j,t). The smoothing parameter h is set as proposed by Coupe et al.'?
h =202Nr, (3)

where N7 is the number of 7T and K, and o is the standard deviation of noise.

The proposed filtering method assumes that the control-labeled image difference contains Gaussian noise. In
theory, both the control and labeled ASL images contain Rician noise. Therefore, it may seem that the recently
proposed Rician NL-means filtering'* would be more suitable for the filtering. However, the difference of control-
labeled images is used as the input data. The difference is around 1% of the average image magnitude. The effect
of Rician bias in the difference image is thus not so significant. Moreover, the parallel imaging is usually used in
ASL. This can produce images with unequal distribution of noise variation. That makes the Rician NL-means
filtering'* even less suitable as equal noise variation in all pixels is the key assumption of the method.

2.3 Acquisition

A healthy volunteer after giving a written informed consent was scanned on Philips Achieva 3T MRI scanner
(Philips Medical Systems, Best, The Netherlands) with the following parameters: EPISTAR sequence with Look-
Locker strategy for sampling of multiple time-points,'® TR = 4000ms, TE = 23ms, flip angle = 40°, matrix size =
64 x 64, resolution = 3.6 x 3.6 x 6mm, SENSE factor = 2, inter-slice gap = 0.6mn, 150 repetitions (control-labeled
pairs) and cutoff velocity of crusher gradients 3cm/s.16 Four slices were acquired with TTs for the lowest slice
T /ATI /T, = 200ms / 200ms / 3100ms and an extra delay of 39ms between slices. All the 150 repetitions
were coregistered to compensate for the patient motion with the first one using 3D rigid-body transformation
and a mutual information criterion.

The perfusion was estimated by fitting a perfusion model to the sequence of multi-TT difference images (control
minus labeled).® The literature values of most of the model parameters relevant to the 3T field were used: tissue
relaxation time 7; = 1330ms, blood relaxation time T} = 1664ms,'” blood-tissue partition coefficient A = 0.9.18
The blood flow, arrival time and bolus dispersion for each pixel were iteratively estimated by minimizing the
squared difference between the model and the measured data in each pixel, see Figure 2.

2.4 Dataset

Three datasets were created to validate the proposed denoising method. The mean of the 150 repetitions was
set as the ground truth of the first dataset. For each voxel and for each TI, the standard deviation over the
150 repetitions was estimated (assuming Gaussian distribution). The mean standard deviation o over all pixels
and all TTs was computed. Gaussian noise with zero mean and standard deviation vV No was added to the
ground truth image for IV from 1 to 30 to create 30 volumes with noise level similar to that of an average of
1 to 30 repetitions. These volumes were processed by the three methods described in Section 2 to assess their
performance at different noise levels (the standard NL-means filtration with 3 x 3 neighborhood, the NL-means
with the extra time-neighborhood of 5 pixels and a Gaussian filter with standard deviation 0.85 applied in the
time domain'®). The filtered images were compared with the ground truth image and the signal-to-noise ratio
(SNR) was computed from the difference.



Figure 2. (left) The ASL image of the lowest slice for 77 = 1200ms. (center) The cerebral blood flow as estimated using
the Hrabe’s model. (right) The estimated arrival time in seconds.

The estimated values of the Hrabe’s perfusion model (Section 2.3) were used to generate the second dataset
consisting of a sequence of volumes for T7s equal to those of the acquired data. The same validation process as
for the first dataset was used.

Finally, the methods were executed on the dataset of 150 unprocessed repetitions using leave-one-out cross
validation. A set of the first /V volumes out of the 150 was used as a noisy input and an average of the remaining
150 — N volumes as the ground truth. The same was repeated with the second set of N images (from the N + 1st
to the 2Nth image) etc. The average SNR of the 150/N results was computed. The same process was repeated
for N = 5,10, 15,25, 30.

3. RESULTS

Relative performance of all the tested methods is nearly the same on all four slices as is documented on the
case of simulated data, see Figure 3 right. Also the results are stable for all the images with different inversion
times, see Figure 3 on the left. For this reason, the following results are displayed using mean SNR over all slices
and inversion times. The overall signal is increasing for inversion times from 200ms to around 1200ms as the
effect of the delayed arrival of the labeled blood. For higher inversion times, the signal is decreasing as a result
of relaxation of the labeled spins and also as a result of repetitive excitation of the labeled spins in the imaged
slice. Since the standard deviation of noise is constant for all slices and all inversion times, the SNR is changing
with the overall signal.

The results on both simulated datasets show two times higher increase in SNR of the NL-means methods
than in the Gaussian filtering, see Figure 4. The NL-means with time-neighborhood is approximately 1dB better
than the standard NL-means for all input images except for the first simulated dataset where the difference is
negligible for more than 20 repetitions.

Qualitative comparison of the results on simulated datasets shows significantly less noise in the NL-means
filtered result than in the simple Gaussian filtering, see Figure 5. The is no significant qualitative difference
between the standard NL-means and the NL-means with the extended time-neighborhood.

The time NL-means offers 2dB increase in SNR for the real data with 5, 10 and 15 repetitions and more
than 0.5 dB for the images with more repetitions when compared with both other tested methods, see graph
on Figure 6. The time NL-means results have qualitatively the highest level of noise suppression, while the
structures are not oversmoothed, see 7.

4. DISCUSSION AND CONCLUSIONS

In this paper, we have proposed an extension of the NL-means filtering to the time domain. We have shown that,
using this method, it is possible to denoise the ASL data without any prior knowledge or model. The method
performance has been validated on a simulated data with added noise and also on a real dataset. Increased SNR
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Figure 3. Result of filtering on the simulated dataset with added noise level corresponding to 20 repetitions. (left) The
SNR averaged over all slices is shown for different 77s. (right) The SNR averaged over all TTs is shown for different slices.
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Figure 4. (left) First simulated dataset (noise added), (right) second simulated dataset (noise added to Hrabe’s model).
The mean SNR over all slices and inversion times is displayed for reconstructions of simulated images with noise level
corresponding to 1-30 repetitions.
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Figure 5. Filtering of the dataset with added noise corresponding to 20 repetitions. The second slice is displayed for the
input and ground-truth data and for the results of all the three filtering methods.
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Figure 6. The SNR of the filtered data from 5,10,15,25 and 30 repetitions as compared with the average over 150 repetitions
using leave-one-out cross validation.
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Figure 7. Filtering of the real dataset of 20 repetitions. The fourth slice is displayed for the input and ground-truth data
and the result of all the three filtering methods.



was demonstrated in all tested cases. The method also produced better results in terms of SNR than Gaussian
filtering in time which is, as far as we know, the only denoising methods used to filter multi-77 PASL sequences.

The automatic setting of the smoothing parameter h'? of the time NL-means method based on noise variance
provided sufficiently good results for all tested data. Equal weights were given to the time and the spatial
neighborhood during the NL-means filtering with the extended neighborhood in the time domain. This weighting
can be potentially changed to further increase the performance of the method.

The direct effect of the filtering on the CBF quantification also needs to be studied. In,® Petersen et al.
show that the increasing noise and subsequent regularization of the deconvolution can cause underestimation of
the flow values. The noisy data also complicates quantification of flow by using an advanced perfusion models
as several parameters usually needs to be estimated.?® The proposed method has the potential to reduce these
problems.
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