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dysfunction of Cdk1 and CyclinB1: implications
for cell cycle arrest
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Abstract

The two major cytopathic factors in human immunodeficiency virus type 1 (HIV-1), the accessory proteins viral

infectivity factor (Vif) and viral protein R (Vpr), inhibit cell-cycle progression at the G2 phase of the cell cycle.

Although Vpr-induced blockade and the associated T-cell death have been well studied, the molecular mechanism

of G2 arrest by Vif remains undefined. To elucidate how Vif induces arrest, we infected synchronized Jurkat T-cells

and examined the effect of Vif on the activation of Cdk1 and CyclinB1, the chief cell-cycle factors for the G2 to M

phase transition. We found that the characteristic dephosphorylation of an inhibitory phosphate on Cdk1 did not

occur in infected cells expressing Vif. In addition, the nuclear translocation of Cdk1 and CyclinB1 was disregulated.

Finally, Vif-induced cell cycle arrest was correlated with proviral expression of Vif. Taken together, our results

suggest that Vif impairs mitotic entry by interfering with Cdk1-CyclinB1 activation.

Findings

HIV-1 infection results in cell cycle arrest at the G2

phase accompanied by massive CD4+ T-cell death.

Amongst the HIV-1 proteins, Vpr has been a major focus

of studies for cytopathicity and G2 cell cycle arrest [1,2].

We recently showed that Vif also causes CD4+ T-cell

death and G2 arrest during HIV-1 infection, unveiling a

connection between virus-induced cell cycle arrest and

cytopathicity [3]. Whereas Vpr-induced G2 blockade has

been extensively studied [4-14], how Vif causes cell cycle

arrest remains poorly defined [3,15-17]. Here, we studied

the effect of Vif expression during HIV-1 infection

in vitro on important mitotic regulatory proteins.

The activation and nuclear accumulation of the Cdk1-

CyclinB1 kinase complex, also known as mitosis promot-

ing factor (MPF), are key molecular events during G2/M-

phase transition [18-21]. Cascades of phosphorylation

and dephosphorylation govern these events at the late G2

phase. Once cells commit to mitotic entry, the Cdc25C

phosphatase activates Cdk1 by removing two inhibitory

phosphates from Thr14 and Tyr15 [22-28]. The

subsequent assembly of an activated Cdk1-CyclinB1

complex initiates a positive feedback loop by phosphory-

lating Cdc25C, which increases its enzymatic activity

[29]. Nuclear accumulation of MPF requires phosphory-

lation of CyclinB1 in the cytoplasmic retention sequence

(CRS) [30-34], possibly by polo-like kinase 1 (PLK1) [35].

As a result of these events, active MPF accumulates in

the nucleus and phosphorylates nuclear lamins, thereby

ensuring nuclear envelope disassembly and the initiation

of mitosis [36-38].

To investigate Vif-induced cell cycle arrest, we syn-

chronized a Jurkat T cell line with the G1/S phase inhibi-

tor, aphidicolin, and examined the DNA content of

mock- and HIV-1-infected cells by flow cytometry [3].

Provirus expression was measured by the insertion of

murine CD24 (heat stable antigen, HSA) or the enhanced

green fluorescent protein (EGFP) into the Nef coding

region (Figure 1A) [3,4,7]. Synchronized cells were

released from aphidicolin after 16 hours of infection, and

DNA content was monitored every 3 hours for 24 hours

(Figure 1B and 1C). Cells infected with HIV-1HSA e-f+r+

(Env-negative, Vif-positive, Vpr-positive), expressing

both Vif and Vpr proteins, progressed to the G2/M phase

around 6 hours after release, similar to mock-infected

cells (Figure 1B and 1C). Although mock-infected cells

underwent mitosis and returned to G1 phase at 9 hours
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post-release, the majority of Vif+Vpr+ cells remained in

G2/M phase for the duration of the experiment (24

hours) (Figure 1B and 1C). By comparison, the G2 arrest

triggered by a e-f+r- virus was less dramatic than the e-f

+r+ virus. Nevertheless, the infected cells showed striking

G2 peaks that were sustained throughout the course of

infection. Of note, the e-f-r- virus moderately delayed the

cell cycle progression of infected cells, but failed to

prevent cells from traversing back to G1 phase around

15-18 hours after the release (Figure 1B). These data

demonstrate that Vif on its own was able to arrest cells at

the G2 phase, but was less potent than cell cycle blockade

by Vif and Vpr together.

To elucidate the molecular defects causing cell cycle

arrest in Vif-expressing cells, we examined the translo-

cation of MPF, which occurs at the G2/M phase

Figure 1 Vif causes prominent G2 arrest in the absence of Vpr. (A) Schematic of the NL4-3 HIV-1 molecular clones used. The NL4-3e-n-HSA
(e-f+r+) lacks a functional env gene, due to a frameshift mutation, and the nef gene was replaced with HSA [3]. The NL4-3e-n-GFP has the same

env frameshift, but the nef gene was replaced with EGFP [4,6]. The e-f+r- and e-f-r- mutants of NL4-3e-n-HAS and NL4-3e-n-GFP have been

previously described [3,4]. (B) Jurkat cells were synchronized with a G1/S-phase blocker, aphidicolin, for 16 hours and then released for 10 hours

prior to infection. The cells were blocked again at the time of infection with the following HIV-1 NL4-3e-n-HSA strains at an MOI of 5: e-f+r+, e-f+r-

, or e-f-r-. DNA content was examined by flow cytometry using the cell permeable dye DRAQ5 (Biostatus) every 3 hours after release from the

second aphidicolin blockade as previously described [3]. Infected cells highly expressing HSA and mock-infected cells are shown. These data are

representative of three experiments using either the HSA- or GFP-expressing viruses. (C) The percentage of cells in the G2 phase of the cell cycle

was graphed over the course of the experiment represented in panel B. Data are represented as the mean ± the standard deviation (SD) of

quadruplicates and are representative of three experiments.
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transition. Synchronized Jurkat cells were examined at

3-hour intervals post-release for the subcellular localiza-

tion of Cdk1 by confocal immunofluorescence micro-

scopy as previously described (Figure 2A and 2B)[39]. In

mock-infected cells, Cdk1 was mostly cytoplasmic at 6

hours post-release. It then translocated into the nucleus

at 9 hours, prior to disappearing presumably due to pro-

teasomal degradation (Figure 2A and 2B). By contrast,

Cdk1 remained essentially cytoplasmic in cells infected

with either the e-f+r+ or the e-f+r- virus (Figure 2Aa-c

and 2B). The cells infected with the e-f-r- virus, lacking

both Vif and Vpr, exhibited similar nuclear translocation

of Cdk1 as the mock-infected cells, but with delayed

kinetics (Figure 2Aa-c and 2B). Thus, our data suggest

that Vif inhibits Cdk1 nuclear translocation whether or

not Vpr is present.

Activation of Cdk1 is regulated by phosphorylation

[18,21]. Inactive Cdk1 remains cytoplasmic with inhibi-

tory phosphates attached to Thr14 and Tyr15 until cells

clear the G2 checkpoint [27,40-42]. Because of the per-

sistent cytoplasmic localization in HIV-infected cells, we

examined the phosphorylation status at Tyr15 of Cdk1

by western blot analysis as previously described [6]. In

mock-infected cells, Tyr15 phosphorylation increased at

3 hours post-release, coinciding with the S to G2 phase

transition (Figure 1B and 2B). Then, after 6 hours, the

phosphorylated form, as well as the total amount of

Cdk1, started to decline (Figure 2C and 2D). However,

the ratio of phosphorylated to total Cdk1 continued to

increase until 12 hours post-release (Figure 2D). This

ratio then decreased until 18 hours post-release when

both the phosphorylated form and the total amount of

Cdk1 were barely detectable (Figure 2C and 2D). These

data suggest that Cdk1 had become active, carried out

its mitosis promoting function, and undergone degrada-

tion. Cells infected with the e-f+r+ virus maintained

constant Cdk1 protein levels but showed inconsistent

Tyr15 phosphorylation (Figure 2C and 2D). However,

Cdk1 was strongly phosphorylated and remained unde-

graded throughout the course of the experiment in cells

infected with the e-f+r- virus (Figure 2C and 2D). Inter-

estingly, Tyr15 phosphorylation was more pronounced

in Vif-induced G2 blockade (in the absence of Vpr).

While previous studies have shown that cells expressing

Vpr have more phosphorylated Cdk1 than normal cells

[43-45], Vpr can also increase phosphorylation of Cdk1

at Thr14 as well as Tyr15 [43]. This may explain the

discrepancy in the Tyr15 status between cells infected

with the e-f+r+ virus versus the e-f+r- virus in our

experiments. Perhaps the Cdk1 in the cells infected with

the e-f+r+ virus, expressing both Vpr and Vif, is still

inactive due to Thr14 phosphorylation. The phosphory-

lation of Cdk1 Tyr15 in cells infected with the e-f-r-

virus was similar to the mock-infected cells, with

increased and decreased phosphorylation following the

stages of the cell cycle (Figures 1B and 2C and 2D).

These data suggest that Vif can directly impede Cdk1

activation and subsequent nuclear translocation.

We also investigated the effect of HIV-1-induced cell

cycle arrest on CyclinB1. Immunofluorescent staining of

mock-infected cells showed that CyclinB1 translocates

from the cytoplasm (6 hours post-release) to the nucleus

(9 hours) (Figure 3Aa-b and 3B). Similar to Cdk1,

CyclinB1 was evidently degraded and almost undetect-

able after 12-15 hours when cells re-entered the G1

phase (Figures 1B and 3Ac-d and 3B). This was expected

since CyclinB1 is known to be degraded upon exit from

mitosis [46-52]. Intriguingly, unlike Cdk1, CyclinB1

retained the ability to translocate into the nucleus by 9

hours in cells infected with either the e-f+r+ or the e-f+r-

virus (Figure 3Ab and 3B). In addition, CyclinB1 levels

persisted in infected cells throughout the course of the

experiment (Figure 3A and 3B). However, after 12 hours,

many HIV-infected cells that expressed Vif showed

CyclinB1 had returned to the cytoplasm (Figure 3Ac-d

and 3B). Cells infected with the e-f-r- virus, which do not

express Vif or Vpr, exhibited similar CyclinB1 transloca-

tion and degradation as mock-infected cells, but with

delayed kinetics (Figure 3A and 3B). Western blot analy-

sis confirmed the findings from microscopy. The levels of

CyclinB1 in mock-infected cells increased when cells

were in G2 phase (6 hours), declined when cells were in

G1 and S phases (12-18 hours), and began to increase

again after 21 hours (Figures 1B and 3C). By contrast,

CyclinB1 levels remained stable throughout the entire

time course in HIV-1-infected cells that expressed Vif

(Figure 3C). Similar to the confocal data, the levels of

CyclinB1 in cells infected with the e-f-r- virus followed a

similar, but delayed pattern compared to mock-infected

cells (Figure 3C).

Because CyclinB1 retained the capacity to enter the

nucleus in arrested cells expressing Vif, in the presence

or absence of Vpr, we also examined PLK1, which phos-

phorylates the CyclinB1 CRS to target it to the nucleus

[35]. In mock-infected cells and cells infected with the

e-f-r- virus, PLK1 expression peaked around 6-9 hours,

occurring before and during the nuclear accumulation

of CyclinB1 as its published role would suggest. PLK1

expression then decreased at 12-18 hours, when cells

progressed through mitosis (Figure 1B and 3C). Cells

infected with either Vif-expressing virus exhibited an

abnormal phenotype. Once PLK1 expression was

induced between 3 and 12 hours, the levels remained

elevated, possibly due to the G2 cell cycle arrest (Figure

3C). This increased expression of PLK1 could possibly

explain the ability of CyclinB1 to still translocate into

the nucleus. However, PLK1 expression remained ele-

vated when CyclinB1 returned to the cytoplasm after
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12 hours (Figure 3). This may be due to a difference in

binding to the 14-3-3θ scaffold protein (increased for

CyclinB1 and decreased for PLK1) as we have previously

shown [6].

A recent study reported that Vif induced a delay in

cell cycle rather than complete arrest [15]. It is difficult

to compare our results and those reported by DeHart

and colleagues because the experimental system used in

their study, especially the cells (SupT1 cells) and level of

infection (multiplicities of infection [MOI] of 1-2), is dif-

ferent from ours [3,15]. We observed that the G2 arrest

due to Vif alone was most pronounced at a high MOI.

Furthermore, unlike the combination of Vpr and Vif,

Vif-induced cell cycle arrest showed a direct relationship

with increasing MOI (and therefore the increasing

expression level of Vif), whereas the arrest caused by

the e-f+r+ virus appeared to be independent of MOI

(Figure 4A-D). However, similar to the cell cycle

Figure 2 Vif-induced dysfunction of Cdk1. Jurkat cells were synchronized and infected as in Figure 1 with the GFP-expressing viruses. These

data are representative of three experiments with infection efficiencies ranging from 85-95% based on GFP expression. (A) Nuclear translocation

of Cdk1 was barely detectable in Vif-expressing cells. Vif and Cdk1 localization patterns were visualized by immunofluorescent confocal

microscopy using the following antibodies: rabbit anti-Vif (AIDS Research and Reference Reagent Program [ARRRP]) [53], mouse anti-Cdk1 (anti-

cdc2, Santa Cruz Biotechnology), goat anti-rabbit-Alexa565 (Molecular Probes), and goat anti-mouse-Alexa647 (Molecular Probes). GFP, expressed

by infected cells, was measured by direct fluorescence. Nuclei were counterstained with Hoechst 33342 (Molecular Probes). (B) At least 350 cells

were counted from representative fields, and the percentage of cells showing the indicated phenotypes for Cdk1 were plotted at each time

point. (C) Cdk1 is phosphorylated (inactivated) in Vif-expressing cells. Bulk lysates were prepared at the indicated time points and analyzed for

inhibitory Cdk1 Tyr15 phosphorylation by immunoblotting using a rabbit anti-phospho-Cdk1 Tyr15 antibody (anti-phospho-cdc2 Tyr15, Cell

Signaling Technology). Total Cdk1 expression was examined using a mouse anti-Cdk1 antibody (anti-cdc2, Santa Cruz Biotechnology) on the

same blot after stripping off the phospho-Cdk1 antibody. An immunoblot using a mouse-anti b-actin antibody (anti-b-actin, Sigma-Aldrich) is

provided as a loading control. (D) Densitometry of the bands in panel C was performed using ImageJ (NIH), and the intensity of each band was

normalized to b-actin. The normalized ratio of phospho-Cdk1 to total Cdk1 was plotted for each time point.
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blockade caused by the e-f+r+ virus, cells infected with

the e-f+r- virus showed the highest G2/G1 ratio on day

2 post-infection, when the expression of the provirus

peaks (Figure 4 and data not shown). We observed

strong cell cycle arrest caused by high levels of Vif

expression in both synchronized and non-synchronized

Jurkat cells (Figures 1B and 4B). As previously shown

[3], the e-f-r- virus caused no significant G2 arrest (Fig-

ure 4E and 4F). Thus, high expression of Vif arrested

cells in the G2 phase, although not to the same degree

as the combined expression of Vpr and Vif.

The HIV-1 accessory proteins Vif and Vpr block cells

at the G2 phase of the cell cycle [3]. We now provide

some molecular insights on how Vif induces cell cycle

Figure 3 Vif-induced abnormalities in CyclinB1 and PLK1. Jurkat cells were synchronized and infected as in Figure 1 with the GFP-expressing

viruses. These data are representative of three experiments with infection efficiencies ranging from 85-95% based on GFP expression. (A)

CyclinB1 localizes to the nucleus in Vif-expressing cells, but is not degraded normally. Subcellular localization of CyclinB1 and Vif was determined

by immunofluorescent confocal microscopy as in Figure 2 panel A using a mouse anti-Vif antibody (ARRRP) [54-56] and a rabbit anti-CyclinB1

antibody (Santa Cruz Biotechnology). (B) At least 350 cells were counted from representative fields, and the percentage of cells showing either a

degraded, nuclear, or cytoplasmic phenotype for CyclinB1 were plotted at each time point. (C) CyclinB1 degradation is not observed in infected

cells, and PLK1 expression is elevated in infected cells. A duplicate blot from Figure 2 panel C was probed with a mouse anti-CyclinB1 antibody

(Cell Signaling Technology). PLK1 expression was examined using a mouse anti-PLK1 antibody (Upstate/Millipore). The expression of b-actin

using a mouse-anti b-actin antibody (anti-b-actin, Sigma-Aldrich) is provided as a loading control.
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arrest. Our study strongly suggests that Cdk1-CyclinB1

dysregulation accounts for Vif-mediated G2 blockade.

However, the precise mechanism of this dysfunction

remains to be determined. Intriguingly, cells infected

with the e-f+r+ or the e-f+r- viruses showed differences

in phenotypes, especially the status of Cdk1, likely indi-

cating different mechanisms of action for the two

proteins.

Why HIV-1 has evolved two molecularly different

mechanisms for G2 inhibition is an important unanswered

Figure 4 Vif-induced cell cycle arrest is partially dependent on MOI. Non-synchronized Jurkat cells were infected with NL4-3e-n-GFP e-f+r+ (A

and B), e-f+r- (C and D), and e-f-r- (E and F) at the indicated MOIs. (A, C, and E) DNA content of GFP+ cells was examined by flow cytometry

using DRAQ5 at 24 and 42 hours post-infection as previously described [4]. The percentage of the G2 and G1 populations were modeled using

the Watson Pragmatic cell cycle model and the ratio was plotted [4]. All data were represented as mean ± the SD of triplicates. The ns, single

(*), double (**), and triple (***) asterisks denote p > 0.05, p < 0.05, p < 0.01, and p < 0.001, respectively, using a one-way analysis of variance

(ANOVA) with multiple-comparison tests (Prism, Graph-Pad Software). For each MOI at each time point the G2/G1 ratio for e-f+r+>e-f+r->e-f-r-

with p < 0.00001 as analyzed by a one-way ANOVA with multiple-comparison tests. (B, D, and F) The expression of Vif and Vpr increases with

increasing MOIs. Lysates were prepared from infected cells at 24 hours post-infection and analyzed for the expression of viral proteins by

immunoblotting. The following antibodies were used: mouse anti-p24-capsid (ARRRP) [55,57], rabbit anti-Vpr (a kind gift from B. Sun), mouse

anti-Vif (ARRRP) [54-56], and mouse-anti-b-actin (Sigma-Aldrich). Densitometry of the bands was performed using ImageJ (NIH), and the intensity

of each band was normalized to b-actin. The fold change of Vif expression is shown under the immunoblots. These data are representative of

three experiments.
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question. Both forms of arrest could be byproducts of viral

metabolism. Alternatively, it may be that the G2 phase is

so important for a productive viral infection cycle that the

virus must ensure G2 cell cycle arrest by two distinct

mechanisms. In either case, both Vif and Vpr are major

players in HIV-1 cytopathicity, and virus-induced cell

cycle inhibition may be intrinsically related to viral patho-

genesis. Consistent with this possibility, our previous work

showed that both Vif and Vpr can independently contri-

bute to HIV-1 cytopathicity [3]. It will be important to

determine how the specific molecular pathways converge

in necrotic death of arrested, infected T-cells.
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