

Diffusion tensor imaging in human global cerebral anoxia: correlation with histology in a case with autopsy

Stéphane Kremer, Felix Renard, Vincent Noblet, Roxana Mialin, Renée Wolfram-Gabel, Chantal Delon-Martin, Sophie Achard, Maleka Schenck, Michel Mohr, Jean-Louis Dietemann, et al.

▶ To cite this version:

Stéphane Kremer, Felix Renard, Vincent Noblet, Roxana Mialin, Renée Wolfram-Gabel, et al.. Diffusion tensor imaging in human global cerebral anoxia: correlation with histology in a case with autopsy. Journal de Neuroradiologie / Journal of Neuroradiology, 2010, 37 (5), pp.301-3. 10.1016/j.neurad.2009.12.008. inserm-00589171

HAL Id: inserm-00589171 https://inserm.hal.science/inserm-00589171

Submitted on 29 Jul 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Elsevier Editorial System(tm) for Journal of Neuroradiology Manuscript Draft

Manuscript Number: NEURAD-D-09-00155R1

Title: DIFFUSION TENSOR IMAGING IN HUMAN GLOBAL CEREBRAL ANOXIA: CORRELATION WITH HISTOLOGY IN A CASE WITH AUTOPSY.

Article Type: Correspondence

Corresponding Author: Dr. Stéphane Kremer,

Corresponding Author's Institution: CHU de Strasbourg

First Author: Stéphane Kremer

Order of Authors: Stéphane Kremer; Félix Renard; Vincent Noblet; Roxana Mialin; Renée Wolfram-Gabel; Chantal Delon-Martin; Sophie Achard; Maleka Schenck; Michel Mohr; Jean-Louis Dietemann; Francis Schneider

Manuscript Region of Origin: FRANCE

Suggested Reviewers:

Opposed Reviewers:

DIFFUSION TENSOR IMAGING IN HUMAN GLOBAL CEREBRAL ANOXIA: CORRELATION WITH HISTOLOGY IN A CASE WITH AUTOPSY. IMAGERIE DU TENSEUR DE DIFFUSION DANS LE COMA POST-ANOXIQUE : CORRELATION AVEC L'HISTOLOGIE

Stéphane Kremer (MD, PhD) (1), Félix Renard (PhD) (2), Vincent Noblet (PhD) (2), Roxana Mialin (MD) (1), Renée Wolfram-Gabel (MD,PhD) (3), Chantal Delon-Martin (PhD) (4), Sophie Achard (PhD) (5), Maleka Schenck (MD) (6), Michel Mohr (7), Jean L Dietemann (MD) (1), Francis Schneider (MD, PhD) (6)

 Service de Radiologie 2 – Hôpital de Hautepierre - CHU de Strasbourg; LINC; Université de Strasbourg, France

2. Laboratoire des Sciences de l'Images, de l'Informatique et de la Télédétection – Université de Strasbourg, France

3. Grenoble Institut des Neurosciences, Institut national de la santé et de la recherche médicale, Grenoble, France

4. Laboratoire d'Anatomie Normale, Faculté de Médecine de Strasbourg; Université de Strasbourg, France

 Grenoble Image Parole Signal Automatique, Centre National de la Recherche Scientifique, Grenoble, France

6. Service de Réanimation Médicale – Hôpital de Hautepierre - CHU de Strasbourg;
Université de Strasbourg, France

7. Service d'Anatomopathologie – CHU de Strasbourg – Université de Strasbourg, France
Corresponding author: Dr. S. Kremer – Service de Radiologie 2 – Hôpital de Hautepierre –
Avenue Molière – CHU de Strasbourg – 67098 Strasbourg cedex – France

Tel. +33 3 88 12 83 91

We report the case of a 58-year-old man (Figure) in a profound coma after a 30-min-long cardiac arrest who benefited of a brain MRI 6 weeks after the accident (1.5-T MRI scanner, SIEMENS Avanto MR, Erlangen, Germany) with DTI acquisition (30 directions, b = 1000sec/mm², TR = 6800 msec, TE = 99 msec, FOV=230×230 mm², matrix 128×128, 3.5 mm slice thickness). FA, parallel diffusion $(D_{//})$ and perpendicular diffusion (D_{+}) maps were computed and compared voxelwise to a probabilistic voxel-based atlas of fractional anisotropy as well as parallel and perpendicular diffusion based on 19 healthy subjects. Zscore maps were computed. The patient died from sepsis. An autopsy was performed. Brain sections were stained with Luxol fast blue cresyl violet to analyse myelin and immunostained for neurofilaments to detect white matter axons. DTI images analysis demonstrated extensively reduction of white matter FA, whereas $D_{//}$ and D_{\perp} were elevated. $D_{//}$ and D_{\perp} modifications reflect axonal and myelin lesions, respectively, whereas FA reflects white matter global disorganization. Histological analysis was in accordance with DTI data demonstrating extensive demyelination and widespread axonal loss. Global cerebral anoxia after cardiac arrest resuscitation is one of the most common causes, with traumatic cerebral injury, of chronic disorders of consciousness (1).

The distribution and severity of brain damage following global ischemia is proportional to the duration and severity of ischemia and is modified by the selective vulnerability of the different cell types and brain regions (2). Neurons are the most vulnerable cells, in particular in the CA1 region of the hippocampus, followed by those in the basal ganglia, cerebral cortex and the Purkinje cells of the cerebellum (2). Moreover, border zones, between two vascular territories, are more vulnerable because of the poor blood supply (2). Among glial cells,

oligodendrocytes are the most vulnerable cells (2). The grey matter lesions observed are not uniform in the different brain regions and can extend from selective neuronal necrosis to tissue necrosis (2, 3). These lesions are associated with white matter leukoencephalopathy, combining demyelination, axonal loss and focal regions of necrosis (2).

MRI is able to assess these lesions, on T2-weighted images demonstrating signal abnormalities in the hippocampus, the cortex – preferentially in the border zones – and in the parietal, occipital and frontal regions, the basal ganglia and the cerebellum (4-7). Moreover, the MRI appearance of the lesions depends on the delay between the cardiopulmonary arrest and the date the MRI was performed, extending in the gray matter from an edematous appearance at the early phase to atrophy sometimes associated with cortical laminar necrosis at the late phase (4, 8). White matter abnormalities can also be detected on T2-weighted MR images, but are usually delayed, observed only after the late subacute period (14–20 days) (4).

Diffusion-weighted imaging (DWI) seems to be more accurate for the detection of lesions and the determination of their extension in the early acute period than other conventional MR sequences (4, 6). DWI could help in determining the prognosis at the early phase after cardiopulmonary resuscitation, as the extension of the lesions and low ADC values within the lesions seem to be related to poor outcome (6-10). Diffusion tensor imaging (DTI) is a recent MRI technique that can characterize the neuronal architecture of the brain white matter in vivo by probing the diffusion of water molecules in tissues. The degree of directionality of water in the tissue is described by the fractional anisotropy (FA). The diffusion process is often modeled in each voxel as a 3×3 symmetric definite positive matrix. The largest eigenvalue of this matrix is related to the main diffusion direction along the fiber bundle, namely the parallel diffusion $(D_{//})$, and the mean of the two other eigenvalues is related to the diffusion direction perpendicular to the fiber bundle, namely the perpendicular diffusion (D_{-}) . Recent studies have shown that $D_{//}$ and D_{-} provide additional information on white matter structures that is more specific to underlying histological processes, as compared to FA. $D_{//}$ seems to reflect diffusivity along the axon in relation to axonal integrity, whereas D_{-} seems to reflect diffusivity perpendicular to the axon, in relation to degree of myelination (11, 12). Diffusion tensor imaging could be of particular interest in the evaluation of white matter injuries in patients with global cerebral anoxia after cardiac arrest resuscitation, as demonstrated in a hypoxic-ischemic neonatal rat model that combined FA and trace : increased D_{-} with no significant change in $D_{//}$ appears to characterize noncystic white matter injury with reduced myelination, whereas reduction in both D_{-} and $D_{//}$ characterize severe damage with loss of structural integrity and necrosis (13).

In conclusion, DTI modifications, particularly $D_{//}$ and D_{+} , seem to be in accordance with histological data. DTI acquisition and postprocessing are easy to perform and could contribute additional information on biological processes in white matter injuries, as compared to morphological MRI. However, these preliminary data need to be confirmed on a larger cohort of patients.

REFERENCES :

1. Higashi K, Sakata Y, Hatano M, et al. Epidemiological studies on patients with a persistent vegetative state. J Neurol Neurosurg Psychiatry 1977;40:876-885.

2. Petito C. The neuropathology of global brain ischemia. In: press IN, ed. Cerebrovascular diseases. Basel, 2005: 255-259.

3. Sevestre H, Vercken JB, Henin D, et al. [Anoxic encephalopathy after cardiocirculatory insufficiency. Neuropathological study apropos of 16 cases]. Ann Med Interne (Paris) 1988;139:245-250.

4. Arbelaez A, Castillo M, Mukherji SK. Diffusion-weighted MR imaging of global cerebral anoxia. AJNR Am J Neuroradiol 1999;20:999-1007.

5. Dijkhuizen RM, Knollema S, van der Worp HB, et al. Dynamics of cerebral tissue injury and perfusion after temporary hypoxia-ischemia in the rat: evidence for region-specific sensitivity and delayed damage. Stroke 1998;29:695-704.

6. McKinney AM, Teksam M, Felice R, et al. Diffusion-weighted imaging in the setting of diffuse cortical laminar necrosis and hypoxic-ischemic encephalopathy. AJNR Am J Neuroradiol 2004;25:1659-1665.

7. Wijdicks EF, Campeau NG, Miller GM. MR imaging in comatose survivors of cardiac resuscitation. AJNR Am J Neuroradiol 2001;22:1561-1565.

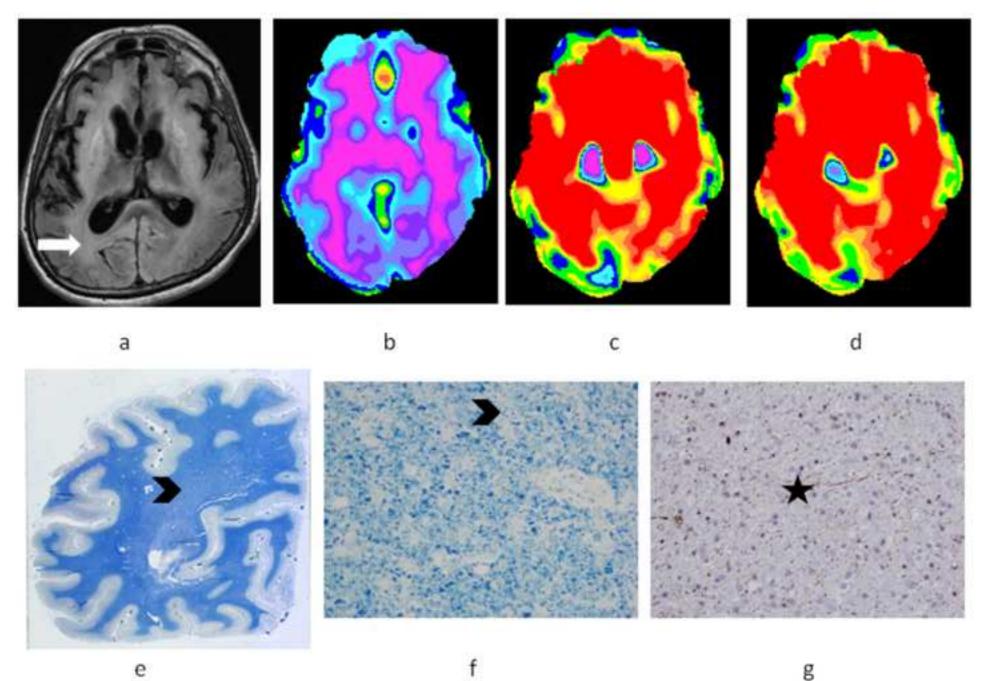
8. Wijman CA, Mlynash M, Caulfield AF, et al. Prognostic value of brain diffusionweighted imaging after cardiac arrest. Ann Neurol 2009;65:394-402.

9. Barrett KM, Freeman WD, Weindling SM, et al. Brain injury after cardiopulmonary arrest and its assessment with diffusion-weighted magnetic resonance imaging. Mayo Clin Proc 2007;82:828-835.

10. Wu O, Sorensen AG, Benner T, Singhal AB, Furie KL, Greer DM. Comatose Patients with Cardiac Arrest: Predicting Clinical Outcome with Diffusion-weighted MR Imaging. Radiology 2009.

11. Harsan L, Jalabi W, Grucker D, Ghandour MS. New insights on neuronal alterations in jimpy mutant brain. Neurochem Res 2004;29:943-952.

12. Harsan LA, Poulet P, Guignard B, et al. Brain dysmyelination and recovery assessment by noninvasive in vivo diffusion tensor magnetic resonance imaging. J Neurosci Res 2006;83:392-402.


13. Wang S, Wu EX, Tam CN, Lau HF, Cheung PT, Khong PL. Characterization of white matter injury in a hypoxic-ischemic neonatal rat model by diffusion tensor MRI. Stroke 2008;39:2348-2353.

LEGEND OF THE FIGURE :

Figure : Axial FLAIR-weighted MR images at the occipital lobe level (a) demonstrating extensive white matter hyperintense signal and atrophy (arrow). Z-score statistical maps at the same level obtained from the comparison of the patient's FA (b), parallel diffusion (c) and perpendicular diffusion (d) maps with the volunteers atlas demonstrating reduction of patients white matter FA, whereas $D_{//}$ and D_{-} were elevated (Purple corresponds to a decrease from normal and red to an increase). Coronal histological sections of right occipital lobe white matter stained with Luxol fast blue cresyl violet (x1) (e) (×400) (f), immunostained for neurofilaments (×400) (g), demonstrating myelinic pallor due to demyelinization (arrow head) associated to severe axonal loss demonstrated by little staining for neurofilaments (star).

Acknowledgements : The authors would like to thank Ms. Sandrine Decocq for her help in histological preparations.

No conflict of interest

*Detailed Response to Reviewers / Reponse aux lecteurs

HÔPITAL DE HAUTEPIERRE

Avenue Molière - 67098 STRASBOURG Cedex

Tél. (33) 03 88 12 80 00 - 03 88 11 67 68

SERVICE DE RADIOLOGIE 2

Neuroradiologie, Radiopédiatrie et Radiologie Ostéo-articulaire

Professeur JL DIETEMANN Chef de Service 03 88 12 78 89 - Fax : 03 88 12 71 18

Docteur D CHRISTMANN Praticien Hospitalier – Radiopédiatrie Dominique, Christmann@chru-strasbourg.fr

Les Hôpitaux Universitaires

de STRASBOURG

Docteur J DURCKEL Praticien Hospitalier

03 88 12 78 95

Docteur S. KREMER MCU-PH 03 88 12 83 91

Docteur G ZÖLLNER MCU-PH Poste 25 380 Zoe@rad6.u-strasbg.fr

Secrétariats

Chef de Service : 03 88 12 78 88 Ostéo-articulaire, Neuroradio, Scanner : 03 88 12 78 93 IRM : 03 88 12 78 80 Radiopédiatrie : 03 88 12 78 87 Strasbourg december the 30, 2009

To the Editorial Staff

Dear Colleagues,

We are pleased to resubmit after revision the enclosed manuscript entitled "DIFFUSION TENSOR IMAGING IN HUMAN GLOBAL CEREBRAL ANOXIA: CORRELATION WITH HISTOLOGY IN A CASE WITH AUTOPSY" by Stéphane Kremer et al.

All modifications suggested by the editorial board have been taken into account :

- Point 0 : we modified the presentation of the manuscript.
- Point 1 : We completed the description of the lesions and their pathophysiology
- Point 2 : We agree with the reviewers comment about grey matter lesions after cardiac arrest resuscitation. But we focused our case report only on white matter abnormalities studied with DTI.
- Point 3 : The DTI examination has been performed 6 weeks after the cardiac arrest. We think that it could be more interesting to perform the MRI examination earlier. Diffusion-weighted imaging seems to be more accurate for the detection of lesions and the determination of their extension in the early acute period than other conventional MR sequences. Moreover Diffusion-weighted imaging could help determine the prognosis at the early phase after cardiopulmonary resuscitation, as the extension of the lesions on diffusion-weighted magnetic resonances images and the low value of ADC in the lesion seem to be related to poor outcome.

But in this case the delay between DTI examination and autopsy was very short (8 days) and allows a direct comparison of both techniques.

We are looking forward to receive your editorial decision,

Sincerely yours

Stéphane Kremer