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Abstract

Empirical Mode Decomposition (EMD) is an emerging topic in signal pro-

cessing research, applied in various practical fields due in particular to its

data-driven filter bank properties. In this paper, a novel EMD approach

called X-EMD (eXtended-EMD) is proposed, which allows for a straightfor-

ward decomposition of mono- and multivariate signals without any change

in the core of the algorithm. Qualitative results illustrate the good behav-

ior of the proposed algorithm whatever the signal dimension is. Moreover, a

comparative study of X-EMD with classical mono- and multivariate methods

is presented and shows its competitiveness. Besides, we show that X-EMD

extends the filter bank properties enjoyed by monovariate EMD to the case

of multivariate EMD. Finally, a practical application on multi-channel sleep

recording is presented.

Keywords: Mono- and multivariate empirical mode decomposition, filter

bank structure, electroencephalography data analysis.
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1. Introduction

The Empirical Mode Decomposition (EMD) is raising great interest since

its first appearance in the nineteens [1]. Indeed, it received wide attention

in various fields such as biomedical engineering [2, 3], space research [4],

hydrology [5], synthetic aperture radar [6], speech enhancement [7], water-

marking [8], etc. EMD aims at decomposing sequentially a given signal into

the sum of Amplitude and Frequency Modulated (AM/FM) zero-mean os-

cillatory signals, called Intrinsic Mode Functions (IMFs), plus a non-zero

mean low-degree polynomial remainder. Each IMF is computed by using an

iterative procedure, named sifting process, applied to the residual multicom-

ponent signal. One sifting iteration consists: i) in computing the local mean

of the residual signal, and ii) in subtracting it from the residue. This process

is repeated until convergence to a designated IMF. Generally, the local mean

is calculated as the half sum of the upper and the lower envelopes, obtained

by interpolating between local minima and maxima, respectively, using cubic

splines [1].

Since the original work on EMD [1], several studies have been presented.

Some ones aim at giving a theoretical framework to monovariate EMD [9, 10,

11] in order to make easier its analysis. Other ones underline the behavior of

original EMD [1] on simulated data such as its data-driven filter bank struc-

ture in the case of broadband noise [12, 13]. Eventually, EMD procedure

devoted to bivariate [14, 15, 16], trivariate [17] and, recently, multivariate

signals [18, 19, 20] have been proposed. The first bivariate approach in [14]

uses the real parts of analytic and anti-analytic components of the bivariate

signal which leads to two sets of complex-valued IMFs corresponding to the
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positive and negative frequency components of the signal, respectively. The

second bivariate technique presented in [15] defines the extrema of a complex

signal as points where the angle of the first derivative of the signal vanishes.

In [16], two bivariate algorithms based on more geometrical considerations

are developed. These two last approaches compute a local mean by aver-

aging the monodimensional EMD’s of projections of the original bivariate

signal onto different angular planes. Rehman et al. proposed a trivariate ap-

proach [17] which is based on the computation of the extrema by projecting

the input signal in multiple directions in 3D spaces via a quaternion rotation

framework. The multivariate extension of EMD, developed in [18], can be

seen as a generalization of the concept employed in the Rilling’s bivariate [16]

and the Rehman’s trivariate [17] EMD. The mean envelope is obtained by

averaging multiple envelopes, generated by taking projections of the multi-

variate signal along multiple directions on hyperspheres. Nevertheless, none

of these techniques is a straightforward extension of the original monovariate

EMD concept [1] to multivariate signals, say signals defined from R to RD

with D>1. It is probably due to the difficulty of interpreting the notion of

extremum when multivariate signals are considered.

In recent works, [19, 20], we proposed an EMD algorithm, called 2T-EMD

(Turning Tangent EMD), ables to process mono- and multivariate signals

whatever the signal dimension D is, without any change in the algorithm.

In addition, 2T-EMD algorithm seems to require a smaller amount of calcu-

lations than classical EMD algorithms. To do so, the signal mean trend is

redefined as the signal obtained by interpolating the barycenters of particular

oscillations, called elementary oscillations (see section II [19, 20]). More pre-
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cisely, 2T-EMD algorithm is based on two main steps: i) identification of all

elementary oscillations and ii) computation of the barycenters of each associ-

ated elementary oscillations and interpolation between all these barycenters

to obtain the signal mean trend. Recall that, in [19, 20], an elementary os-

cillation of a given function s with values in RD (D≥ 1) is considered as a

piece of s defined between two consecutive oscillation extrema of s.

In this paper, we propose to compute the local mean trend without cal-

culation of the oscillation barycenters (as proposed in 2T-EMD), giving rise

to a new multivariate EMD algorithm, named X-EMD (eXtended EMD).

Indeed, in X-EMD algorithm (as described in section 2), the local mean is

directly computed by averaging two envelopes generated directly from oscilla-

tion extrema. In other words, the exploitation of oscillation extrema is clearly

different between X-EMD and 2T-EMD algorithms and makes X-EMD algo-

rithm easier both to implement and to use. The numerical complexity of the

proposed approach is then analyzed in section 3 and compared with the com-

plexity of four existing EMD methods. A performance study is proposed in

section 4 on synthetic mono-, bi-, and trivariate signals showing: i) the com-

petitive behavior of X-EMD versus existing methods, and ii) its ability to

process any output signal dimension. Finally, data-driven spectrum analyzer

properties satisfied by X-EMD are highlighted and a biomedical application

is considered in section 5. Indeed, empirical filter bank structure enjoyed by

monovariate EMD [13] is shown to be preserved by X-EMD in multivariate

context. Such results is used to analyze a quadrivariate ElectroEncephalo-

Graphic (EEG) sleep recording.
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2. An eXtended EMD approach: X-EMD

The proposed X-EMD method aims at providing a unique tool able to

process mono- and multivariate signals without any modification. The notion

of oscillation extrema, originally presented in [19, 20], is exploited to redefine

the local mean operator. However, before going further, let’s briefly recall

the definition of oscillation extrema.

Oscillation extremum. In [1], the local mean is given by taking average

of the upper and the lower envelopes, which are computed by interpolating

between the local maxima and minima, respectively. However, such points

cannot be used for higher output signal dimensions, since they are not defined

directly in multivariate contexts. To deal with this problem, we propose

[19, 20] a new and general way to compute extrema in multidimensional

output space RD.

Let s be a function defined from R to RD and differentiable with a contin-

uous first derivative, say in class C1. Let define the function tangent vector

to s by:

Ts : t 7−→ [1,
ds

dt
(t)]T (1)

Based on the following definition:

αs : t 7−→ lim
h→0

〈Ts(t− h),Ts(t+ h)〉 (2)

where 〈· , · 〉 denotes the Euclidean inner product of RD+1, the function αs

allows us to identify direction changes in function s. Due to the continuity

of the inner product, it is noteworthy that function αs can be rewritten as:

∀t ∈ R, αs(t) = 〈lim
h→0

Ts(t− h), lim
h→0

Ts(t+ h)〉 (3)
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Now, since the considered function s is in C1, αs takes the following form:

∀t ∈ R, αs(t) =‖ Ts(t) ‖
2= 1+ ‖

ds

dt
(t) ‖2 (4)

where ‖ .‖ abusively denotes the Euclidean norm of both RD+1 and RD. So,

oscillation extrema may be defined as the local minima of the following βs

function:

βs : t 7−→ βs(t) =‖
ds

dt
(t) ‖2 (5)

For monovariate signals, the reader can check that the oscillation extrema,

computed from function βs (5), include the classical scalar extrema used

in Huang’s solution [1] but also the saddle points of s. It is noteworthy

that oscillation extrema are different of inflection points [9] which require

to compute the second order derivative of s and which are not defined in

multivariate contexts.

Local mean and sifting process. The key point of the X-EMD algorithm

is the redefinition of the local mean, which allows us to use all oscillation

extrema of the considered signal whatever its output dimension is. More

particularly, the local mean is computed as the mean of two envelopes: a

first envelope interpolating the even oscillation extrema (with signal borders)

and a second envelope interpolating the odd oscillation extrema (also with

signals borders). One could check that, for monovariate signals without

any saddle points, this approach is equivalent to the original EMD method

[1]. As far as the sifting process is concerned, we need to specify how to

stop it. In fact, we use a classical modified Cauchy-like criterion. More

precisely, let dn,k be the n-th IMF computed at the k-th iteration of the
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sifting process. Then, the sifting process is stopped when for instance 90%

of values ||dn,k+1(t)−dn,k(t)||/||dn,k(t)|| are lower than 10−2.

3. Numerical complexity analysis

This section aims at relating the X-EMD algorithm and some existing

EMD methods from a computational complexity point of view. Numeri-

cal complexity is calculated in terms of number of floating point operations

(flops). A flop corresponds to a multiplication followed by an addition. But

in practice, only multiplications are counted since, in general, there are about

as many (and slightly more) multiplications as additions. The first considered

EMD method is Huang’s solution [1] and will be named Huang in the sequel.

The second studied standard EMD approach is the second geometrical bi-

variate solution proposed in [16] and called Rilling hereafter. As far as the

cases of multivariate signals are concerned, two methods, namely 2T-EMD

algorithm [19, 20] and Rehman’s method [18], are considered.

For a given EMD algorithm, let N , Kn, and L be the number of extracted

IMFs, the number of sifting iterations performed to extract the n-th IMF, and

the data length, respectively. Now, denote by dn,k the n-th IMF computed at

the k-th iteration of the sifting process, by: i) MH(dn,k) the number of extrema

detected in dn,k by Huang [1], ii) MR(dn,k, p) the number of extrema detected

in the p-th projection of dn,k using Rilling [16] when P projection planes are

used, iii) MRM(dn,k, p) the number of extrema detected in the p-th projection

of dn,k by Rehman [18] when P projection directions are used, iv) M2T(dn,k)

the number of oscillation barycenters detected in dn,k by 2T-EMD [19, 20],

and V) MX(dn,k) the number of oscillation extrema detected in dn,k by X-
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Method D Numerical complexity F (dn,k+1)

Huang [1] 1 18L+ 15MH(dn,k)

Rilling [16] 2 L(11P + 2) + 15
∑P/2

p=1MR(dn,k, p)

Rehman [18] N∗ LP (2D + 18) + 15
∑P

p=1MRM(dn,k, p)

2T-EMD [19, 20] N∗ D(19L+ 16M2T(dn,k)) +M2T(dn,k)

X-EMD N∗ D(19L+ 15MX(dn,k))

Table 1: Computational complexity for one sifting iteration of X-EMD and four existing

EMD methods. L and D represent the data length and the data dimension, respectively.

Where MH(dn,k), MR(dn,k, p), MRM(dn,k, p), M2T(dn,k) and MX(dn,k) denote the num-

ber of extrema detected in dn,k by Huang, the number of extrema detected in the p-th

projection of dn,k by Rilling (when P projection planes are used), the number of ex-

trema detected in the p-th projection of dn,k by Rehman (when P projection directions

are used), the number of barycenters detected in dn,k by 2T-EMD, and the number of

oscillation extrema detected in dn,k by X-EMD, respectively.

EMD. For given values of L and D, the computational complexity, F (dn,k+1),

of one sifting iteration necessary to obtain dn,k+1 from dn,k is given in table 1

for Huang, Rilling, Rehman, 2T-EMD and X-EMD methods. Note that these

results were obtained for a standard tridiagonal implementation of the spline

interpolation and a signal from R to RD. Finally, the total computational

cost of the five methods is obtained by summing the elementary complexities

given in table 1 over the number of iterations, Kn, and the number of IMFs,

N , as shown below:

C(s) =

N
∑

n=1

Kn
∑

k=1

F (dn,k) (6)
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4. Performance evaluation of X-EMD

The objective of this section is to compare the performance of X-EMD

algorithm with classical approaches and to illustrate its ability to process

multivariate signals whatever their output dimension. Before applying X-

EMD on test signals, it is prudent to give some details about the set of

signals that X-EMD can decompose successfully. As previously mentioned,

the considered signal has to be in class C1 or at least, in the case of irregular

signals, an appropriate numerical estimation of the derivative has to be pro-

posed. For instance, the first order derivative may be computed by means of

a centered finite difference when forward and backward finite differences have

the same signs and set to 0 otherwise. In addition, if {dn}1≤n≤N represents

the theoretical set of IMFs composing the signal to analyze, it is obvious that

any dn with a piecewise constant function βdn (5) is not visible by X-EMD

(a piecewise constant function has no local minimum). It concerns, for in-

stance, monovariate signals with piecewise linear IMFs, and bivariate signals

with purely circular rotating IMFs.

Performance criteria. Two criteria are used to evaluate the X-EMD al-

gorithm and compare it to the existing EMD methods. The first criterion

allows us to evaluate the efficiency of EMD algorithms to accurately extract

one or all expected IMFs. Given I a subinterval of T = [−1, 2], let’s define

the following quadratic errors:

eI(dn) =

∫

I
||dn(t)− d̂n(t)||

2dt
∫

I
||dn(t)||2dt

and eI(s) =
N
∑

n=1

eI(dn) (7)

where d̂n denotes the estimate of the exact n-th IMF dn of signal s. More

precisely, if we consider the interval, I = [0, 1], where border effects should
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be low, equation (7) allows us to compute a performance independent of

any border effects. On the contrary, if I = [−1, 0] ∪ [1, 2] and for the same

border management of all algorithms, equation (7) allows us to evaluate the

ability of a given algorithm to minimize border effects. Indeed, such effects

are often critical, especially, in real life data and their minimization should

facilitate the practical exploitation of the IMFs. The second criterion, C(s),

evaluates the numerical complexity of each EMD algorithms, with respect to

the formulas listed in table 1.

Signal selection. To evaluate the behavior of X-EMD algorithm, two mono-

variate (s11, s12) signals of the form s1i =
∑

n d
(1i)
n , two bivariate signals (s21,

s22) of the form s2i =
∑

n d
(2i)
n and a trivariate (s31) signal of the form

s3i =
∑

n d
(3i)
n , defined on the time interval T = [−1; 2] and sampled at

fs = 1kHz, are tested. The mono- and bivariate signals are given by (succes-
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sive IMFs are in curly brackets):

s11(t) = d
(11)
1 (t) + d

(11)
2 (t)

= {0.5e0.23(1+t) sin(20πt)} + {e0.23(1+t) sin(10πt))}

s12(t) = d
(12)
1 (t) + d

(12)
2 (t) + d

(12)
3 (t) +Residue

= {2 sin(50πt)} + {e0.23(1+t) cos(π(1.41t+ 9.90)2)}

+{3 cos(π(t+ 6)2)} + 3t

s21(t) = d
(21)
1 (t) + d

(21)
2 (t)

= {e
iπ

4 et sin(80πt+ 1.5)} + {e
−iπ

4 sin(2π[2.5(1 + t)]2)}

s22(t) = d
(22)
1 (t) + d

(22)
2 (t) + d

(22)
3 (t)

= {0.3 cos(56πt) + 0.8i sin(54πt)} + {1.7 cos(20πt) + 3.2i sin(22πt)}

+ {e0.23t−0.46[2.5 cos(π(0.82t+ 4.49)2) + 1.1i sin(π(0.82t + 4.49)2)]}

and the trivariate signal is defined by s31 = d
(31)
1 + d

(31)
2 + d

(31)
3 with:

d
(31)
1 (t) =

[

2.5 sin(100πt), 2 cos(100πt), e0.11t+0.70 sin(100πt)
]

T

d
(31)
2 (t) = [5e0.14(1+t) cos(π(t+ 13)2), 2e0.14(1+t)

sin(π(t+ 13)2), 0.5 sin(28πt+ 1.2)]T

d
(31)
3 (t) = [4 sin(12πt), cos(12πt), 6 sin(14πt+ 1.5)] T

From a general point of view, the proposed synthetic signals are the sum

of multiple generic AM-FM components. More precisely, the monovariate

signal s11 is the sum of two exponential AM components containing saddle

points. The signal s12 is a more general AM-FM signal with a linear residue.

Regarding the bivariate signals, s21 is composed of two orthogonal AM-FM

planar components whereas s22 is the sum of different AM-FM elliptic rotat-
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ing components. Finally the trivariate signal s31 is the sum of three general

AM-FM components.

Qualitative multivariate decompositions. This section is dedicated to

qualitatively illustrate the behavior of X-EMD in various multivariate con-

texts. Thus, the decompositions of the monovariate signal s12, the bivariate

signal s21, and the trivariate signal s31 computed on the time interval [0; 1]

are respectively depicted in figures 1, 2 and 3. Figure 1 presents the ex-

act (dashed line) and estimated (plain line) IMFs. The correct linear shape

of the residue illustrates the good behavior of the X-EMD algorithm in a

monovariate case. Regarding the bivariate signal s21 depicted in figure 2,

the two rotated planar IMFs are well extracted, with a low residue. As far

as the trivariate signal is concerned, the figure 3 (a) represents the original

signal (dark line) and the associated local mean (gray line) on the restricted

[0.5; 0.6] time interval and the figure 3 (b) displays the exact (dashed line)

and the estimated (plain line) IMFs of the signal projected on the three main

axis, namely X, Y and Z. The local mean seems to nicely go through the orig-

inal signal, and the comparison between the estimated and exact projections

of the IMFs shows the ability of the X-EMD method to perform trivariate

decomposition without any change in the core of the algorithm.

Comparative study. This section adopts a more quantitative point of view

and is dedicated to the comparison of X-EMD performance with those ob-

tained by Huang’s algorithm [1] in monovariate case, Rilling’s method [16]

in a bivariate context, Rehman’s approach [18] for trivariate signals, and

2T-EMD [19, 20] methods for all tested signals. More precisely, the second
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Figure 1: X-EMD monovariate decomposition of the signal s12. Dashed line: real IMF /

plain line: estimated IMF.
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Figure 2: X-EMD bivariate decomposition of the signal s21.

geometric approach proposed in [16] is used as reference for bivariate de-

compositions with P = 8 projection planes. For Rehman’s method we take

P = 2D projection directions on the associated hypersphere. Note that, the

sifting process termination criterion and the border effect management are

identical for all compared methods. This comparison is achieved in terms

of performance using criteria e[0,1](s) and e[−1,0]∪[1,2](s), but also in terms of

numerical complexity using criterion C(s). Results are provided in table 2.

It appears that for no border effects (I = [0, 1]), the monovariate signal s11

with saddle points is better decomposed by our approach in comparison to

the Huang’s method. In the bivariate case, Rilling’s algorithm seems to be

slightly more efficient on the rotating signal s22 but X-EMD seems to offer

a better performance on the signal s21 made of rotated planar components.
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(dark) and its X-EMD local mean (gray), and (b) exact (dashed line) and estimated (plain
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Regarding the trivariate signal s31, X-EMD method leads to better result

than Rehman’s algorithm. As far as the border effects are concerned, X-

EMD seems to have quasi-identical performance than Huang’s method, and

provides a more accurate management of border effects in comparison to the

Rilling’s and Rehman’s methods. Concerning the computational complex-

ity, table 2 clearly shows that for D = 1 the computational complexities

of X-EMD and Huang’s method are quasi-equivalent. On the contrary, for

D = 2 and D = 3, X-EMD requires less sifting iterations and less computa-

tional operations than Rilling’s and Rehman’s methods. When focusing on

the comparison between X-EMD method and 2T-EMD method (say the two

methods which exploit, in different manner, the oscillation extrema), table

2 exhibits that the behavior of the two methods, using criteria e[0,1](s) and

e[−1,0]∪[1,2](s), are globally equivalent. More finely, X-EMD seems to provide

a more accurate management of border effect for AM-FM signal s12, where

as 2T-EMD gives better border effects management in case of signal s11 with

saddle points. However, in accordance with the formulas presented in table 1,

the proposed X-EMD generally requires less computational operations than

2T-EMD method.

5. Filter bank structure and application to multichannel sleep record-

ing

One important property of the classical monovariate EMD [1] especially

highlighted in [12] is its empirical filter bank structure observed when EMD

is applied on broadband noises.
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Table 2: Comparative study of X-EMD versus Huang (1D), Rilling (2D), Rehman (2D)

and 2T-EMD (1D, 2D and 3D) reference methods.

Filter bank structure. The goal of this section is to show how this property

is preserved by X-EMD for higher output signal dimensions. Nevertheless,

the notion of frequential content for multivariate signals may be ambiguous.

As suggested in [13], one alternative way to deal with IMFs frequency in a

monovariate context is to consider their number of zero-crossings or alter-

natively their number of extrema, Next (as those quantities differ at most

by one in the definition of an IMF). In the same sense, we propose here to

evaluate the frequential content of a mono- or multivariate IMF by consid-

ering its number of oscillation extrema. It is worth to point out that all

the results presented hereafter do not take into account the first mode, dn,k

(k=1), because as shown in [12, 13] the filter associated to the first mode is

essentially highpass. In a first simulation, 500 uncorrelated mono-, bi- and

trivariate white noises (1024 samples, with normal distribution) are gener-

ated and decomposed using X-EMD. For each IMF dn,k (k>1) and for each
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signal, Next is computed and a linear regression model is then fitted on the

log2 averaged number of oscillation extrema (log2(Next)) as depicted in fig-

ure 4. The linear regression quality shows how Next exponentially decreases

with the number of IMFs, and suggests a filter bank structure whatever the

considered dimension is. This bank appears close to a dyadic filter bank for

a monovariate decomposition (−0.65 slope in log2 coordinates) and the ex-

ponential decrease seems to be lower with the dimensionality increase (−0.17

slope for the hexavariate D = 6 decomposition). This result strongly sug-

gests that a higher number of IMFs could be expected for decompositions

with higher dimensionality.

In a second simulation, the influence of spatial correlation between sig-

nal channels on the filter bank structure is studied. To do so, the previous

simulation is repeated in a bivariate context for different values of the spa-

tial covariance factor ρ. More precisely, for 11 values of ρ regularly varying

from 0 (uncorrelated channels) to 1 (the two channels are identical), 500 bi-

variate white noises (1024 samples, bidimensional-normal distribution with

unitary variance and ρ covariance) are generated. For each signal, the av-

eraged number of oscillation extrema, Next, is computed and fitted in log2

coordinates. Fitting errors and associated slope values are depicted in figure

5. The low fitting error suggests that the spatial covariance doesn’t influence

the filter bank structure. Regarding the slope, it clearly seems to vary with

ρ values. For ρ = 0, an uncorrelated bivariate white noise is decomposed

and the slope value (around −0.48) is close to the one found in the first bi-

variate simulation. For ρ = 1, the two signal channels are identical, and the

decomposition is “equivalent” to a monovariate uncorrelated decomposition.
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The slope value (around −0.62) is thus close to the one found in the first

monovariate simulation.

Application to multichannel sleep recording. The filter bank structure

property enjoyed by X-EMD strongly suggests the use of the proposed algo-

rithm in order to analyze the frequential content of real multivariate signals.

One example of application dealing with multi-channel sleep recording is

proposed here. Therefore, an ambulatory sleep staging system [21] with a

reduced number of electrodes (four) is used. It makes possible the record of

quadrivariate (D = 4) non-invasive electrophysiological observation by means

of two temporal (FP1 and FP2) and two frontal (F7 and F8) electrodes.

The use of a limited number of electrodes makes impossible the separation

of the different electrophysiological sources composing the recorded quadri-

variate EEG signal, namely neuronal electrical activity, Slow ElectroOcu-

loGram (SEOG), Rapid ElectroOculogram (REOG) and ElectroMyoGram

(EMG). Moreover, these signals are generally corrupted by ElectroCardio-

Gram (ECG) activity.

Extraction of the EMG activity from the quadrivariate observation is a

necessary step in the night sleep analysis. The classical procedure to extract

this component takes advantage of the specific high-frequency content of the

EMG. The EMG component is thus obtained by a simple high-pass filtering

(with a 30 Hz corner frequency), independently on each of the four channels

of the original observation [21]. What we propose here is to extract the EMG

component by taking advantage of the multivariate filter bank structure of X-

EMD. It is noteworthy that the challenge here is not to propose a new method

in order to extract the EMG signal in sleep recording, but to show how one
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Figure 4: X-EMD filter bank structure: i) top (first and second lines): number of oscillation

extrema, Next, with boxplots as a function of the index of IMFs for uncorrelated white

noises of dimensions : D = 1, D = 2 and D = 3,D = 4, D = 5 and D = 6, ii) bottom (third

and fourth lines): averaged number of oscillation extrema, Next (cross) as a function of the

index of IMFs in log2 coordinates and the associated linear regression model (continuous

line).
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Figure 5: Influence of channel correlation on the filter bank structure: fitting errors vs. ρ

values (left), and slope vs. ρ values (right).

could practically take advantage of the X-EMD algorithm. A quadrivariate

application of X-EMD to the quadrivariate observation O is therefore per-

formed on four IMFs in a supervised way. The sum of the first four obtained

IMFs OHF
X−EMD =

[

FP1HF
X−EMD,FP2

HF
X−EMD,F7

HF
X−EMD,F8

HF
X−EMD

]T

and the as-

sociated residue OLF
X−EMD =

[

FP1LFX−EMD,FP2
LF
X−EMD,F7

LF
X−EMD,F8

HF
X−EMD

]T

are then, respectively, compared in figure 6 to the EMG component isolated

by the classical high-pass filtering OHF
FIR =

[

FP1HF
FIR,FP2

HF
FIR,F7

HF
FIR,F8

HF
FIR

]T

and the associated residual low-frequency signal OLF
FIR = [FP1LFFIR, FP2

LF
FIR,

F7LFFIR,F8
HF
FIR]

T

.

The channels of the EMG signal estimated by using X-EMD (line 2) and

the EMG signals obtained with a highpass filtering (line 4) are, visually,

quasi-equivalent. Indeed, the correlation coefficients computed between each

channel are comprised between 0.8095 and 0.8320. This high correlation is

also observed on the associated low-frequency residual parts (line 3 and 5).

Those last results show that the direct quadrivariate X-EMD method, which
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Figure 6: Application of X-EMD to multichannel sleep recording.

takes advantage of the mutual information contained in the four channels,

preserves the frequential contents on each channel. Such results may be

very interesting in practical contexts but they require a priori regarding the

processed signal in order to select the suited IMFs. More particularly, an

analysis of the broadband noise present in the signal to process should be

performed with X-EMD beforehand. In the biomedical context considered

here the broadband noise is essentially due to the neuronal electrical activity.

It is noteworthy that if no broadband noise is present in the considered

application, it could be artificially added to the data.

6. Conclusion and perspectives

A new algorithm called X-EMD based on a redefinition of the local mean

operator is proposed. The obtained results show that, under certain assump-

tions on the processed signal, this alternative definition enables to decompose
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both mono- and multivariate signals without any modification in the core of

the algorithm. This last point is the main difference regarding the exist-

ing approaches of the literature. The comparative study also suggests that

X-EMD seems to offer competitive performance whereas the computational

complexity analysis suggests that no loss in terms of numerical performance

should be observed in comparison with the existing EMD approaches. More-

over filter bank properties of the classical EMD seem to be preserved and

applicable to multivariate signal denoising. A restricted scope of application

mainly due to the use of the first derivative in the algorithm remains the

most important limitation of our approach. However, as shown in the appli-

cation of X-EMD in quadrivariate sleep recording, those limitations should

be not too much restrictive in practical fields. More simulated and real data

decompositions will be performed in future works.
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