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Abstract 

Background- Protease nexin-1 (PN-1) is a serpin that inhibits plasminogen activators, 

plasmin and thrombin. PN-1 is barely detectable in plasma, but we have recently shown that 

PN-1 is present within the alpha-granules of platelets. 

Methods and Results- In this study, the role of platelet PN-1 in fibrinolysis was investigated 

using human platelets incubated with a blocking antibody and platelets from PN-1-deficient 

mice. We showed by using fibrin-agar zymography and fibrin matrix that platelet PN-1 

inhibited both the generation of plasmin by fibrin-bound tPA, and the activity of fibrin-bound 

plasmin itself. Rotational thromboelastometry (ROTEM®

Conclusion- Our results reveal that platelet PN-1 can be considered as a new important  

) and laser scanning confocal 

microscopy were used to demonstrate that PN-1 blockade or deficiency resulted in increased 

clot lysis and in an acceleration of the lysis front. PN-1 is thus a major determinant of the 

lysis-resistance of platelet-rich clots (PRCs). Moreover, in an original murine model in which 

thrombolysis induced by tPA can be measured directly in situ, we observed that vascular 

recanalization was significantly increased in PN-1-deficient mice. Surprisingly, general 

physical health, after tPA-induced thrombolysis, was much better in PN-1-deficient than in 

wild-type mice. 

regulator of thrombolysis in vivo. Inhibition of PN-1 is thus predicted to promote endogenous 

and exogenous t-PA-mediated fibrinolysis, and may enhance the therapeutic efficacy of 

thrombolytic agents. 

 



  2010-000885/R1 

3 
 

Introduction 

 Vascular injury and subsequent thrombus formation are key events in the pathogenesis 

of atherothrombosis and venous thromboembolism. The serine proteases, urokinase- and 

tissue-type plasminogen activators (uPA and tPA respectively), generate plasmin which 

drives fibrinolysis. The thrombolytic actions of these proteases are critical for clot dissolution. 

Their properties have numerous therapeutic applications, including fibrinolysis for ST 

elevation myocardial infarction (STEMI). Direct recanalization of an occluded vessel by 

primary angioplasty became the preferred reperfusion strategy in STEMI patients. 

Thrombolysis remains however, an option of reperfusion therapy in early STEMI presenters. 

Despite early administration of recombinant tPA in STEMI presenters, fibrinolysis fails to 

achieve myocardial reperfusion in one out of two patients and is associated with poor clinical 

outcome1. This phenomenon is of considerable clinical importance in the setting of acute 

myocardial infarction, because early restoration of normal blood flow is strongly associated 

with improved survival. A few factors have been identified to be involved in this inter-

individual heterogeneity, such as age, delay between symptom onset and fibrinolytic therapy, 

smoking habit, infarct size and site2

 Plasminogen activator inhibitor type-1 (PAI-1) is a serine protease inhibitor which is 

present in plasma and in platelet α-granules. An increased plasma concentration of PAI-1 has 

been associated with recurrent myocardial infarction

. 

3, 4. In humans, platelet PAI-1 is assumed 

to be a major contributor to the stabilization of the thrombus, by inhibiting endogenous 

fibrinolysis5, 6. However, platelets have also been shown to inhibit fibrinolysis by PAI-1-

independent mechanisms7, and the individual role of other serpins, in the thrombolytic 

process has not yet been defined. Protease nexin-1 (PN-1), also known as SERPINE2, 

deserves special attention since it has been shown in vitro to inhibit significantly uPA, tPA 

and plasmin. PN-1 is barely detectable in plasma8 but is produced by various cell types9, and 
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interestingly, stored in the α-granules of platelets10

 The present paper evaluates, by in vitro and ex vivo studies, the role of platelet PN-1 

in platelet-rich clot (PRC) lysis. Moreover, we have developed a murine model of 

thrombolysis and applied it to wild-type and PN-1-deficient mice to test the hypothesis that 

PN-1 inhibits thrombolysis initiated by recombinant tPA. Thus, PN-1 may be a potential 

target to improve the therapeutic applications of thrombolytic agents. 

. Because of its action on proteases of the 

plasminergic system, we hypothesized that platelet PN-1 may play a prominent role in the 

process of thrombolysis resistance. 
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Materials and methods 

Animals 

PN-1-deficient mice (PN-1-/-) come from Pr D. Monard’s laboratory (FMI, Basel, 

Switzerland) and were back-crossed for 12 generations into the C57BL/6 line11

 

. Experimental 

animals were 8-16 weeks of age. Heterozygous mating generated PN-1-/- and wild-type mice 

(WT). Mice were bred and maintained in our own laboratory (Paris, France). All animals 

were genotyped by PCR. All experiments were performed in accordance with European 

legislation on the protection of animals. 

Methods 

Preparation of washed platelets 

 Human platelets 

Human blood from healthy adult volunteers was collected into 1/10 vol. ACD-A (38 mM 

citric acid, 60 mM sodium citrate, 136 mM glucose). Washed platelets were isolated as 

previously described12

 Mouse platelets 

. 

Blood was collected from anesthetized mice by cardiac puncture into syringes containing 1/10 

vol. ACD-C (130 mM citric acid, 124 mM sodium citrate, 110 mM glucose). Washed 

platelets were isolated as previously described10

 

. 

Binding of tPA and plasmin to fibrin matrices, and measurement of plasmin generation 

or activity. 

Fibrin matrices in 96-well plates were prepared as previously described13. The functionality of 

this fibrin surface was determined by measuring the activation of plasminogen by fibrin-
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bound t-PA, or the activity of fibrin-bound plasmin itself (See the online-only Method 

supplement). 

 

SDS-polyacrylamide gel electrophoresis and zymography. 

Platelets (5×108 /mL in reaction buffer) were activated by PAR1-AP (PAR1-activating 

peptide, SFLLRN, NeoMPS) (50 µM) for human platelets or by PAR4-AP (PAR4-activating 

peptide, AYPGKF, NeoMPS) (250 µM) for mouse platelets, for 30 minutes at 37°C. Control 

samples were obtained by incubating platelets for the same time with buffer. At the end of the 

incubation, samples were centrifuged and the supernatants (secreted fraction) were removed 

for analysis. The secreted fractions were incubated with recombinant tPA (10 IU/ml) or 

plasmin (0.25µM) for 30 minutes at 37°C in the presence or absence of the blocking anti-PN-

1 (generous gift from Dr D.Hantai, Inserm U582, Paris) or anti-PAI-1 IgGs (MA-33B8-307; 

Molecular Innovations). Proteins were first separated on a 10% SDS-polyacrylamide gel. 

After incubation with 2% Triton X-I00, the gel was then overlaid on a fibrin-plasminogen 

(200 nM)-agar gel, for tPA activity measurement, or on a fibrin-agar gel for plasmin activity, 

as previously described14. Zymograms were allowed to develop at 37°C during 24 hours and 

photographed at regular intervals using dark-ground illumination. Zymograms were stained 

with blue-coomassie15

 

.  

Clot formation and fibrinolysis ex vivo  

Human PRP was obtained from citrated blood by centrifugation at 120g during 15 minutes. 

PRP was adjusted at 108 platelets/ml in platelet free plasma and supplemented with 75µg/ml 

FITC-fibrinogen. For mouse PRCs, citrated human platelet-free plasma was mixed with 

murine washed platelets to a concentration of 8 × 108/ml. Samples were incubated with 

irrelevant-IgG or the blocking anti-PN-1 IgG or/and anti-PAI-1 IgG both at 100 µg/ml and 
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recalcified with 10 mM CaCl2 in glass tubes. After retraction, clots were removed, blotted and 

weighed. To assess fibrinolysis, clots were incubated in Hanks buffer (Sigma) for 24 hours at 

37°C. The supernatant was removed, and the fluorescence released from the clot was 

measured in a spectrofluorometer16

 

. The remaining clots were blotted and reweighed to 

calculate the loss of clot weight, and then were totally dissolved to calculate the fluorescence 

remained in the clot. 

Fibrinolysis experiments: microscopic lysis velocity by laser scanning confocal 

microscopy 

Citrated human or mice PRP was adjusted at 108 platelets/ml and supplemented with Alexa 

488-fibrinogen (Invitrogen). Human PRP was incubated with control IgG (Jackson 

immunoresearch) or blocking anti-PN-1 IgG (100 µg/ml) and PRCs were obtained by adding 

tissue factor (TF, Innovin 1/5 (v/v)) (Diagnostica Stago) and 10 mM CaCl2 in microchambers 

as previously described17

 

. PRP from WT or PN-1 -/- mice was clotted in the same conditions. 

Clots were scanned with a LEICA confocal laser scanning microscope linked to a Leica 

inverted microscope equipped with a ×63 water immersion objective. Scans were collected in 

a format of 512×512 pixels with 1024 gradations of intensity. Recombinant tissue 

plasminogen activator (rtPA, 26nM) (Alteplase, Boerhinger) was loaded at the edge of the 

labelled PRC. The edge of the clot was visualized with the confocal microscope set up in the 

reflection mode. Scanning was performed at a magnification 125 × 125 µm every 15 seconds 

for 30 minutes. The velocity of the lysis front was determined from confocal microscope 

images and analysed with image J software.  

ROTEM® Modified Rotation Thrombelastogram Analyzer 
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Citrated PRP was obtained and adjusted at 108 platelets/ml as described above. ROTEM® 

analysis was performed in pre-warmed ROTEM® cup containing 300 µl of PRP in presence of 

control IgG or the blocking anti-PN-1 or/and anti-PAI-1 IgG both at 100 µg/ml. Clotting was 

initiated by the addition of TF (Innovin 1/5 (v/v)), CaCl2 (10 mM). Fibrinolysis was initiated 

by the addition of human r-tPA (0.5 nM) (Alteplase, Boerhinger) or mouse r-tPA (30 nM) 

(Molecular Innovation). The fibrinolytic response by rtPA was assessed using ROTEM® 

software, thereby providing 

 

the lysis rate at 60 minutes in each condition. 

Dorsal skinfold chamber 

Dorsal skinfold chambers were implanted in 10- to 12-week-old mice (25 to 30 g body 

weight) anesthetized by intraperitoneal injection of 100 mg/kg ketamine and 10 mg/kg 

xylazine in saline solution as previously described18

 

. Briefly, a patch of dorsal hair was 

removed, and two titanium frames were positioned so as to sandwich the extended double 

layer of skin. One layer of betadine-cleaned skin was completely removed in a circular area of 

13 mm in diameter, and the remaining layer, consisting of epidermis, subcutaneous tissue, and 

striated skin muscle, was covered with a 12-mm glass coverslip incorporated in the frame. 

Following surgery, mice were injected subcutaneously with buprenorphine (0.05 mg/kg) and 

then again 8–12 h later. The animals tolerated the chambers well and showed no sign of 

discomfort. After a 48 h-period of recovery from surgery, preparations fulfilling the criteria of 

intact microcirculation and showing no signs of inflammation were utilized for thrombosis 

and thrombolysis experiments. 

Real-time intravital imaging of thrombus formation and thrombolysis. 

Mice were anesthetized with 100 mg/kg ketamine and 10 mg/kg xylazine and vascular injury 

was induced by placing a Whatman filter paper strip (1 x 0.5 mm) saturated with 15 % FeCl3 
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(Sigma) over venules (ranging from 130 to 160 µm diameter) in dorsal skinfold chambers for 

3 minutes. Thrombus formation following vessel injury was examined in real-time by 

monitoring the accumulation of rhodamine 6G (Sigma) (3 mg/kg mouse)–labelled platelets 

using an inverted fluorescence microscope (Axio Observer, Carl Zeiss MicroImaging GmbH, 

Germany) with a 5x objective connected to a Hamamatsu Orca-R2 charge-coupled device 

video camera

 

. Platelet deposition and thrombus growth in injured venules were monitored 

until vessel occlusion defined as a complete arrest of blood flow for at least 5 minutes. 

Immediately after vessel occlusion, 20 µl of saline containing rtPA (80 µM) and hirudin (10 

µM) (Serbio) were applied topically in the chamber to enhance thrombolysis, and prevent 

rethrombosis. Thrombolysis was analyzed by measuring the occurrence of recanalization of 

occluded venules, the time to recanalization, and the decrease in thrombus area at 30 minutes 

and 1 hour after rtPA treatment. A total of 13 venules in 7 PN1 –/– mice and 13 venules in 7 

WT mice were studied. Data acquisition and analysis were done using the Axiovision 

software (Carl Zeiss MicroImaging GmbH, Germany). 

Statistical analysis 

Results are shown as means ± SEM. Students t test was used for in vitro experiments with 

recombinant PN-1, in vitro experiments of wild-type and PN-1-deficient mice, and for lysis 

front velocity experiments. The one-way ANOVA followed by Dunnett’s test was used 

when comparisons of anti-PN-1 IgG or anti-PAI IgG groups versus Control IgG were 

performed. A linear mixed-effects model (LME) was used for the analysis of in vivo 

thrombolysis. A P value less than or equal to 0.05 was considered significant. 
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Results 

PN-1 inhibits plasminogen activation by fibrin-bound tPA  

 Plasminogen activation by tPA, was measured on a fibrin surface, in the presence or 

absence of recombinant PN-1. First, tPA was incubated for 1 hour on fibrin-coated plates, the 

excess of unbound tPA being eliminated. PN-1 was subsequently added to the fibrin-coated 

plates and the excess discarded. Plasmin generation induced by the residual fibrin-bound tPA 

was then determined after addition of plasminogen with the chromogenic substrate CBS0065. 

The initial rate of plasmin generation by tPA decreased by ~ 2fold in the presence of PN-1 

(Figure 1A): 2.7 ± 0.3 nM and 1.3 ± 0.1 nM plasmin were generated, respectively in the 

absence and presence of PN-1 (Figure 1B). 

 tPA-induced fibrin degradation was measured by fibrin-plasminogen-agar 

zymography with platelet releasates. Recombinant tPA induces a lysis area reflecting 

fibrinolytic activity relative to the amount of plasmin converted from plasminogen by tPA. As 

expected, the fibrin zymography lysis band corresponding to tPA was reduced by 

recombinant PN-1 (Figure 1C). No reduction in tPA induced-lysis area was observed after 

tPA incubation with the supernatant of resting human platelets. In contrast, when tPA was 

incubated with the secretion products of activated human platelets, the fibrin zymography 

lysis t-PA-band was barely detected, indicating the secretion of tPA inhibitor(s) by activated 

platelets (Figure 1C). To determine whether PN-1 contributed to fibrinolysis inhibition, 

zymography experiments were performed in the presence of a PN-1-blocking antibody. tPA 

activity was restored in the presence of the anti-PN-1 IgG (Figure 1C) but not in the presence 

of an irrelevant IgG (not shown). To confirm these findings, the same experiments were 

performed with platelets from PN-1-deficient mice and their littermate controls. Incubation of 

tPA with the secretion products of activated platelets from WT mice resulted in an almost 

complete inhibition of lysis (Figure 1D). On the contrary, the products secreted by platelets 
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from PN-1-/- did not decrease the tPA-induced lysis area (Figure 1D). Together, these data 

demonstrate that PN-1 has the remarkable capacity to inhibit the generation of plasmin 

induced by tPA bound to fibrin. 

 

PN-1 inhibits fibrin-bound plasmin  

 Degradation of fibrin by the serine protease, plasmin, is a step in the fibrinolysis 

process where PN-1 can also play an important role. To test this hypothesis, plasmin activity 

was measured on a fibrin surface, in the presence or absence of recombinant PN-1. The initial 

rate of substrate hydrolysis induced by fibrin-bound plasmin decreased by ~10-fold in the 

presence of PN-1 (Figure 2A-B). Fibrin-bound plasmin activity was thus drastically inhibited 

by PN-1. 

 Plasmin-induced fibrin degradation was measured by using fibrin-agar zymography. 

Similarly to the results obtained with tPA, we observed that the secretion products of 

activated platelets inhibited plasmin-induced lysis. This inhibition was completely prevented 

by the blocking anti-PN-1 antibody (Figure 2C). Fibrin-agar zymography was also performed 

with platelets from PN-1-deficient mice and their littermate controls. Incubation of plasmin 

with the secretion products of activated platelets from WT mice resulted in an almost 

complete inhibition of lysis (Figure 2D). On the contrary, the products secreted by platelets 

from PN-1-/- mice did not reduce plasmin-induced lysis area (Figure 2D). Our results thus 

demonstrate that PN-1 secreted by activated platelets is able to inhibit the fibrinolysis induced 

by fibrin-bound plasmin  

 

Platelet PN-1 limits PRC lysis 

 To test the functional effect of PN-1 on endogenous clot lysis, human platelet-rich 

plasma (PRP) containing FITC-fibrinogen, was preincubated with a control IgG or the 
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blocking anti-PN-1 IgG before clotting. Fibrinolysis was then assessed by clot weight loss and 

fluorescence release from the clot after 24 hours at 37°C. In the presence of a control IgG, 

clot weight loss was 7 ± 1 mg, whereas preincubation with the anti-PN-1 IgG resulted in a 

large increase in clot weight loss, reaching 27 ± 2 mg (Figure 3A). A blocking anti-PAI-1 IgG 

also enhanced clot weight loss by 17 ± 5 mg, although this increase was not statistically 

significant. The combination of both blocking antibodies resulted in a large increase in clot 

weight loss, reaching 46 ± 10 mg (Figure 3A). The percentage of FITC released from the clots 

was also significantly higher in the presence of the anti-PN-1 IgG (37 ± 2 %) than in the 

presence of an irrelevant IgG (26 ± 1 %) (Figure 3B). The same experiments were performed 

with PRP from WT and PN-1-deficient mice. Clot weight loss was greater for fibrinolysis 

with PN-1-/- clots (55 ± 6 mg) than with WT clots (31 ± 2 mg) (Figure 3C), and the 

percentage of released fluorescence was higher for PN-1 -/- (89 ± 3 %) than for WT clots (64 

± 3 %) (Figure 3D). Together, these results show that, in the absence of PN-1, endogenous 

tPA-induced clot lysis is enhanced within 24 hours, indicating that platelet PN-1 is a regulator 

of endogenous clot lysis. 

 The effect of PN-1 inhibition or PN-1-deficiency on clot lysis was further investigated 

using a ROTEM® analyser. An exogenous supplement of a subthreshold lytic concentration of 

tPA (0.5 nM) was used to induce clot lysis. As shown in Figures 4A and 4B, the percentage of 

tPA-induced clot lysis was minimal in the presence of a control IgG, reaching 16 ± 2%, while 

it was greatly increased in presence of the anti-PN-1 IgG, reaching 42 ± 5%. A blocking anti-

PAI-1 IgG also has an increased tendency for clot lysis by 28 ± 5 %, although it was 

statistically insignificant. The combination of both blocking antibodies resulted in an almost 

complete clot lysis at 60 minutes (91 ± 1 % of lysis). To substantiate these results, 

experiments were also performed using mouse platelets (Figure 4C). The ROTEM® tracing 

showed that a subthreshold concentration of tPA induced lysis of WT clots by 56 ± 7 % 
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whereas lysis of PN-1-deficient clots was almost complete (84 ± 8 %) under our experimental 

conditions (Figure 4D). These results indicate that both PN-1 and PAI-1 released by activated 

platelets contribute to inhibit tPA-induced clot lysis. 

 

Platelet PN-1 reduces the velocity of clot lysis 

 We visualized the lysis front of PRC by using laser scanning confocal microscopy 

(Figure 5). Addition of tPA at the edge of the microchambers of PRC initiated lysis with a 

straight and sharp front moving across the entire fibrin surface. A significant increase in the 

lysis front velocity was observed in the presence of the blocking anti-PN-1 IgG with an 

average rate of 22.5 ± 2.8 µm/minute compared to the control IgG 11.8 ± 1.6 µm/minute , (P< 

0.01 n=5 ) (Figure 5A). To confirm these findings, the same experiments were performed 

with clots from PN-1-deficient mice and their littermate controls. As observed with human 

clots, addition of tPA resulted in an acceleration of the lysis front in PN-1-deficient clots with 

a rate of 16.0 ± 1.5 µm/minute versus 10.3 ± 0.9 µm/minute with the WT clots (P< 0.05 n=5 ) 

(Figure 5B). 

 

tPA-induced thrombolysis is enhanced in PN 1-/- mice. 

 To determine whether the antifibrinolytic effect of PN-1 is of in vivo relevance, we 

have developed in mice, a method in which thrombolysis can be measured by intravital 

microscopy using the dorsal skinfold chamber model. We compared the efficiency of tPA-

induced thrombolysis in WT and PN-1 -/- mice (Figure 6A). Topical application of FeCl3 

over venules ranging from 130 to 160 µm in diameter was used to induce vascular injury 

leading to occlusive thrombosis. While there was no significant difference in the occlusive 

thrombus size/area between WT and PN-1 -/- mice (34163µm2 ± 5459 µm2 vs 31656 ± 

4709µm2, n = 13 vessels from 7 mice per group), the time to reach complete occlusion was 
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significantly reduced in PN-1 -/- mice compared to WT mice, in agreement with data obtained 

in the mesenteric vessel thrombosis model 10. During the 24 hours following complete arrest 

of blood flow, spontaneous recanalization was observed in only 2 of 13 vessels out of 7 PN 1-

/-mice and in none of the 13 occluded vessels from WT mice. This indicates that spontaneous 

thrombolysis following FeCl3

 After the thrombolysis experiments, mice were kept under observation for 24 hours 

and euthanized. Four hours after tPA treatment, all vessels occluded by FeCl

 injury is a slow process in both WT and PN1-/- mice. In order 

to accelerate thrombolysis, tPA was directly added to the chamber 5 minutes following 

complete vessel occlusion. Hirudin was simultaneously added to prevent rethrombosis. In WT 

mice, the mean time to recanalization following tPA treatment was superior to 1 hour while it 

was of 13 ± 2 minutes in PN-1 -/- mice (n= 7 mice) (Figure 6A). Furthermore, 1 hour after 

tPA treatment, the incidence of recanalization was 15 % (2 of 13 vessels) in WT mice and 

reached 92 % (12 of 13 vessels) in PN1 -/- mice (Figure 6B). Thirty minutes after tPA 

treatment, thrombus size remained unchanged in WT mice (101.6 ± 7.2 % of initial size) 

whereas it was significantly reduced in PN-1 -/- mice (56.1 ± 8.5 % of initial size). At 1 hour 

post-tPA treatment, the thrombus size was reduced in WT but this reduction was less 

important than in PN-1 -/- mice (76.7 ± 6.3 % vs 42.8 ± 9.5 % of initial size) (Figure 6C). 

Altogether, these results confirm that PN1 is a potent inhibitor of tPA-induced thrombolysis 

in vivo. 

3

 

 injury were 

recanalized in both WT and PN1 -/- mice. Interestingly, all PN-1-deficient mice (7 out of 7) 

remained healthy the day following thrombolytic treatment, whereas 71% (5 out of 7) of WT 

mice were apathetic and showed signs of respiratory distress.  
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Discussion 

 In humans, platelet PAI-1 released locally after platelet activation is assumed to be a 

major contributor to the stabilization of the thrombus by inhibiting endogenous fibrinolysis 5 

6. However, PAI-1-independent mechanisms have also been proposed to contribute to 

platelet-dependent inhibition of fibrinolysis 7. The existence of other non-PAI-1 proteinases 

inhibitors able to reduce plasminogen activation and/or plasmin activity has previously been 

suggested 19. Our study also suggests a less important role for PAI- and reveals that an 

additional serpin plays an important role in inhibiting plasminogen activators and plasmin. 

Indeed, we show here for the first time that PN-1, which can accumulate at the sites of 

vascular injury due to its presence in platelets 10, is an important player in the control of 

fibrinolysis. The fact that PN-1 can down-regulate both plasmin generation and plasmin 

activity on the fibrin matrix highlights the potential influence of PN-1 on fibrinolysis. Indeed, 

the fibrin matrix is largely recognized as an essential actor in the fibrinolysis process. It is 

well known that tPA-mediated plasminogen activation is dependent on fibrin, which restricts 

fibrinolysis to the site of thrombus 20. Importantly, when bound to fibrin, tPA is protected 

from inhibition by PAI-1 21, 22. The inhibition of tPA by PAI-1 is decreased by 80-90 percent 

in the presence of fibrin, because PAI-1 has no access to the catalytic domain of fibrin-bound 

tPA 23. Moreover, the rate of inactivation of plasmin by α2-antiplasmin slows down very 

significantly when plasmin is bound to fibrin 24. Thus, whereas serine proteases of the fibrin-

bound plasminergic system are “protected” from their principal inhibitors, platelet PN-1 

appears to be one inhibitor capable of blocking them in situ. The blocking PAI-1 antibody 

alone led to a non significant increase in clot lysis, in agreement with previous data 

demonstrating that PAI-1-deficiency induced only mild hyperfibrinolysis 19. This suggests 

that PAI-1 alone is not sufficient in regulating the lysis of platelet-rich clots. The higher 

fibrinolytic capacity observed in the presence of both PN-1 and PAI-1 blocking antibodies 
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supports a synergic involvement of both proteins in the regulation of clot lysis. Moreover, 

platelet PN-1 can influence the lysis of fibrin clots generated spontaneously from PRP, 

without any exogenous tPA, but also after addition of recombinant tPA, indicating that PN-1 

is inhibitory not only on endogenous but also on exogenous tPA-mediated lysis. These points 

are of clinical relevance: first, because endogenous fibrinolysis is known to play a pivotal role 

in the evolution of thrombotic cardiovascular diseases and second, because this may relate to 

the failure of optimal reperfusion in approximately one half of STEMI patients who are 

treated with fibrinolytic agents. A polymorphism in PN-1 could possibly explain the 

heterogeneity in the therapeutic efficacy of thrombolytic agents. Moreover, the fact that the 

lysis front moves faster when the PRC is devoid of PN-1, may imply that PRCs are refractory 

to tPA-induced lysis in a PN-1-dependent manner and that platelet PN-1 may have a critical 

impact at the level of fibers in the fibrin clot. Further experiments are needed to clarify this 

potential implication of platelet PN-1 on clot structure. 

 PN-1 appears to be a particularly important actor both in the development and in the 

dissolution of a thrombus. Indeed, PN-1 is involved in thrombus generation and extension by 

its capacity to inhibit thrombin-mediated fibrin formation and platelet activation 10, and we 

demonstrate here that PN-1 is also involved in thrombolysis by its capacity to inhibit the local 

generation and activity of plasmin. Because of these opposing effects, it was of great interest 

to analyze the effect of PN-1-deficiency in the process of thrombus dissolution, in vivo. For 

this purpose, we have developed an original murine model of in vivo thrombolysis associating 

ferric chloride injury and the dorsal skinfold chamber model. This approach is a reproducible 

method to quantify thrombus formation and lysis induced by a topical application of tPA. 

This device has the great advantage of allowing direct visualization, via intravital video-

microscopy, of thrombus formation but also, which is the originality of our model, of 

thrombus lysis in living animals. We observed that tPA-triggered PRCs are more readily lysed 
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in PN-1-deficient mice than in WT mice, with both the rate and the extent of recanalization 

being increased in PN-1-/- mice. Our data thus demonstrate the important role of PN-1 in 

mediating the resistance of PRC to lysis.  We also observed that WT mice poorly survived 

thrombolysis and exhibited a global organ failure syndrome, in contrast to PN-1-deficient 

mice which supported well the procedure without exhibiting any clinical manifestations.  

 The fact that platelet PN-1 is so important to protect the developing thrombus from 

premature lysis may explain the reason why the role of PAI-1 in thrombolysis resistance is a 

subject of controversy. Indeed, none of the previous investigations studying PAI-1 role in 

thrombolysis failure took into account the contribution of PN-1. We suggest here that 

endogenous PN-1 can play an important role in the failure of thrombolytic therapy to restore 

arterial blood flow. Clearly, our findings should be considered in the design of new 

therapeutic strategies, which should include the inhibition of PN-1 by antibodies or synthetic 

compounds to improve the therapeutic efficacy of thrombolytic agents. 
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Figure legends 
 
Figure 1: Inhibition of fibrin-bound tPA activity by PN-1 

(A-B) tPA (2.5 nM) was bound to fibrin surfaces, and plasmin formation was recorded in 

absence or presence of recombinant PN-1 (10 nM), with the chromogenic substrate CBS0065. 

The curves represent the average of the raw data corresponding to the change in absorbance as 

a function of time in the absence and the presence of rPN-1. To simplify the plots, error 

standards are represented only every 20 or 40 min. (B) Rates of substrate hydrolysis were 

calculated from the initial velocity and compared to a plasmin standard curve. Data are 

representative of 3 different experiments, each performed in triplicate. *P < 0.05 significantly 

different from tPA alone. (C-D) Plasminogen activation by tPA was measured by fibrin-

plasminogen-agar zymography after incubation of tPA with the supernatant from resting 

platelets or activated platelets by PAR1-AP or PAR4-AP as described in Methods. tPA was 

incubated (C) with human platelet secretion products in the presence or absence of an anti-

PN-1 IgG, or (D) with platelet secretion products from WT and PN-1-/- mice. Data are 

representative of 5 separate experiments from different donors or mice. 

 

Figure 2: Inhibition of fibrin-bound plasmin activity by PN-1 

(A-B) Plasmin (50 nM) was bound to fibrin surfaces and its activity was measured in absence 

or presence of recombinant PN-1 (10 nM), with the chromogenic substrate CBS0065. The 

curves represent the average of the raw data corresponding to the change in absorbance as a 

function of time in the absence and the presence of rPN-1. To simplify the plots, error 

standards are represented only every 20 or 40 min. (B) Rates of substrate hydrolysis were 

calculated from the initial velocity and compared to a plasmin standard curve. Data are 

representative of 3 different experiments, each performed in triplicate. *** P < 0.001 

significantly different from plasmin alone. (C-D) Plasmin activity was measured by fibrin- 
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agar zymography after incubation of plasmin with the supernatant from resting platelets or 

activated platelets by PAR1-AP or PAR4-AP as described in Methods. Plasmin was incubated 

(C) with human platelet secretion products in the presence or absence of an anti-PN-1 IgG, or 

(D) with platelet secretion products from WT and PN-1-/- mice. Data are representative of 5 

separate experiments from different donors or mice. 

 

Figure 3: Effect of platelet PN-1 in PRC lysis 

(A-B) PRCs from PRP of healthy donors, in the presence of an irrelevant IgG or an anti-PN1 

IgG, or an anti-PAI-1 IgG or (C-D) PRCs from WT or PN-1-/- mice PRP, were incubated 

with FITC-fibrinogen prior to clot formation. (A, C) The percentage reduction in clot weight 

and (B, D) the percentage of released fluorescence were analyzed over 24 hours. Data are 

presented as means ± SEM of 5 independent experiments from different donors and mice. 

***P < 0.001, significantly different from control IgG or WT clots. *P < 0.05, significantly 

different from control IgG. **P < 0.01, significantly different from WT clots. 

 

Figure 4: Effect of platelet PN-1 on ROTEM®

(A) Representative human PRP thromboelastogram (ROTEM

 ex vivo clot lysis. 

®) profiles. PRP was 

preincubated with a subthreshold concentration of tPA in presence of an irrelevant IgG, or an 

anti-PN-1 IgG, an anti-PAI-1 IgG or both. (B) In each condition, the rate of fibrinolysis was 

assessed by the reduction of the amplitude of the thrombolelastogram profile at 60 minutes. 

(C) Representative mice PRP thromboelastogram (ROTEM®) profiles. WT and PN-1-/- PRPs 

were preincubated with a subthreshold concentration of tPA and (D) the rate of fibrinolysis 

was quantified at 60 minutes. Data are presented as means ± SEM of 5 independent 

experiments from different donors and mice. ***P < 0.001, significantly different from 

control IgG. **P < 0.01 significantly different from WT clots. 
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Figure 5: Effect of platelet PN-1 on lysis-front velocity 

PRCs were labelled with Alexa 488-fibrinogen. (A) A series of confocal micrographs 

showing the dynamic lysis by rtPA, of human PRCs in presence of an irrelevant IgG or an 

anti-PN-1 IgG. (B) Confocal images of the dynamic lysis from WT or PN-1-/- PRCs. 

Progressive lysis-front motions are visualized and confocal micrographs are representative of 

5 independent experiments from different donors and mice. Bar, 20µm. 

 

Figure 6: Effect of PN-1 on thrombolysis. 

(A) Representative intravital images of vessel recanalization after tPA-treatment following an 

occlusion induced by FeCl3

 

. Bar, 200µm. (B) Quantification of the incidence of recanalized 

vessels within 1 hour post tPA-treatment. (C) Analysis of thrombus size after tPA-treatment 

in WT and PN-1 -/- mice. Data are means ± SEM for 13 vessels injured in 7 mice per group. 

*P< 0.05 significantly different from WT mice at equivalent time post-tPA treatment. 
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