

A role for the peroxisomal 3-ketoacyl-CoA thiolase B enzyme in the control of PPAR α -mediated upregulation of SREBP-2 target genes in the liver.

Marco Fidaleo, Ségolène Arnauld, Marie-Claude Clémencet, Grégory Chevillard, Marie-Charlotte Royer, Melina de Bruycker, Ronald J. A. Wanders, Anne Athias, Joseph Gresti, Pierre Clouet, et al.

▶ To cite this version:

Marco Fidaleo, Ségolène Arnauld, Marie-Claude Clémencet, Grégory Chevillard, Marie-Charlotte Royer, et al.. A role for the peroxisomal 3-ketoacyl-CoA thiolase B enzyme in the control of PPAR α -mediated upregulation of SREBP-2 target genes in the liver.: ThB and cholesterol biosynthesis in the liver. Biochimie, 2011, 93 (5), pp.876-91. 10.1016/j.biochi.2011.02.001. inserm-00573373

HAL Id: inserm-00573373 https://inserm.hal.science/inserm-00573373

Submitted on 3 Mar 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A role for the peroxisomal 3-ketoacyl-CoA thiolase B enzyme in the control of

2

$\ensuremath{\mathsf{PPAR}\alpha}\xspace$ -mediated upregulation of SREBP-2 target genes in the liver

Marco Fidaleo^{1,2,8#}, Ségolène Arnauld^{1,2#}, Marie-Claude Clémencet^{1,2}, Grégory Chevillard^{1,2,9},
Marie-Charlotte Royer^{1,2}, Melina De Bruycker³, Ronald J.A. Wanders⁴, Anne Athias⁵, Joseph
Gresti^{1,6}, Pierre Clouet^{1,6}, Pascal Degrace^{1,6}, Sander Kersten⁷, Marc Espeel³, Norbert Latruffe^{1,2},
Valérie Nicolas-Francès^{1,2} and Stéphane Mandard^{1,2,*}

¹Centre de recherche INSERM U866, Dijon, F-21000, France; ²Université de Bourgogne, Faculté des 7 8 Sciences Gabriel, Equipe Biochimie Métabolique et Nutritionnelle, Dijon, F-21000, France; ³Department of Human Anatomy, Embryology, Histology and Medical Physics, Ghent University, 9 Ghent, Belgium; ⁴Laboratory Genetic Metabolic Diseases, Academic Medical Center at the University 10 of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands. ⁵Université de Bourgogne, 11 IFR100, Plateau Technique de Lipidomique - Dijon, France. ⁶INSERM U866, Equipe 12 Physiopathologie des dyslipidémies, Faculté des Sciences Gabriel, 21000 Dijon, France; ⁷Nutrition, 13 14 Metabolism and Genomics group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands. ⁸Present address: Department of Cellular and Developmental Biology, 15 University of Rome "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy. ⁹Present address: Lady 16 Davis Institute for Medical Research, McGill University, 3755 Côte Ste. Catherine Road, Montreal, 17 18 QC H3T 1E2, Canada;

19 *corresponding author : Stéphane MANDARD (PhD), LBMN, centre de recherche INSERM U866,

20 6, Boulevard Gabriel, 21000 Dijon, France. Phone: (+33) 3 80 39 62 02, Fax: (+33) 3 80 39 62 50, E-

- 21 mail: stephane.mandard@u-bourgogne.fr
- [#] these authors contributed equally to this work.
- 23 Short title: ThB and cholesterol biosynthesis in the liver

Keywords: peroxisomal 3-ketoacyl-CoA thiolase B, PPARα, cholesterol, Wy14,643, Fatty Acid
Oxidation.

1 Abstract

Peroxisomal 3-ketoacyl-CoA thiolase B (Thb) catalyzes the final step in the peroxisomal β -2 3 oxidation of straight-chain acyl-CoAs and is under the transcription control of the nuclear hormone receptor PPARα. PPARα binds to and is activated by the synthetic compound Wy14,643 (Wy). 4 Here, we show that the magnitude of Wy-mediated induction of peroxisomal β-oxidation of 5 radiolabeled (1-¹⁴C) palmitate was significantly reduced in mice deficient for *Thb*. In contrast, 6 mitochondrial β -oxidation was unaltered in *Thb*^{-/-} mice. Given that Wy-treatment induced Acox1 7 and MFP1/2 activity at a similar level in both genotypes, we concluded that the thiolase step alone 8 was responsible for the reduced peroxisomal β-oxidation of fatty acids. Electron microscopic 9 analysis and cytochemical localization of catalase indicated that peroxisome proliferation in the 10 liver after Wy-treatment was normal in Thb-/- mice. Intriguingly, microarray analysis revealed that 11 mRNA levels of genes encoding for cholesterol biosynthesis enzymes were upregulated by Wy in 12 Wild-Type (WT) mice but not in $Thb^{-/-}$ mice, which was confirmed at the protein level for the 13 selected genes. The non-induction of genes encoding for cholesterol biosynthesis enzymes by Wy 14 in *Thb*^{-/-} mice appeared to be unrelated to defective SREBP-2 or PPAR α signalling. No difference 15 was observed in the plasma lathosterol/cholesterol ratio (a marker for *de novo* cholesterol 16 biosynthesis) between Wy-treated WT and Thb--- mice, suggesting functional compensation. 17 Overall, we conclude that ThA and SCPx/SCP2 thiolases cannot fully compensate for the absence 18 of ThB. In addition, our data indicate that ThB is involved in the regulation of genes encoding for 19 cholesterol biosynthesis enzymes in the liver, suggesting that the peroxisome could be a promising 20 21 candidate for the correction of cholesterol imbalance in dyslipidemia.

1 Introduction

Over the last decade, considerable effort has been made to disentangle the various pathways in 2 which peroxisomes are involved. Evidence abounds that defects in peroxisome biogenesis and β -3 oxidation of fatty acids cause several inherited diseases, which - in most cases - are lethal [1]. 4 Peroxisomes are known to be involved in many aspects of lipid metabolism, including synthesis of 5 bile acids and plasmalogens, synthesis of cholesterol and isoprenoids, α -oxidation and β -oxidation 6 7 of very-long-straight- or -branched-chain acyl-CoAs. The peroxisomal degradation of straightchain acyl-CoAs by a discrete set of enzymes has been well documented. The β-oxidation of 8 straight-chain acyl-CoAs starts with a reaction catalyzed by acyl-CoA oxidase 1 (Acox1), the rate-9 limiting enzyme of the β -oxidation pathway. This step is followed by two enzymatic reactions 10 carried out by the MFP1/L-bifunctional protein and the MFP2/D-bifunctional protein. The fourth 11 and last step is catalyzed by the peroxisomal 3-ketoacyl-CoA thiolases. 12

Intriguingly, two different peroxisomal 3-ketoacyl-CoA thiolases for very-long-straight-chain fatty acids (thiolase A, ThA, Acaa1a and thiolase B, ThB, Acaa1b, EC:2.3.1.16) have been cloned in rodents, while only one corresponding gene (peroxisomal 3-acetyl-CoA acetyltransferase-1, ACAA1) has been identified in humans [2-4]. The third peroxisomal thiolase, SCP-2/3-ketoacyl-CoA thiolase (SCPx), displays a very broad substrate specificity, including cleavage of 2-methyl branched as well as straight-chain 3-ketoacyl-CoA esters [1, 5, 6].

Targeted disruption of the mouse Acox1 gene has revealed the critical role of this enzyme in 19 hepatocellular proliferation and peroxisome proliferation as well as in the catabolism of very-long-20 chain fatty acids [7, 8]. Peroxisomal acyl-CoA oxidase deficiency and its consequences are also 21 22 well documented in humans [9]. Two isoforms of ACOX1 (a and b) have been characterized in mouse and man [10]. Vluggens et al. recently studied the respective roles of these isoforms by 23 24 using adenovirally driven hACOX-1a and hACOX-1b in Acox1 null mice [10, 11]. The hACOX-1b isoform was more effective in reversing the Acox1 null phenotype than the hACOX-1a isoform, 25 illustrating functional differences between these two closely related proteins. Other reports aimed 26

at characterizing the consequences of Mfp-1 (L-PBE) and/or Mfp-2 (D-PBE) deficiencies in mice 1 are also available [12]. While most biochemical parameters remained unaffected by the single 2 deletion of Mfp-1, Mfp-1 deficient mice displayed marked reduction in peroxisome proliferation 3 4 when challenged with a peroxisome proliferator [13]. The Mfp-2 deficient mice displayed disturbances in bile acid metabolism and in the breakdown of very-long-chain fatty acids. Recently, 5 it was also reported that deletion of Mfp-2 in mice resulted in the combined upregulation of 6 PPARalpha and SREBP-2 target genes in the liver, suggesting a potential cross-talk between the 7 two signalling cascades, orchestrated by MFP-2 [14]. 8

Information about ACAA1 remains fragmentary and only a limited number of studies has been 9 10 reported so far [4, 15]. The discovery of a young girl with a specific mutation within the ACAA1 gene was initially believed to shed some light on the role of ACAA1 in very-long-chain fatty acid 11 catabolism [16]. However, follow-up investigations demonstrated that the true defect was rather at 12 the level of D-bifunctional protein, rendering the impact of ACAA1 in humans uncertain [15]. To 13 date, it is not clear if ACAA1 plays a similar role in humans and rodents, nor whether ACAA1 can 14 be considered as the ortholog of ThA and/or ThB [2]. Hence, in an effort to improve our 15 understanding of the functions of peroxisomal 3-ketoacyl-CoA thiolases, we began by studying the 16 deletion of *Thb* in mice [17]. 17

As a hypolipidemic fibrate drug, the synthetic peroxisome proliferator Wy14,643 (Wy) causes 18 proliferation of peroxisomes in liver parenchymal cells [18]. In WT mice, Wy administration gives 19 rise to a robust elevation of mitochondrial and peroxisomal fatty acid β -oxidation, hepatocyte 20 hyperplasia and then hepatomegaly, but these effects are not found in PPAR α deficient mice [19]. 21 At the molecular level, Wy has been characterized as a potent and selective activator of the nuclear 22 hormone receptor PPARa in humans and rodents [20, 21]. PPARa is well expressed in 23 metabolically active tissues such as hepatic, renal and brown adipose tissue [22]. After binding of 24 Wy, PPAR α becomes activated and regulates the expression of a subset of genes commonly 25 referred to as PPAR α target genes [23]. Previously, *Thb* was identified as a gene highly responsive 26

1 to PPAR α agonists [24, 25]. Therefore *Thb* mRNA levels can be modulated by treatment with 2 peroxisome proliferators (PP). In addition to being crucial for lipid handling, PPAR α has been 3 linked to the regulation of genes involved in cell growth, differentiation and inflammation control 4 [26-29]. Using gene expression profiling combined with northern-blotting or RT-qPCR 5 experiments, it has also been established that the effects of Wy on hepatic gene expression are 6 robust and almost exclusively mediated by PPAR α [30, 31].

Since *Thb* expression is highly activated by PPAR α , it can be hypothesized that the effect of *Thb* 7 deletion would be more pronounced under conditions of PPAR α activation. Accordingly, the effect 8 of Thb deletion was studied in WT mice and Thb^{-/-} mice, both treated with Wy for 8 days, and 9 fasted for 6h before sacrifice. The results indicate that ThB inactivation is associated with a modest 10 11 but statistically significant decrease in peroxisomal palmitate β -oxidation. It is also worth noting that ThB is dispensable for Wy-mediated cell and peroxisome proliferation in the liver. 12 13 Intriguingly, the Wy-induction of some genes encoding for cholesterol biosynthesis enzymes was altered in Thb^{-/-} mice, suggesting that ThB has a unique and unexpected role in cholesterol 14 metabolism. 15

16

17

18 2. Materials and methods

19 *2.1. Animals*

Male, pure-bred Sv129 (WT) and $Thb^{-/-}$ mice have been previously described [17]. Mice were kept 20 in normal cages with food and water ad libitum, unless indicated. Mice were routinely fed a 21 standard commercial pellet diet (UAR A03-10 pellets from Usine d'Alimentation Rationnelle, 22 23 Epinay sur Orge, France, 3.2 kcal/g) consisting (by mass) about 5.1% fat (C16:0 0.89%; C16:1n-7 $\pm 0.09\%$; C18:0 $\pm 0.45\%$; C18:1n-9 $\pm 1.06\%$, C18:2n-9 $\pm 1.53\%$ and traces of C18:3n-9). At the 24 time of sacrifice, animals were around 4–5 months old. Unless indicated, male mice in the fasted 25 26 state were deprived of food for 6h starting at 4:0 pm. Blood was collected via orbital puncture into EDTA tubes. The animal experiments were approved by the animal experimentation committee of 27

the University of Burgundy (protocol number n°1904) and were performed according to European
 Union guidelines for animal care.

3

4

2.2. Chemicals

5 For the purposes of the present work, Wy was obtained from ChemSyn Laboratories (Lenexa,
6 Kansas), Fenofibrate from Sigma, Arabic gum from Merck, qPCR MasterMix Plus for SYBR
7 Green I with fluorescein from Eurogentec, and (1-¹⁴C) palmitate from Amersham Biosciences.

8

9 2.3. Pharmacological protocol

Male mice were treated by intragastric gavage with two kinds of peroxisome proliferators: (1) Wy (30 mg/kg/day, approximately 200 µl/dose) for 8 days, and (2) fenofibrate (100 mg/kg/day, 200 µl/day) for 14 days. In both cases, these molecules were dispersed into water containing 3% Arabic gum. This protocol was performed daily between 8.00 a.m. and 10.00 a.m. Livers were excised, weighed, snap-frozen in liquid nitrogen, and stored at -80 °C. For the RNA analyses, tissue samples were taken from the same liver lobe in each mouse to avoid variability.

16 17

2.4. Peroxisomal and mitochondrial oxidation of $(1^{-14}C)$ palmitate

18 Peroxisomal and mitochondrial oxidation of $(1^{-14}C)$ palmitate were measured as described 19 elsewhere [32]. However, instead of quantifying the ¹⁴CO2 radioactivity level, the release of (1-20 ¹⁴C) acetyl-CoA and $(1^{-14}C)$ acetyl-carnitine in perchloric acid was quantified after one cycle of β -21 oxidation.

- 22
- 23

2.5. *Mitochondrial and peroxisomal enzyme assays.*

Liver homogenates and mitochondrial fractions were prepared as usually described [33]. Livers were homogenized with a Teflon pestle rotating at 300 rpm in a cooled Potter-Elvehjem homogenizer, in 20 volumes of chilled solution of 0.25 M sucrose, 2 mM EGTA, and 10 mM Tris-HCl (pH 7.4). Palmitate oxidation rates were measured in two separate media: the first allowed

1 both mitochondrial and peroxisomal activities to occur, and the second allowed only peroxisomal 2 activity. The functional state of mitochondria was estimated by the differential activities of 3 monoamine oxidase (EC 1.4.3.4) and of citrate synthase (EC 4.1.3.7), whereas that of peroxisomes 4 were determined by CN-insensitive palmitoyl-CoA-dependent NAD+ reduction, which has been 5 defined as the "peroxisomal fatty acid oxidizing system" (PFAOS) [34-36]. Carnitine 6 palmitoyltransferase I alpha (CPT-I α) activity was measured using L-(³H)carnitine (92.5 GBq/mol; 7 Amersham Biosciences TRK762) with palmitoyl-CoA, as described elsewhere [32].

8

9

2.6. Cytochemical localization of catalase and peroxisome electron microscopy

Peroxisomes were identified in liver sections at light and electron microscopy levels, thereby 10 revealing the enzymatic activity of catalase, the main peroxisomal marker enzyme, according to 11 established procedures [37, 38]. Liver samples were fixed in a 4% formaldehyde, 0.1M 12 sodiumcacocylate buffer (pH 7.3) containing 1% (w/v) calcium chloride for 24 h at room 13 14 temperature, after which sections (60 μ m) were cut with a cryostat. The cryostat sections were then incubated in a diaminobenzidine (DAB)-hydrogenperoxide medium at pH 10.5 (Theorell-15 Stenhagen buffer) for 3 hours at 25°C. After DAB-incubation, the sections were rinsed, post-16 17 osmicated and embedded in epoxy resin (LX-112) following standard protocols. Semi-thin (2 µm) sections were cut for light microscopy, and ultra-thin (750 nm) sections for electron microscopy. 18

19

20

2.7. Histochemistry/Histology.

We kindly acknowledge the expertise of Amandine Bataille (Plateau technique d'imagerie
cellulaire CellImaP, IFR 100 Santé-STIC, Dijon, France) for liver sections and staining with
hematoxylin and eosin.

24

25

2.8. In vivo proliferation assay of liver cells

After sacrifice of the animals, liver samples were taken from each treatment group. The sampleswere placed in 4 % formalin overnight, incubated in 70 % ethanol and dehydrated through a graded

series of alcohol (80%-100%). Finally, liver samples were placed in xylene before being embedded 1 in paraffin. Paraffin sections (4 µm thick) were cut and fixed to polylysine-coated slides. 2 Proliferative activity was then measured by labeling of the Ki-67 antigen, which is expressed in the 3 4 nuclei of all cells in G1, S, G2, and M phases. After removing paraffin with xylene, sections were re-hydrated in a graded series of ethanol from 100% to 95%. Endogenous peroxidase was blocked 5 with $3^{\circ}/^{\circ\circ}$ H2O2 in methanol for 10 min. All sections were pre-treated in a microwave oven in a 10 6 mM citrate buffer at pH = 6 for 10 minutes at 100°C. Non-specific binding sites were blocked 7 8 using 10% goat serum (diluted in PBS 0.1% and triton X-100) before an incubation of 2 h at room 9 temperature. Incubation with anti-Ki-67 (AB9260, Millipore), the primary polyclonal antibody, 10 was then performed, followed by incubation with a goat anti-rabbit IgG secondary antibody (Santa Cruz Biotechnology, sc-2004). Ki-67 positive cells were visualized by exposing the peroxidase to 11 3,3'-diaminobenzidine hydrochloride chromogen substrate (DAKO, K3467, France) following by 12 counterstaining with hematoxylin. Slides were then washed with deionized water and mounted with 13 a permanent medium (Clearmount mounting solution, Invitrogen Ltd., cat. no. 00-8010). It is also 14 worth noting that all cells in the active phases of the cell cycle stained brown except G0-phase 15 cells, which remained blue. To determine mitotic activity, an average of 4 fields on each slide was 16 analysed per animal (n=3). The Ki-67 labelling index was defined as Ki-67 positive cells/total cells 17 18 present in the field.

19

20

2.9. Plasma metabolites

21 Plasma was initially collected into EDTA tubes *via* retro-orbital punctures and then centrifuged at 22 4°C (10 min, 6000 rpm). Plasma β -hydroxybutyrate levels were determined using a β -23 hydroxybutyrate-FS kit (Diasys Diagnostic Systems International, France). Plasma free fatty acid 24 levels were evaluated with the NEFA-C kit from WAKO.

For lathosterol measurements, plasma was mixed with epicoprostanol, which was used as a control
standard. Potassium hydroxide saponification was followed by lipid extraction with hexane.
Cholesterol and lathosterol were analyzed in the trimethylsilyl ether state by GC-MS using a

1 Hewlett Packard HP6890 Gas Chromatograph equipped with an HP7683 Injector and an HP5973

2 Mass Selective Detector.

- 3
- 4

3.0. RNA isolation and reverse transcription step

5 Liver RNA was extracted with a TRIzol reagent (Invitrogen) using the supplier's instructions. RNA
6 was then further purified (from free nucleotides and contaminating genomic DNA) using RNeasy
7 columns (Qiagen) and DNAse treatment. 1 µg of RNA was used for reverse transcription with
8 iScript Reverse Transcriptase (Bio-rad).

- 9
- 10

3.1. Oligonucleotide microarray

Liver RNA samples, prepared using a TRIzol reagent, were collected from four groups of five 11 mice. One group of 5 WT mice and one group of 5 $Thb^{-/-}$ mice had been treated with Wy, the other 12 two groups (5 WT mice and 5 $Thb^{-/-}$ mice) had not been treated with Wy. An equivalent amount of 13 RNA from each animal (from all four groups) was subsequently pooled. Pooled RNA was further 14 purified using Qiagen RNeasy columns and the quality was verified using an Agilent bioanalyzer 15 2100 (Agilent technologies, Amsterdam, the Netherlands). RNA was judged suitable for array 16 hybridization if the sample showed intact bands corresponding to the 18S and 28S rRNA subunits 17 and no chromosomal peaks. As in a previous study, 10 µg of RNA was used for one cycle of cRNA 18 19 synthesis (Affymetrix, Santa Clara, USA) [39]. Hybridization, washing and scanning of Affymetrix GeneChip mouse genome 430 2.0 arrays were performed following standard Affymetrix protocols. 20 21 Fluorimetric data were processed by Affymetrix GeneChip Operating software, and the gene chips were globally scaled to all probe sets with an identical target intensity value. Further analysis was 22 23 performed using Data Mining Tools (Affymetrix).

24

25 *3.2. Real-Time Quantitative PCR*

26 PCR reactions were performed using the qPCR MasterMix Plus for SYBR Green I with fluorescein27 (Eurogentec). All PCR reactions were performed with MultiGuard Barrier Tips (Sorenson

BioScience, Inc.) and an iCycler PCR machine (Bio-Rad Laboratories). Primers were designed to 1 generate a PCR amplification product of 50-120 bp and were selected following the 2 recommendations provided with the Primer 3 software (http://frodo.wi.mit.edu/cgi-3 bin/primer3/primer3_www.cgi). The specificity of the amplification was verified via melt curve 4 analysis, and the efficiency of PCR amplification was evaluated by a standard curve procedure. The 5 expression of each gene was determined relative to 36B4 as a control gene and the relative gene 6 expression was calculated by using the "delta-delta Ct" quantification method. 7

- 8
- 9

3.3. Preparation of liver nuclear extracts

10 Nuclear extracts of liver were prepared following established protocols [40].

- 11
- 12

3.4. Immunoblot analysis

10 μ g of nuclear protein was separated on a 10% (w/v) polyacrylamide gel in the presence of 0.1% 13 (w/v) SDS and transferred on to PVDF membranes. A broad range pre-stained SDS-PAGE 14 standard (Bio-Rad, 161-0318) was used as a protein ladder in this study. After membrane saturation 15 at room temperature for 90 minutes with TBS (0.1 M Tris-HCl, pH 8.0, 0.15 M NaCl) containing 16 0.1% (v/v) Tween 20 and 5% (w/v) fat-free milk, blots were then incubated overnight at 4°C with a 17 polyclonal rabbit antibody against HMG-CoA reductase (sc-33827, 1:200, Santa Cruz 18 19 Biotechnology); a polyclonal anti-actin rabbit antibody (A2066, 1:5000, Sigma); a polyclonal anti-SREBP-2 rabbit antibody (Ab28482, 1:200, Abcam); a polyclonal anti-PPARα rabbit antibody (sc-20 9000, Santa Cruz Biotechnology); a monoclonal mouse antibody against the TATA-binding protein 21 (Ab818,1:2000, Abcam); and a polyclonal sheep antibody to histone H1 (Ab1938, Abcam), 22 respectively. High affinity purified antibodies reacting against phosphomevalonate kinase (Pmvk, 23 1:500) and mevalonate kinase (Mvk, 1:1000) have been characterized elsewhere [41]. Similarly, 24 the polyclonal rabbit antibody reacting against both thiolase A and B proteins (PTL, 1:15000) and 25 the mouse antibody reacting against Acox1 (1:200) have also been previously characterized [41-26 43]. After three washes in TBS containing 0.1% (v/v) Tween 20, primary antibodies were detected 27 10

using a peroxidase-conjugated IgG antibody, the choice of which depends on the primary antibody
of interest: a goat anti-rabbit IgG Antibody, (1:30000, sc-2004, Santa Cruz Biotechnology), a goat
anti-mouse IgG antibody, (1:30000, Sc-2005, Santa Cruz Biotechnology) or a rabbit anti-sheepIgG
antibody (Ab6747, Abcam). The protein bands labelled with the antibodies were visualized using a
Western-blotting chemiluminescence luminol reagent (Santa Cruz Biotechnology) by exposure to
X-ray films (Amersham). Densitometry of proteins on Western blots was performed using the
Scion Image software.

- 8
- 9
- 10

3.5. Liver cholesterol

11 About 100 mg of each liver sample was saponified by heating in ethanol-KOH, and then 12 cholesterol was extracted from the saponified solution with hexane. Epicoprostanol (5 β -cholestan-13 3 α -ol) was used as a standard. After evaporation of hexane, cholesterol was converted to 14 trimethylesters using bis-silyl-trifluoracetamide. Hepatic total cholesterol was subsequently 15 quantified by gas chromatography. To measure cholesterol ester levels, Folch extraction was 16 followed by a silylation step using bis (trimethyl-silyl) trifluoro-acetamide. Free cholesterol 17 concentration was taken to be the difference between total and esterified cholesterol.

18

19

3.6. Statistical analyses

20 Data are presented as means with their standard errors. The effects of genotype (KO vs WT), of 21 treatment (with or without Wy), and of genotype-treatment interaction were evaluated using a two-22 way ANOVA test. The cut-off for statistical significance was set at a p-value of 0.05.

23

24 4. Results

25 4.1. Peroxisomal palmitate oxidation is reduced in Wy-treated Thb^{-/-} mice

As previously shown, we found that *Thb* expression was strongly induced by Wy (Fig. 1a).
Interestingly, *Tha* expression was higher in *Thb*^{-/-} mice treated with Wy (Wy-genotype interaction,

p=0.046), indicating a possible compensation of the non-expression of the *thb* gene (Fig. 1a). A 1 Western-blotting experiment performed with an antibody unable to distinguish between ThA and 2 ThB isotypes confirmed the hepatic enrichment of ThA in $Thb^{-/-}$ mice treated with Wy (Fig. 1b). 3 When compared to WT mice, the Acox1, Mfp-1 and Scpx/Scp2 thiolase mRNA levels were clearly 4 higher in *Thb*^{-/-} mice, and statistically significant at face value (p=0.0506; p=0.017; p=0.0506 for 5 Acox1, Mfp-1 and Scpx/Scp2, respectively). After treatment with Wy, the Mfp-1 mRNA level was 6 significantly higher in $Thb^{-/-}$ mice (Wy-genotype interaction, p=0.004), while the Scpx/Scp27 thiolase and Acox1 mRNA levels increased in a similar way (which was further confirmed at the 8 protein level for Acox1, Fig. 1d) (Fig. 1c, p=0.252). To determine whether lack of Thb in mice 9 10 translates into functional alteration of fatty acid β -oxidation, we measured the rate of peroxisomal β -oxidation of (1-¹⁴C) palmitate, using a liver homogenate from each mouse, both WT and *Thb*^{-/-}, 11 with and without Wy-treatment (Fig. 1f). The effect of Thb deletion on the peroxisomal β -12 oxidation of (1-¹⁴C) palmitate was Wy-sensitive (Wy-genotype interaction, p=0.0035), indicating 13 that the deletion of *Thb* leads to a significant decrease (-31%) in the induction of β -oxidation. *Thb* 14 inactivation did not affect the production of NADH (which shows the enzymatic activity of Acox1 15 and MFP-1/MFP-2) regardless of the treatment conditions (Fig. 1g). It is therefore clear that ThA 16 and SCPx thiolases cannot fully compensate for ThB when Thb^{-/-} mice are metabolically 17 challenged by the increase in fatty acid oxidation that Wy induces. 18

19

20 4.2. Lack of ThB does not affect mitochondrial palmitate oxidation

21 Although *Thb* deletion caused a reduced rate of peroxisomal palmitate β -oxidation, it had no effect 22 on mitochondrial palmitate oxidation in Wy-treated *Thb*^{-/-} mice, as shown by the results for the 23 liver homogenate (Fig. 2a), and for the liver mitochondrial fraction (Fig. 2b). Consistent with these 24 data, mRNA levels, the activities of Carnitine Palmitoyl Transferase-I α (CPT-I α) and of the two 25 mitochondrial markers, MonoAmine Oxidase (MAO) and Citrate Synthase (CS) were similar for 1 WT mice and $Thb^{-/-}$ mice (Table 1 and supplemental Table 1). Additionally, circulating free fatty 2 acids (FFA) and β -hydroxybutyrate levels were not significantly altered in $Thb^{-/-}$ mice, both with 3 and without Wy-treatment, or after 24 h-fasting (Table 1). Taken together, the data show that Thb4 deletion has very little impact on mitochondrial fatty acid β -oxidation, but that it has a negative 5 effect on peroxisomal fatty acid β -oxidation when mice are metabolically challenged.

6

7

4.3. Wy-treated *Thb^{-/-}* mice display hepatomegaly similar to WT mice

Besides alteration of lipid metabolism, the knockout of the Acox1 gene in mice is widely 8 acknowledged to be associated with major hepatomegaly combined with the absence of 9 peroxisomes [7]. In order to check for the possible impact of *Thb* deletion on hepatomegaly, the 10 relative liver mass was evaluated for both genotypes. The hepatosomatic index was significantly 11 lower in *Thb*^{-/-} mice than in WT mice (p=0.0136) (Fig. 3a). After Wy-treatment, the hepatosomatic 12 index increased in mice of both genotypes, although less in Thb^{-/-} mice, suggesting the possible 13 involvement of ThB in Wy-induced hepatomegaly (Wy-genotype interaction, p=0.004). To further 14 investigate the putative role of ThB in hepatocyte proliferation, the size and number of liver cells 15 were quantified by histological staining using hematoxylin and eosin. Both parameters were 16 affected by Wy: cell numbers decreased and cell surface increased. No genotype effect per se was 17 observed either for cell number (p=0.105) or cell surface (p=0.250) (Fig.3b), suggesting that Thb 18 deletion has no marked effect on liver cell morphology (Fig. 3c). To assess the possible 19 implication of ThB in liver cell proliferation, Ki-67 immunohistochemistry was evaluated. Ki-67, a 20 21 nuclear protein preferentially expressed during all active phases of the cell cycle (G1, S1 and G2) and mitosis, is absent in quiescent cells. The number of Ki-67 positive cells was low for both WT 22 and Thb^{-/-} hepatocytes (Fig.3d). Consistent with the results from the macroscopic observations, the 23 labelling index from the 8-day exposure of mice to Wy showed a similar increase for both WT and 24 *Thb*^{-/-} hepatocytes (Fig. 3d) indicating that ThB was probably dispensable for cell proliferation in 25

26 liver.

2 4.4. *Thb*^{-/-} mice display regular peroxisome biogenesis and proliferation in liver

To assess for possible defects in peroxisomal assembly in $Thb^{-/-}$ mice, we performed microscopic 3 studies of liver sections. At light microscopy level, these studies revealed a distinct pattern of 4 numerous, DAB-reactive granules in the hepatocyte cytoplasm of WT mice, with normal 5 peroxisome distribution (Fig. 4a). Similar peroxisome numbers and distribution were observed in 6 Thb^{-/-} hepatocytes, suggesting that ThB was dispensable for peroxisome biogenesis and 7 proliferation in normal conditions (Fig. 4c). These results are coherent with similar gene expression 8 of critical peroxins (such as Pex3p, Pex13p and Pex16p) in both WT and Thb^{-/-} mice, indicating 9 that ThB is dispensable for peroxisome biogenesis (supplemental Table 1). Wy-treatment caused 10 massive peroxisome proliferation in both WT and $Thb^{-/-}$ hepatocytes (Fig. 4b, 4d). This result is 11 consistent with the increased mRNA levels of the PPAR α target gene Pex11 α observed in both WT 12 and $Thb^{-/-}$ mice (Fig. 4e). Taken together, these data indicate that ThB is dispensable for hepatic 13 14 peroxisome proliferation induced by Wy.

15 Electron microscopy (EM) examination revealed that the liver peroxisomes were more elongated 16 and slightly more numerous in $Thb^{-/-}$ mice than in WT mice (Fig. 4f, 4h). These data suggest that 17 *Thb* deletion does not cause the massive spontaneous peroxisome proliferation that has been 18 observed in the livers of mice deficient for Acox1 [8]. As expected, after Wy-treatment, 19 pronounced peroxisome proliferation was observed in both WT mice and $Thb^{-/-}$ mice.

- 20
- 21
- 22

23 4.5. *Thb* deletion blunts Wy-mediated upregulation of genes encoding for cholesterol
24 biosynthesis enzymes

1 In order to ascertain whether some metabolic steps are affected by *Thb* deletion, detailed analysis 2 of the microarray data was performed. In agreement with published data, Wy increased the 3 expression of several genes involved in *de novo* cholesterol biosynthesis (Fig. 5 and supplemental 4 Table 1) [44, 45]. However, this effect was significantly blunted in $Thb^{-/-}$ mice, as shown by RT-5 qPCR (Fig. 6). Similar data were collected for fenofibrate (Fig. 7). These data suggest that ThB 6 may be involved in hepatic cholesterol homeostasis *via* indirect regulation of the expression of 7 genes encoding for cholesterol biosynthesis enzymes.

8

9 4.6. Reduced content of cholesterol biosynthesis enzymes in the liver of Wy-treated *Thb^{-/-}*10 mice is not secondary to reduced maturation of SREBP-2.

Since the rate-controlling step in cholesterol biosynthesis is catalyzed by HMG-CoA reductase, we 11 12 checked whether the induction of *Hmg-CoA reductase* mRNA by Wy was translated at the protein level. In coherence with the mRNA data, Wy increased HMG-CoA reductase protein content in 13 WT mice, but not in $Thb^{-/-}$ mice (Fig. 8a). A similar pattern was observed for two enzymes found in 14 peroxisomes, phosphomevalonate kinase (Pmvk) and mevalonate kinase (Mvk), (Fig. 8a). 15 However, the pmvk mRNA levels did not reflect the increase in Pmvk at the enzyme level. 16 Therefore, we cannot completely rule out some post-translational modifications by intermediates of 17 the cholesterol and nonsterol isoprene biosynthetic pathways, as previously shown for Mvk [46]. In 18 coherence with an intact PPAR α signalling cascade in *Thb*^{-/-} mice, the nuclear PPAR α content was 19 not affected by *Thb* deletion or by the Wy-treatment (Fig. 8b). 20

Since genes encoding for cholesterol biosynthesis enzymes are under the direct control of the transcription factor SREBP-2, the *Srebp-2* mRNA level was quantified in liver samples of fibratetreated or mock-treated WT and $Thb^{-/-}$ mice. No significant effects of Wy (p=0.792), fenofibrate (p=0.083) or *Thb* deletion (p=0.71) on hepatic *Srebp-2* mRNA were observed (Fig. 8c). Whatever the genotype and pharmacological activation, the mature nuclear form of SREBP-2 remained constant (Fig. 8c). These data suggest that the decrease in induction of cholesterol synthesis gene

1 expression in fibrate-treated $Thb^{-/-}$ mice is probably not the consequence of defects in the 2 maturation process of SREBP-2.

3

4 4.7. The rate of in vivo cholesterol synthesis is reduced by Wy-treatment in both WT mice and 5 Thb^{-/-} mice.

To investigate if the impact of *Thb* deletion on cholesterol synthesizing genes expression in the liver 6 results in an altered rate of cholesterol synthesis, the plasma lathosterol (5α -cholest-7-en- 3β -ol) to 7 cholesterol ratio was determined. This ratio correlates well with the cholesterol balance and has 8 been used as an index of cholesterol biosynthesis [47, 48]. As reported in the literature, the 9 10 lathosterol/cholesterol ratio measured in the liver and in plasma was significantly reduced by Wytreatment (Wy; p=0.007) and fenofibrate-treatment (FF; p=0.042) in WT mice and in Thb^{-/-} mice 11 (Fig. 9a and 9c). In the liver, however, the steady-state hepatic cholesterol (total and free) content 12 remained stable after Wy-treatment in both WT mice and Thb^{-/-} mice, suggesting potential 13 compensatory mechanisms such as a decrease in catabolism of cholesterol to bile acids and/or a 14 15 decrease in its excretion in the stool (Fig. 9b and 9d).

16

17 5. Discussion

We recently reported on the hepatic enrichment of (n-7) and (n-9) mono-unsaturated fatty acids (MUFAs) in the livers of Wy-treated $Thb^{-/-}$ mice [49]. Here, using radiolabelled $(1-{}^{14}C)$ palmitate, we show that peroxisomal fatty acid oxidation is not impaired by *Thb* deletion in the livers of mock-treated mice. This new finding suggests that ThA and/or SCPx/SCP2 thiolase could replace ThB in the absence of pharmacological stress.

23

After Wy-treatment, there was weaker induction of peroxisomal fatty acid oxidation in $Thb^{-/-}$ mice, indicating that ThA and/or SCPx/SCP2 thiolase cannot fully compensate for the lack of ThB under conditions of metabolic stress. The role of ThB in the liver becomes crucial for peroxisomal fatty

acid oxidation when this function is activated. Even though ThA and ThB share almost complete
 amino acid similarity (96% identity), they do not necessarily share the same natural substrates and
 their relative affinity for their substrates could be different [2].

4 It has previously been reported that the livers of *Pex2-* or *Pex5-*deficient mice are devoid of 5 functional peroxisomes [50, 51]. Elsewhere, fibroblasts derived from patients with ACOX1 or 6 MFP2 deficiency have been shown to exhibit a fivefold reduction in peroxisome abundance [52]. 7 However, in some peroxisomal-disorder patients, peroxisome abundance was normal but their form 8 was elongated [53, 54]. Here, we report that $Thb^{-/-}$ mice have slightly elongated peroxisomes, but 9 the mechanism underlying this potentially interesting phenotype remains to be investigated.

Mice deficient for peroxisomal oxidative enzymes have fewer peroxisomes, supporting the 10 hypothesis that peroxisomal β -oxidation could partly control peroxisome abundance. Given that 11 reduced peroxisomal β -oxidation was observed in Wy-treated $Thb^{-/-}$ mice, we investigated the 12 function of ThB in this cellular process. Peroxisome abundance was shown to be related to the 13 presence or absence of Wy-treatment and not to genotype. Wy-treated Thb^{-/-} and WT mice both 14 15 had more peroxisomes than the mock-treated mice, indicating that the role of ThB in peroxisome proliferation is minimal. Pex7-deficient mice have a disrupted peroxisomal receptor for ThB 16 import, but they nevertheless display normal peroxisome assembly, which confirms that 17 peroxisomal ThB is dispensable for peroxisome biogenesis [55]. One possible hypothesis is that 18 ThA and/or SCPX/SCP2 could compensate for the absence of ThB. However, similar Scpx/Scp2 19 mRNA levels were found in WT and *Thb*^{-/-} mice, making the SCPX/SCP2 hypothesis unlikely. 20 Furthermore, SCPx/SCP2-deficient mice had more peroxisomes in their livers, indicating that 21 SCPX/SCP2 could impede peroxisome proliferation [6]. Elevated Tha mRNA levels in Wy-treated 22 Thb^{-/-} mice could reflect a response to the previously reported hepatic overload of (n-7) and (n-9) 23 MUFAs (Fig. 1) [49]. As the substrates and properties of ThA and ThB have still not been 24 25 completely explored, it is impossible to rule out a mechanism where ThA compensates for the absence of ThB, similar to the compensation observed between MFP-1 and MFP-2 in mice 26

1 deficient for these genes [56], (and reviewed in Ref. [5]), [57]. Thus, the generation of $Tha^{-/-}$ mice 2 would be a positive step in exploring the role of ThA in peroxisome biogenesis, proliferation and 3 function. It could also help to clarify the respective contribution of ThA and ThB to various 4 substrates [56].

5 In contrast to $Pex5^{-/-}$ mice, which show a twofold increase in mitochondrial palmitate β -oxidation, 6 mitochondrial palmitate β -oxidation remains unchanged in $Thb^{-/-}$ mice [58]. Furthermore, since 7 *Thb* deletion appears to have no effect on the structure of the mitochondria as revealed by electron 8 microscopy and on the activity of mitochondrial marker enzymes, we conclude that the biology of 9 the mitochondrion is not dependent on ThB.

10 Previous studies have described an incomplete cholesterol biosynthesis pathway in peroxisomes, 11 with conversion of the peroxisomal acetyl-CoA pool to HMG-CoA. The peroxisomal acetyl-CoA 12 pool produced by β -oxidation represents less than 10% of the total acetyl-CoA in the liver [59] and 13 is channelled preferentially to cholesterol biosynthesis [60-63]. Cholesterol biosynthesis followed 14 the same pattern in both *Thb*^{-/-} and WT mice. As the total and free cholesterol content in the liver 15 was also similar in both *Thb*^{-/-} and WT mice, ThB probably has a limited functional role in this 16 pathway, but compensation by ThA and/or SCPX/SCP2 cannot be ruled out.

It is worth recalling that our expression data are in coherence with the existing literature, showing 17 the induction of some genes encoding for cholesterol biosynthesis enzymes after Wy-treatment in 18 the livers of WT mice, but intriguingly not in those of $Thb^{-/-}$ mice [44, 45]. However, the increase 19 in most mRNAs and proteins encoding for cholesterol biosynthesis after Wy-treatment in WT mice 20 was not accompanied by an increase in *de novo* cholesterol biosynthesis, as shown by the plasma 21 lathosterol/cholesterol ratio, a surrogate plasma marker for endogenous cholesterol biosynthesis 22 downstream from lanosterol [47]. These data are in line with various studies showing that fibrate-23 24 treatment in WT mice does not stimulate hepatic production of cholesterol but rather decreases it [45]. Given that well-established PPARa target genes are equally upregulated in Wy-treated WT 25 and Thb^{-/-} mice, why is it that SREBP-2 target genes (genes encoding for cholesterol biosynthesis 26

enzymes) do not follow the same pattern in Wy-treated WT and Thb^{-/-} mice [49]? Recent studies 1 have reported cross-talk between PPARa and SREBP-2 dependent gene-regulation in human 2 hepatoma HepG2 cells, suggesting potential synergy between the PPAR α and SREBP-2 pathways 3 in humans [64, 65]. It is possible that the SREBP-2 and perhaps even the SREBP-1 signalling 4 cascades may be compromised in Wy-treated $Thb^{-/-}$ mice. However, many animal and cellular 5 studies exploring the level of expression of SREBP-2 and SREBP-1 have shown that, while 6 7 SREBP-2 is a relatively selective activator of cholesterol biosynthesis, SREBP-1 controls fatty acid biosynthesis (reviewed in Refs. [66-68]). The mRNAs for several cholesterol biosynthesis enzymes 8 have been found to increase in transgenic mice expressing a dominant positive NH2-terminal 9 fragment of SREBP-la [69]. One possible hypothesis is that a decrease in SREBP-1 could cause a 10 decrease in the Wy-induction of genes encoding for cholesterol biosynthesis enzymes in Thb^{-/-} 11 mice. However, we consider this explanation very unlikely, as the maturation of SREBP-2 and 12 SREBP-1 is unaltered in Thb^{-/-} mice (this manuscript and Ref. [49]). In further support of this 13 notion, the mRNA levels of the lipogenic genes $Acc\alpha$ and Fas, two SREBP-1 targets, were more 14 elevated in Wy-treated Thb^{-/-} mice than in Wy-treated WT mice, suggesting that the SREBP-1 15 pathway was not compromised [49]. No difference in the mRNA level or the mature active form of 16 the protein was observed for SREBP-2 in WT and $Thb^{-/-}$ mice, with or without Wy-treatment. The 17 activity of nuclear SREBP-2 is regulated by post-translational modifications [70]. For example, 18 insulin-like growth factor 1 (IGF-1) induces phosphorylation of SREBP-2, facilitating SREBP-2 19 transcriptional activity and thereby the expression of its target genes [70]. Thb^{-/-} mice are smaller 20 than WT mice and display a drastic reduction in liver Igf-1 mRNA and circulating levels 21 (unpublished data). A plausible hypothesis that should not be dismissed is that reduced IGF-1-22 mediated phosphorylation of SREBP-2 could ultimately lead to reduced transcriptional activity of 23 SREBP-2 in Wy-treated *Thb*^{-/-} mice. 24

Almost all the biological effects of Wy on gene expression have been shown to be mediated by the 1 2 nuclear receptor PPAR α [31]. The Wy-induction of genes encoding for cholesterol biosynthesis enzymes has been shown to be dependent on PPAR α [44, 45, 71]. Based on these statements, we 3 may speculate that the PPAR α signalling cascade may be altered by *Thb* deletion, explaining at 4 least in part the non-induction of genes encoding for cholesterol biosynthesis enzymes in Wy-5 treated Thb-'- mice. However, the magnitude of Wy- or fibrate-induction in almost all typical 6 hepatic PPAR α target genes appears to remain at least the same in Thb^{-/-} mice, arguing against this 7 possibility (Fig. 1d and supplemental Fig. 2a and 2b) [49]. Significantly, van der Meer et al found 8 9 PPARα binding to the human promoter of the SREBP target genes Hmgcs1, Hmgcr, Fdft1 and Sc4mol, confirming cross-talk between PPARa and SREBP [64]. In further support of this idea, 10 Levenberger *et al* also reported the physical binding of PPAR α to the promoter of the *Hmgcs1*, 11 Hmgcr, Mvk and Pmvk genes in Wy-treated mice [65]. Together, these results indicate that 12 activated PPARa could perhaps directly but unexpectedly control hepatic cholesterol biosynthesis. 13 In order to link PPARa unequivocally to the impaired Wy-induction of genes encoding for 14 cholesterol biosynthesis enzymes, it would be necessary to establish $Ppar\alpha^{-1} \ge Thb^{-1}$ mice. 15

16 Another key nuclear receptor for cholesterol biosynthesis is the oxysterol receptor Liver X 17 Receptor α (LXR α), which is regulated at the transcriptional level by PPAR α [72, 73]. By 18 silencing the expression of the two genes *Cyp51* and *Fdft1* encoding key cholesterologenic 19 enzymes *via* a negative DNA response element, LXR α counteracts the effects of SREBP-2. 20 However, LXR α is probably not involved in the impaired Wy-induction of *Cyp51* and *Fdft1* genes 21 in *Thb*^{-/-} mice because the expression of *Lxr\alpha* and its target genes was unaltered in Wy-treated *Thb*^{-/-} 22 ^{/-} mice (data not shown and [49]).

23 In our previous comparative analysis of liver and plasma fatty acid composition, we found a 24 reduction in DHA (Docosahexaenoic acid, C22:6(n-3), a potent natural activator of PPAR α *in vivo*) 25 in Wy-treated *Thb*^{-/-} mice, [31, 49]. There was also a reduction in hepatic arachidonic acid 1 (C20:4(n-6)), a natural agonist for the Retinoid X Receptor, in Wy-treated $Thb^{-/-}$ mice [49, 74]. 2 Furthermore, recent data have also indicated that C16:1(n-7) decreases activation of the PPAR α 3 target gene in the liver [75]. The amount of C16:1(n-7) is significantly increased in the livers of 4 Wy-treated $Thb^{-/-}$ mice. Changes in the availability of this metabolite in $Thb^{-/-}$ mice may therefore 5 decrease the Wy-induction of cholesterologenic genes by selectively modulating receptor-6 coregulator interactions.

Finally, it should be emphasized that Wy-treated $Thb^{-/-}$ mice displayed enrichment of some (n-7) 7 and (n-9) MUFAs in the liver, as the probable consequence of higher Stearoyl-CoA Desaturase-1 8 9 (SCD1) activity [49]. Recent findings indicate that changes in the hepatic fatty acid composition of the products of SCD1 modulate free cholesterol biosynthesis through a mechanism that implies 10 11 endoplasmic reticulum (ER) stress [76, 77]. While we cannot completely rule out a role for ER stress in the dysregulation of SREBP-2 target genes by Wy in $Thb^{-/-}$ mice, this explanation appears 12 very unlikely because deleting the *Thb* gene in mice did not affect the expression pattern of the 13 main genes involved in the emergence of ER stress, as revealed by DNA arrays (data not shown). 14

To conclude, our data suggest that ThB plays a minor role in peroxisome biogenesis and 15 proliferation in the liver. The present work also suggests that under certain conditions of metabolic 16 stress, ThB may contribute to the indirect regulation by activated PPARα of SREBP-2 target gene 17 expression. Like other studies on MFP-2 and Pex2p, our data strengthen the notion that defects in 18 peroxisomal enzymes impact on the mRNA levels of genes encoding for cholesterol biosynthesis 19 20 enzymes in the liver [14, 78]. There may possibly be molecular and biochemical mechanisms to 21 explain our observations and these avenues should therefore be explored by direct experimentation in the future. 22

23

24

Acknowledgments: This work was supported by grants from the European Union project
 "Peroxisomes" LSHG-CT-2004-512018, the Regional Council of Burgundy and the INSERM
 U866 center (Dijon). G.C. was supported by a French Ministry of Research and Technology Ph.D.
 fellowship and M.F. by the Italian "Ministero della Ricerca Scientifica e Tecnologica".

We thank staff members from the Centre de Zootechnie (Dijon, France) for their help in mice 5 housing and breeding, Jacques Kaminski for laboratory analyses and Dr Wim Kulik (Academic 6 Medical Center, University of Amsterdam) for carrying out the measurement of mevalonate in liver 7 8 homogenate samples. We are grateful to Amandine Bataille (Plateau technique d'imagerie cellulaire CellImaP, IFR 100 Santé-STIC, Dijon) for her expertise in performing histological 9 10 studies. We are also indebted to Mechteld Grootte-Bromhaar for performing the micro-array experiment and to Drs. Philip J. de Groot and Guido J.E.J. Hooiveld for their valuable contribution 11 to the analysis of the micro-array data. The authors are also indebted to Ms Carmela Chateau-Smith 12 13 for reviewing the English version of the manuscript.

14

Abbreviations: ThB: peroxisomal 3-ketoacyl-CoA thiolase B; ThA: peroxisomal 3-ketoacyl-CoA
thiolase A; ACOX1 (for human protein) or Acox1 (for mouse protein): peroxisomal acyl-CoA
oxidase-I; CPT-1α: carnitine palmitoyltransferase-1alpha; DAB: DiAminoBenzidine; PPARα:
Peroxisome Proliferator-Activated Receptor alpha; LCFAs: Long-Chain Fatty Acids; VLCFAs:
Very-Long-Chain Fatty Acids; MUFAs: Mono-Unsaturated Fatty Acids; Wy: Wy14,643; FF:
Fenofibrate.

21

22 **References**

- [1] R.J. Wanders, S. Ferdinandusse, P. Brites, S. Kemp, Peroxisomes, lipid metabolism and
 lipotoxicity, Biochim. Biophys. Acta 1801 (2010) 272-280.
- 25 [2] G. Chevillard, M.C. Clemencet, P. Etienne, P. Martin, T. Pineau, N. Latruffe, V.
- 26 Nicolas-Frances, Molecular cloning, gene structure and expression profile of two mouse
- 27 peroxisomal 3-ketoacyl-CoA thiolase genes, BMC Biochem. 5 (2004) 3.
- 28 [3] M. Hijikata, J.K. Wen, T. Osumi, T. Hashimoto, Rat peroxisomal 3-ketoacyl-CoA
- thiolase gene. Occurrence of two closely related but differentially regulated genes, J. Biol.
 Chem. 265 (1990) 4600-4606.
- 31 [4] A. Bout, M.M. Franse, J. Collins, L. Blonden, J.M. Tager, R. Benne, Characterization of
- the gene encoding human peroxisomal 3-oxoacyl-CoA thiolase (ACAA). No large DNA
- rearrangement in a thiolase-deficient patient, Biochim. Biophys. Acta 1090 (1991) 43-51.

Y. Poirier, V.D. Antonenkov, T. Glumoff, J.K. Hiltunen, Peroxisomal beta-oxidation--a 1 [5] 2 metabolic pathway with multiple functions, Biochim Biophys Acta 1763 (2006) 1413-1426. 3 U. Seedorf, M. Raabe, P. Ellinghaus, F. Kannenberg, M. Fobker, T. Engel, S. Denis, F. [6] 4 Wouters, K.W. Wirtz, R.J. Wanders, N. Maeda, G. Assmann, Defective peroxisomal 5 catabolism of branched fatty acyl coenzyme A in mice lacking the sterol carrier protein-2/sterol 6 carrier protein-x gene function, Genes Dev. 12 (1998) 1189-1201. 7 C.Y. Fan, J. Pan, R. Chu, D. Lee, K.D. Kluckman, N. Usuda, I. Singh, A.V. Yeldandi, [7] 8 M.S. Rao, N. Maeda, J.K. Reddy, Hepatocellular and hepatic peroxisomal alterations in mice 9 with a disrupted peroxisomal fatty acyl-coenzyme A oxidase gene, J. Biol. Chem. 271 (1996) 10 24698-24710. 11 C.Y. Fan, J. Pan, N. Usuda, A.V. Yeldandi, M.S. Rao, J.K. Reddy, Steatohepatitis, [8] 12 spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-CoA oxidase. Implications for peroxisome proliferator-activated receptor alpha natural ligand 13 14 metabolism, J. Biol. Chem. 273 (1998) 15639-15645. 15 [9] S. Ferdinandusse, S. Denis, E.M. Hogenhout, J. Koster, C.W. van Roermund, I.J. L, 16 A.B. Moser, R.J. Wanders, H.R. Waterham, Clinical, biochemical, and mutational spectrum of 17 peroxisomal acyl-coenzyme A oxidase deficiency, Hum. Mutat. 28 (2007) 904-912. 18 D. Oaxaca-Castillo, P. Andreoletti, A. Vluggens, S. Yu, P.P. van Veldhoven, J.K. [10] 19 Reddy, M. Cherkaoui-Malki, Biochemical characterization of two functional human liver acyl-20 CoA oxidase isoforms 1a and 1b encoded by a single gene, Biochem. Biophys. Res. Commun. 21 360 (2007) 314-319. 22 [11] A. Vluggens, P. Andreoletti, N. Viswakarma, Y. Jia, K. Matsumoto, W. Kulik, M. 23 Khan, J. Huang, D. Guo, S. Yu, J. Sarkar, I. Singh, M.S. Rao, R.J. Wanders, J.K. Reddy, M. 24 Cherkaoui-Malki, Functional significance of the two ACOX1 isoforms and their crosstalks with 25 PPARalpha and RXRalpha, Lab. Invest. 90 696-708. 26 M. Baes, S. Huyghe, P. Carmeliet, P.E. Declercq, D. Collen, G.P. Mannaerts, P.P. Van [12] 27 Veldhoven, Inactivation of the peroxisomal multifunctional protein-2 in mice impedes the 28 degradation of not only 2-methyl-branched fatty acids and bile acid intermediates but also of 29 very long chain fatty acids, J. Biol. Chem. 275 (2000) 16329-16336. 30 C. Qi, Y. Zhu, J. Pan, N. Usuda, N. Maeda, A.V. Yeldandi, M.S. Rao, T. Hashimoto, [13] 31 J.K. Reddy, Absence of spontaneous peroxisome proliferation in enoyl-CoA Hydratase/L-3-32 hydroxyacyl-CoA dehydrogenase-deficient mouse liver. Further support for the role of fatty 33 acyl CoA oxidase in PPARalpha ligand metabolism, J. Biol. Chem. 274 (1999) 15775-15780. 34 [14] K. Martens, E. Ver Loren van Themaat, M.F. van Batenburg, M. Heinaniemi, S. 35 Huyghe, P. Van Hummelen, C. Carlberg, P.P. Van Veldhoven, A. Van Kampen, M. Baes, 36 Coordinate induction of PPARalpha and SREBP2 in multifunctional protein 2 deficient mice, 37 Biochim. Biophys. Acta (2008). 38 [15] S. Ferdinandusse, E.G. van Grunsven, W. Oostheim, S. Denis, E.M. Hogenhout, I.J. L, 39 C.W. van Roermund, H.R. Waterham, S. Goldfischer, R.J. Wanders, Reinvestigation of 40 peroxisomal 3-ketoacyl-CoA thiolase deficiency: identification of the true defect at the level of 41 d-bifunctional protein, Am. J. Hum. Genet. 70 (2002) 1589-1593. 42 [16] A.W. Schram, S. Goldfischer, C.W. van Roermund, E.M. Brouwer-Kelder, J. Collins, T. 43 Hashimoto, H.S. Heymans, H. van den Bosch, R.B. Schutgens, J.M. Tager, et al., Human 44 peroxisomal 3-oxoacyl-coenzyme A thiolase deficiency, Proc. Natl. Acad. Sci. U S A 84 (1987) 45 2494-2496. 46 G. Chevillard, M.C. Clemencet, N. Latruffe, V. Nicolas-Frances, Targeted disruption of [17] 47 the peroxisomal thiolase B gene in mouse: a new model to study disorders related to 48 peroxisomal lipid metabolism, Biochimie 86 (2004) 849-856. 49 J.K. Reddy, T.P. Krishnakantha, Hepatic peroxisome proliferation: induction by two [18] 50 novel compounds structurally unrelated to clofibrate, Science 190 (1975) 787-789. 51 S.S. Lee, T. Pineau, J. Drago, E.J. Lee, J.W. Owens, D.L. Kroetz, P.M. Fernandez-[19] 52 Salguero, H. Westphal, F.J. Gonzalez, Targeted disruption of the alpha isoform of the

- 1 peroxisome proliferator-activated receptor gene in mice results in abolishment of the
- 2 pleiotropic effects of peroxisome proliferators, Mol. Cell. Biol. 15 (1995) 3012-3022.
- 3 [20] I. Issemann, S. Green, Activation of a member of the steroid hormone receptor
 4 superfamily by peroxisome proliferators, Nature 347 (1990) 645-650.
- 5 [21] P.R. Devchand, H. Keller, J.M. Peters, M. Vazquez, F.J. Gonzalez, W. Wahli, The
- 6 PPARalpha-leukotriene B4 pathway to inflammation control, Nature 384 (1996) 39-43.
- 7 [22] P. Escher, O. Braissant, S. Basu-Modak, L. Michalik, W. Wahli, B. Desvergne, Rat
- 8 PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding,
 9 Endocrinology 142 (2001) 4195-4202.
- [23] S. Mandard, M. Muller, S. Kersten, Peroxisome proliferator-activated receptor alpha
 target genes, Cell. Mol. Life Sci. 61 (2004) 393-416.
- 12 [24] F. Hansmannel, M.C. Clemencet, C. Le Jossic-Corcos, T. Osumi, N. Latruffe, V.
- 13 Nicolas-Frances, Functional characterization of a peroxisome proliferator response-element
- located in the intron 3 of rat peroxisomal thiolase B gene, Biochem. Biophys. Res. Commun.
 311 (2003) 149-155.
- 16 [25] V. Nicolas-Frances, V.K. Dasari, E. Abruzzi, T. Osumi, N. Latruffe, The peroxisome
- 17 proliferator response element (PPRE) present at positions -681/-669 in the rat liver 3-ketoacyl-
- CoA thiolase B gene functionally interacts differently with PPARalpha and HNF-4, Biochem.
 Biophys. Res. Commun. 269 (2000) 347-351.
- [26] B. Desvergne, W. Wahli, Peroxisome proliferator-activated receptors: nuclear control of
 metabolism, Endocr. Rev. 20 (1999) 649-688.
- [27] F.J. Gonzalez, Y.M. Shah, PPARalpha: mechanism of species differences and
 hepatocarcinogenesis of peroxisome proliferators, Toxicology 246 (2008) 2-8.
- [28] R. Genolet, W. Wahli, L. Michalik, PPARs as drug targets to modulate inflammatory
 responses? Curr. Drug Targets Inflamm. Allergy 3 (2004) 361-375.
- 26 [29] R. Stienstra, S. Mandard, N.S. Tan, W. Wahli, C. Trautwein, T.A. Richardson, E.
- Lichtenauer-Kaligis, S. Kersten, M. Muller, The Interleukin-1 receptor antagonist is a direct
 target gene of PPARalpha in liver, J. Hepatol. 46 (2007) 869-877.
- 29 [30] M. Cherkaoui-Malki, K. Meyer, W.Q. Cao, N. Latruffe, A.V. Yeldandi, M.S. Rao, C.A.
- Bradfield, J.K. Reddy, Identification of novel peroxisome proliferator-activated receptor alpha
 (PPARalpha) target genes in mouse liver using cDNA microarray analysis, Gene Expr. 9
 (2001) 201 204
- 32 (2001) 291-304.
- [31] L.M. Sanderson, P.J. de Groot, G.J. Hooiveld, A. Koppen, E. Kalkhoven, M. Muller, S.
 Kersten, Effect of synthetic dietary triglycerides: a novel research paradigm for nutrigenomics,
 PLoS One 3 (2008) e1681.
- 36 [32] Z.Y. Du, L. Demizieux, P. Degrace, J. Gresti, B. Moindrot, Y.J. Liu, L.X. Tian, J.M.
- Cao, P. Clouet, Alteration of 20:5n-3 and 22:6n-3 fat contents and liver peroxisomal activities
 in fenofibrate-treated rainbow trout, Lipids 39 (2004) 849-855.
- P. Degrace, L. Demizieux, J. Gresti, J.M. Chardigny, J.L. Sebedio, P. Clouet, Hepatic
 steatosis is not due to impaired fatty acid oxidation capacities in C57BL/6J mice fed the
- 41 conjugated trans-10,cis-12-isomer of linoleic acid, J. Nutr. 134 (2004) 861-867.
- 42 [34] H. Weissbach, T.E. Smith, J.W. Daly, B. Witkop, S. Udenfriend, A rapid
- 43 spectrophotometric assay of mono-amine oxidase based on the rate of disappearance of
 44 kynuramine, J. Biol. Chem. 235 (1960) 1160-1163.
- 45 [35] J.B. Robinson, Jr., P.A. Srere, Organization of Krebs tricarboxylic acid cycle enzymes
 46 in mitochondria, J. Biol. Chem. 260 (1985) 10800-10805.
- 47 [36] M. Bronfman, N.C. Inestrosa, F. Leighton, Fatty acid oxidation by human liver
 48 peroxisomes, Biochem. Biophys. Res. Commun. 88 (1979) 1030-1036.
- F. Roels, B. De Prest, G. De Pestel, Liver and chorion cytochemistry, J. Inherit. Metab.
 Dis. 18 Suppl 1 (1995) 155-171.
- 51 [38] I. Kerckaert, D. De Craemer, G. Van Limbergen, Practical guide for morphometry of
- 52 human peroxisomes on electron micrographs, J. Inherit. Metab. Dis. 18 Suppl 1 (1995) 172-
- 53 180.

- 1 [39] S. Mandard, R. Stienstra, P. Escher, N.S. Tan, I. Kim, F.J. Gonzalez, W. Wahli, B.
- Desvergne, M. Muller, S. Kersten, Glycogen synthase 2 is a novel target gene of peroxisome
 proliferator-activated receptors, Cell. Mol. Life Sci. 64 (2007) 1145-1157.
- [40] G. Denis, S. Mandard, C. Humblet, M. Verlaet, J. Boniver, D. Stehelin, M.P. Defresne,
 D. Regnier, Nuclear localization of a new c-cbl related protein, CARP 90, during in vivo
 thymic apoptosis in mice, Cell. Death Differ. 6 (1999) 689-697.
- [41] S. Hogenboom, G.J. Romeijn, S.M. Houten, M. Baes, R.J. Wanders, H.R. Waterham,
 Absence of functional peroxisomes does not lead to deficiency of enzymes involved in
 cholesterol biosynthesis, J. Lipid. Res. 43 (2002) 90-98.
- 10 [42] S. Miyazawa, T. Osumi, T. Hashimoto, The presence of a new 3-oxoacyl-CoA thiolase 11 in rat liver peroxisomes, Eur. J. Biochem. 103 (1980) 589-596.
- 12 [43] M. Baarine, K. Ragot, E.C. Genin, H. El Hajj, D. Trompier, P. Andreoletti, M.S.
- 13 Ghandour, F. Menetrier, M. Cherkaoui-Malki, S. Savary, G. Lizard, Peroxisomal and
- mitochondrial status of two murine oligodendrocytic cell lines (158N, 158JP): potential models
 for the study of peroxisomal disorders associated with dysmyelination processes, J. Neurochem.
- 16 111 (2009) 119-131.
- [44] C. Le Jossic-Corcos, S. Duclos, L.C. Ramirez, I. Zaghini, G. Chevillard, P. Martin, T.
 Pineau, P. Bournot, Effects of peroxisome proliferator-activated receptor alpha activation on
- pathways contributing to cholesterol homeostasis in rat hepatocytes, Biochim. Biophys. Acta
 1683 (2004) 49-58.
- [45] B.L. Knight, A. Hebbachi, D. Hauton, A.M. Brown, D. Wiggins, D.D. Patel, G.F.
 Gibbons, A role for PPARalpha in the control of SREBP activity and lipid synthesis in the
 liver, Biochem. J. 389 (2005) 413-421.
- [46] D.D. Hinson, K.L. Chambliss, M.J. Toth, R.D. Tanaka, K.M. Gibson, Post-translational
 regulation of mevalonate kinase by intermediates of the cholesterol and nonsterol isoprene
 biosynthetic pathways, J Lipid Res 38 (1997) 2216-2223.
- [47] H.J. Kempen, J.F. Glatz, J.A. Gevers Leuven, H.A. van der Voort, M.B. Katan, Serum
 lathosterol concentration is an indicator of whole-body cholesterol synthesis in humans, J.
 Lipid. Res. 29 (1988) 1149-1155.
- [48] J.J. Hamilton, M. Phang, S.M. Innis, Elevation of plasma lathosterol, as an indicator of
 increased cholesterol synthesis, in preterm (23-32 weeks gestation) infants given Intralipid,
 Pediatr. Res. 31 (1992) 186-192.
- 33 [49] S. Arnauld, M. Fidaleo, M.C. Clemencet, G. Chevillard, A. Athias, J. Gresti, R.J.
- Wanders, N. Latruffe, V. Nicolas-Frances, S. Mandard, Modulation of the hepatic fatty acid
 pool in peroxisomal 3-ketoacyl-CoA thiolase B-null mice exposed to the selective PPARalpha
 agonist Wy14,643, Biochimie 91 (2009) 1376-1386.
- 37 [50] E. Baumgart, I. Vanhorebeek, M. Grabenbauer, M. Borgers, P.E. Declercq, H.D.
- Fahimi, M. Baes, Mitochondrial alterations caused by defective peroxisomal biogenesis in a
 mouse model for Zellweger syndrome (PEX5 knockout mouse), Am. J. Pathol. 159 (2001)
- 40 1477-1494.
- 41 [51] P.L. Faust, M.E. Hatten, Targeted deletion of the PEX2 peroxisome assembly gene in
 42 mice provides a model for Zellweger syndrome, a human neuronal migration disorder, J. Cell.
 43 Biol. 139 (1997) 1293-1305.
- 43 Biol. 139 (1997) 1293-1305.
 44 [52] M. Funato, N. Shimozawa, T. Nagase, Y. Takemoto, Y. Suzuki, Y. Imamura, T.
- 45 Matsumoto, T. Tsukamoto, T. Kojidani, T. Osumi, T. Fukao, N. Kondo, Aberrant peroxisome
 46 morphology in peroxisomal beta-oxidation enzyme deficiencies, Brain Dev. 28 (2006) 287-292.
- 47 [53] M. Schrader, E. Baumgart, A. Volkl, H.D. Fahimi, Heterogeneity of peroxisomes in
- 48 human hepatoblastoma cell line HepG2. Evidence of distinct subpopulations, Eur. J. Cell. Biol.
 49 64 (1994) 281-294.
- 50 [54] F. Roels, M. Pauwels, B.T. Poll-The, J. Scotto, H. Ogier, P. Aubourg, J.M. Saudubray,
- 51 Hepatic peroxisomes in adrenoleukodystrophy and related syndromes: cytochemical and
- 52 morphometric data, Virchows Arch. A. Pathol. Anat. Histopathol. 413 (1988) 275-285.

- 1 [55] P. Brites, A.M. Motley, P. Gressens, P.A. Mooyer, I. Ploegaert, V. Everts, P. Evrard, P.
- 2 Carmeliet, M. Dewerchin, L. Schoonjans, M. Duran, H.R. Waterham, R.J. Wanders, M. Baes,
- 3 Impaired neuronal migration and endochondral ossification in Pex7 knockout mice: a model for 4 rhizomelic chondrodysplasia punctata, Hum. Mol. Genet. 12 (2003) 2255-2267.
- 5 [56] V.D. Antonenkov, P.P. Van Veldhoven, E. Waelkens, G.P. Mannaerts, Comparison of 6 the stability and substrate specificity of purified peroxisomal 3-oxoacyl-CoA thiolases A and B 7 from rat liver, Biochim Biophys Acta 1437 (1999) 136-141.
- 8 [57] Y. Jia, C. Qi, Z. Zhang, T. Hashimoto, M.S. Rao, S. Huyghe, Y. Suzuki, P.P. Van
- 9 Veldhoven, M. Baes, J.K. Reddy, Overexpression of peroxisome proliferator-activated
- 10 receptor-alpha (PPARalpha)-regulated genes in liver in the absence of peroxisome proliferation
- 11 in mice deficient in both L- and D-forms of enoyl-CoA hydratase/dehydrogenase enzymes of

12 peroxisomal beta-oxidation system, J. Biol. Chem. 278 (2003) 47232-47239.

- [58] R. Dirkx, E. Meyhi, S. Asselberghs, J. Reddy, M. Baes, P.P. Van Veldhoven, Betaoxidation in hepatocyte cultures from mice with peroxisomal gene knockouts, Biochem.
 Biophys. Res. Commun. 357 (2007) 718-723.
- 16 [59] T. Kasumov, J.E. Adams, F. Bian, F. David, K.R. Thomas, K.A. Jobbins, P.E. Minkler,
- 17 C.L. Hoppel, H. Brunengraber, Probing peroxisomal beta-oxidation and the labelling of acetyl-
- CoA proxies with [1-(13C)]octanoate and [3-(13C)]octanoate in the perfused rat liver, Biochem
 J 389 (2005) 397-401.
- [60] N. Aboushadi, W.H. Engfelt, V.G. Paton, S.K. Krisans, Role of peroxisomes in
 isoprenoid biosynthesis, J. Histochem. Cytochem. 47 (1999) 1127-1132.
- [61] W.J. Kovacs, K.N. Tape, J.E. Shackelford, X. Duan, T. Kasumov, J.K. Kelleher, H.
 Brunengraber, S.K. Krisans, Localization of the pre-squalene segment of the isoprenoid
- biosynthetic pathway in mammalian peroxisomes, Histochem. Cell Biol. 127 (2007) 273-290.
- [62] I. Weinhofer, M. Kunze, H. Stangl, F.D. Porter, J. Berger, Peroxisomal cholesterol
 biosynthesis and Smith-Lemli-Opitz syndrome, Biochem Biophys Res Commun 345 (2006)
 205-209.
- [63] W.J. Kovacs, K.N. Tape, J.E. Shackelford, T.M. Wikander, M.J. Richards, S.J. Fliesler,
 S.K. Krisans, P.L. Faust, Peroxisome deficiency causes a complex phenotype because of
- hepatic SREBP/Insig dysregulation associated with endoplasmic reticulum stress, J Biol Chem
 284 (2009) 7232-7245.
- [64] D.L. van der Meer, T. Degenhardt, S. Vaisanen, P.J. de Groot, M. Heinaniemi, S.C. de
 Vries, M. Muller, C. Carlberg, S. Kersten, Profiling of promoter occupancy by PPAR{alpha} in
 human hepatoma cells via ChIP-chip analysis, Nucleic. Acids Res. (2010).
- [65] N. Leuenberger, S. Pradervand, W. Wahli, Sumoylated PPARalpha mediates sexspecific gene repression and protects the liver from estrogen-induced toxicity in mice, J. Clin.
 Invest. 119 (2009) 3138-3148.
- [66] J.D. Horton, J.L. Goldstein, M.S. Brown, SREBPs: activators of the complete program
 of cholesterol and fatty acid synthesis in the liver, J. Clin. Invest. 109 (2002) 1125-1131.
- 40 [67] J.D. Horton, I. Shimomura, Sterol regulatory element-binding proteins: activators of
 41 cholesterol and fatty acid biosynthesis, Curr. Opin. Lipidol. 10 (1999) 143-150.
- 42 [68] J.D. Horton, I. Shimomura, M.S. Brown, R.E. Hammer, J.L. Goldstein, H. Shimano,
- Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose
 tissue of transgenic mice overproducing sterol regulatory element-binding protein-2, J. Clin.
 Invest. 101 (1998) 2331-2339.
- [69] H. Shimano, J.D. Horton, I. Shimomura, R.E. Hammer, M.S. Brown, J.L. Goldstein,
 Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers
 of transgenic mice and in cultured cells, J. Clin. Invest. 99 (1997) 846-854.
- 49 [70] M. Arito, T. Horiba, S. Hachimura, J. Inoue, R. Sato, Growth factor-induced
- 50 phosphorylation of sterol regulatory element-binding proteins inhibits sumoylation, thereby
- 51 stimulating the expression of their target genes, low density lipoprotein uptake, and lipid
- 52 synthesis, J Biol Chem 283 (2008) 15224-15231.

- 1 [71] M. Rakhshandehroo, L.M. Sanderson, M. Matilainen, R. Stienstra, C. Carlberg, P.J. de 2 Groot, M. Muller, S. Kersten, Comprehensive Analysis of PPARalpha-Dependent Regulation
- 3 of Hepatic Lipid Metabolism by Expression Profiling, PPAR Res 2007 (2007) 26839.
- Y. Wang, P.M. Rogers, C. Su, G. Varga, K.R. Stayrook, T.P. Burris, Regulation of
 cholesterologenesis by the oxysterol receptor, LXRalpha, J. Biol. Chem. 283 (2008) 2633226339.
- 7 [73] K.A. Tobin, H.H. Steineger, S. Alberti, O. Spydevold, J. Auwerx, J.A. Gustafsson, H.I.
- Nebb, Cross-talk between fatty acid and cholesterol metabolism mediated by liver X receptoralpha, Mol. Endocrinol. 14 (2000) 741-752.
- 10 [74] J. Lengqvist, A. Mata De Urquiza, A.C. Bergman, T.M. Willson, J. Sjovall, T.
- 11 Perlmann, W.J. Griffiths, Polyunsaturated fatty acids including docosahexaenoic and
- arachidonic acid bind to the retinoid X receptor alpha ligand-binding domain, Mol. Cell.
 Proteomics 3 (2004) 692-703.
- [75] H. Cao, K. Gerhold, J.R. Mayers, M.M. Wiest, S.M. Watkins, G.S. Hotamisligil,
 Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism, Cell
- 16 134 (2008) 933-944.
- 17 [76] M.T. Flowers, M.P. Keller, Y. Choi, H. Lan, C. Kendziorski, J.M. Ntambi, A.D. Attie,
- Liver gene expression analysis reveals endoplasmic reticulum stress and metabolic dysfunction
 in SCD1-deficient mice fed a very low-fat diet, Physiol Genomics 33 (2008) 361-372.
- 20 [77] C.M. Paton, J.M. Ntambi, Loss of stearoyl-CoA desaturase activity leads to free
- 21 cholesterol synthesis through increased Xbp-1 splicing, Am J Physiol Endocrinol Metab.
- 22 [78] W.J. Kovacs, J.E. Shackelford, K.N. Tape, M.J. Richards, P.L. Faust, S.J. Fliesler, S.K.
- 23 Krisans, Disturbed cholesterol homeostasis in a peroxisome-deficient PEX2 knockout mouse
- 24 model, Mol. Cell. Biol. 24 (2004) 1-13.
- 25 26

27 Figure 1. Peroxisomal β -oxidation of (1-¹⁴C) palmitate is impaired in *Thb*^{-/-} mice treated with

28 Wy, a potent PPARα agonist.

WT and *Thb*^{-/-} mice were treated with Wy (30mg/kg of body weight) for 8 days or left untreated. At 29 the end of the pharmacological intervention, the animals were fasted (starting at 4 a.m) for 6 hours 30 31 before sacrifice a) Liver RNA (5 animals were used for each condition) was isolated and RT-qPCR was performed. Gene expression levels from the animals receiving vehicle only were set at 1. *Thb*: 32 peroxisomal 3-ketoacyl-CoA thiolase B; Tha: peroxisomal 3-ketoacyl-CoA thiolase A b) Western 33 blot analysis of PTL (anti-peroxisomal 3-ketoacyl-CoA thiolase A and B proteins) in liver protein 34 extracts from five animals. β-actin was used as a loading control marker c) Liver RNA was isolated 35 and RT-qPCR was performed (From 6 to 20 animals were used per condition). Gene expression 36 levels from the animals receiving vehicle only were set at 1. Acox 1: peroxisomal Acyl-CoA 37 oxidase 1; *Mfp-1*: Multifunctional protein 1; *Scpx/Scp2* thiolase: Sterol carrier protein x/2 thiolase; 38 Values are expressed as mean \pm SEM. See supplemental data, Table 2 for primer sequences. d) 39

1 Western blot analysis of Acox1 in liver protein extracts from five animals. β -actin was used as a 2 loading control marker e) Peroxisomal (1-¹⁴C) palmitate β -oxidation and f) NADH production were 3 quantified *in vitro* using whole liver homogenates from WT and *Thb*^{-/-} mice (n=3) Values are 4 expressed as mean \pm SEM. Statistically significant differences were calculated using a two-way 5 ANOVA for genotype (G), Wy14,643 (Wy) and the interaction between the two parameters (I).

6

7 Figure 2. Mitochondrial β -oxidation of (1-¹⁴C) palmitate is not compromised in *Thb*^{-/-} mice 8 treated with the potent PPAR α agonist, Wy.

9 (a) Mitochondrial $(1^{-14}C)$ palmitate β -oxidation in liver homogenates (b) Mitochondrial $(1^{-14}C)$ 10 palmitate β -oxidation in mitochondrial fractions. WT and *Thb*^{-/-} mice were treated with Wy 11 (30mg/kg of body weight) for 8 days, or left untreated. At the end of the pharmacological 12 intervention, the animals were fasted (starting at 4 a.m) for 6 hours before sacrifice. Three animals 13 were used per condition. Values are expressed as mean ± SEM. Statistically significant differences 14 were calculated using a two-way ANOVA for genotype (G), Wy14,643 (Wy) and the interaction 15 between the two parameters (I).

16

Figure 3. *Thb* Deletion did not prevent Wy-induced cell-size increase and cell proliferation rates.

(a) Hepato-somatic index of Wy-treated (30 mg/kg of body weight, 8 days) or mock-treated WT 19 and $Thb^{-/-}$ mice. Five to ten animals were used per group. Error bars represent \pm SEM. Statistically 20 significant differences were calculated using a two-way ANOVA for genotype (G), Wy14,643 21 (Wy) and the interaction between the two parameters (I) (b) Mean cell number/field and cell 22 surface in the liver of WT mice and $Thb^{-/-}$ mice (c) Hematoxylin and eosin staining of 23 representative mouse liver sections showing increased hepatocyte size following Wy-treatment. 24 Scale bar, 20 µm. (d) Immunohistochemical staining for Ki-67 in hepatocyte nuclei in liver 25 sections from Wy-treated and mock-treated WT and $Thb^{-/-}$ mice. Scale bar, 20 µm. 26

1 Figure 4. *Thb* deletion did not prevent Wy-induced peroxisome proliferation.

(a-d) Immunohistochemical staining of peroxisomes in the liver. Light microscopy of semithin 2 liver sections from 3-month-old mice after incubation with the alkaline DAB-medium to 3 4 demonstrate catalase activity; arrows indicate some hepatocyte nuclei. (a) Liver from a WT mouse, showing a distinct granular staining pattern, reflecting normal peroxisome distribution (c) A similar 5 staining pattern is found in the liver of a $Thb^{-/-}$ mouse (b and d) Peroxisome proliferation is 6 prominent after Wy-treatment in WT and $Thb^{-/-}$ mice (e) Liver RNA was isolated and RT-qPCR 7 was performed (n = 6). Gene expression levels from the animals receiving vehicle only were set at 8 9 1. Statistically significant differences were calculated using a two-way ANOVA for genotype (G), Wy14,643 (Wy) and the interaction between the two parameters (I). Pex11a: Peroxisomal 10 biogenesis factor 11α ; (f-i) Representative electron micrographs of mouse-liver sections without 11 treatment (f,h) and after Wy-treatment (g,i). Note the presence of peroxisomes with a slightly 12 elongated shape (see arrows) in h in contrast to the rounded shapes in f. Glycogen rosettes, specific 13 14 for hepatic parenchyma were present in many cells. M: Mitochondria.

15

Figure 5: Heat map showing changes in expression of selected genes encoding for cholesterol biosynthesis enzymes in the liver as determined by microarray.

WT and *Thb*^{-/-} mice were treated with Wy (30 mg/kg/day for 8 days) or left untreated, and all animals were fasted for 6h prior to sacrifice. Pooled liver RNA (n=5) was hybridized on Affymetrix GeneChip Mouse Genome 430A arrays. Expression levels were analyzed using Microarray Suite and Data Mining Tool software, as previously described [29]. The heat map was generated directly from the microarray data. The expression signals from the mock-treated WT animals were arbitrarily set at 1 and the scale represents fold-induction relative to mock-treated WT mice. The selected genes exceeded minimal threshold expression levels.

- 25
- 26

Figure 6: The hepatic expression of genes involved in *de novo* cholesterol biosynthesis is 1 impaired in Wy-treated $Thb^{-/-}$ mice. WT (n=5) and $Thb^{-/-}$ (n=5) mice were treated with Wy 2 (30mg/kg of body weight, 8 days), or left untreated. All animals were fasted for 6h prior to 3 sacrifice. Liver RNA was isolated and RT-qPCR was performed. Gene expression levels from the 4 animals receiving vehicle only were set at 1. *Hmgcs1* : cytosolic 3-hydroxy-3-methylglutaryl 5 coenzyme A (HMG-CoA) synthase-1, *Hmgcr* : microsomal 3-hydroxy-3-methylglutaryl coenzyme 6 (HMG-CoA) reductase, *Mvk*: mevalonate kinase, *Pmvk*: phosphomevalonate 7 А kinase. 8 mvd: mevalonate decarboxylase, Fdps: farnesyl diphosphate synthase, Fdft1: farnesyl-diphosphate farnesyltransferase-1, Sqls: squalene synthase, sqle: squalene epoxidase, Lss: lanosterol synthase, 9 10 *Cyp51*: sterol 14 alpha-demethylase, *Nsdhl*: NAD(P) dependent steroid dehydrogenase-like, *Sc5d*: sterol-C5-desaturase, Dhcr7: 7-dehydrocholesterol reductase. Error bars represent ± SEM. 11 Statistically significant differences were calculated using a two-way ANOVA for genotype (G), 12 Wy14,643 (Wy) and the interaction between the two parameters (I). See supplemental data, Table 2 13 for primer sequences. 14

15

16 Figure 7: The hepatic expression of genes involved in *de novo* cholesterol biosynthesis is 17 impaired in fenofibrate-treated *Thb*^{-/-} mice.

WT (n=5) and $Thb^{-/-}$ (n=5) mice were previously treated with fenofibrate (100mg/kg of body 18 weight) for 14 days, or left untreated. All animals were fasted for 6h prior to sacrifice. Liver RNA 19 20 was isolated and RT-qPCR was performed. Gene expression levels from the animals receiving vehicle only were set at 1. *Hmgcs1* : cytosolic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-21 CoA) synthase-1, *Hmgcr*: microsomal 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) 22 *Mvk*: mevalonate kinase, *Pmvk*: phosphomevalonate kinase, *Mvd*: mevalonate 23 reductase. decarboxylase, Sqls: squalene synthase, Srebp1c: sterol response element binding protein-1c, 24 *Ppar* α : peroxisome proliferator-activated receptor alpha, FF: Fenofibrate. Statistically significant 25

1 differences were calculated using a two-way ANOVA for genotype (G), fenofibrate (FF) and the

- 2 interaction between the two parameters (I). See supplemental data, Table 2 for primer sequences.
- 3

Figure 8: Expression of hepatic HMG-CoA reductase, Mvk and Pmvk proteins is reduced in 4 Wy-treated *Thb*^{-/-} mice (a) Pooled total liver cell lysates from Wy-treated or mock-treated WT and 5 Thb^{-/-} mice (30mg/kg of body weight, 8 days) and fasted for 6h prior to sacrifice. Analyses for 6 mouse HMG-CoA reductase, Mvk and Pmvk protein content were conducted by Western blotting, 7 using polyclonal antibodies. There were 5 animals per group except for the WT group (n=10). 8 Molecular mass sizes are given in kDa. Quantification of bands relative to β -actin controls is given 9 under each picture (b) Western blot analysis of PPAR α was performed on nuclear extracts from the 10 livers of five animals. Cellular lysates of COS-7 cells transfected with the expression vector pSG5 11 PPARa were used as a positive control. Histone H1 was used as a loading control marker (c) WT 12 (n=5) and $Thb^{-/-}$ (n=5) mice were treated with Wy for 8 days or left untreated. All animals were 13 fasted for 6h prior to sacrifice. Liver RNA was isolated and RT-qPCR was performed for Srebp-2. 14 Statistically significant differences were calculated using a two-way ANOVA for genotype (G), 15 Wy14,643 (Wy) and the interaction between the two parameters (I). Pooled nuclear extracts from 16 mock-treated or Wy- or fenofibrate-treated WT and $Thb^{-/-}$ mice were analyzed by Western blotting 17 for the mouse mature form of the transcription factor SREBP-2 (right part). Histone H1 or Tata-18 Binding Protein (TBP) were used for normalization of nuclear proteins. Wy: Wy14,643, FF: 19 Fenofibrate. 20

21

Figure 9: *De novo* whole body cholesterol biosynthesis is equally reduced by activated PPARα in both WT mice and *Thb*^{-/-} mice.

a) Plasma lathosterol/cholesterol ratio in mock-treated and Wy-treated WT and $Thb^{-/-}$ mice (n = 5 per condition) and fasted for 6h prior to sacrifice b) Total and free cholesterol in liver (n=5 to 10 mice per group) c) liver lathosterol/cholesterol ratio and d) total cholesterol in mock-treated and

fenofibrate-treated WT and *Thb*^{-/-} mice and fasted for 6h prior to sacrifice (n = 4 per condition). 1

Error bars represent \pm SEM. Statistically significant differences were calculated using a two-way 2

ANOVA for genotype (G), Wy14,643 (Wy) and the interaction between the two parameters (I). 3

4

Table 1. Mitochondrial marker enzyme activities in the liver are not affected by the deletion 5 of Thb in mice. Carnitine Palmitoyl Transferase-1 alpha (CPT-Ia), monoamine oxidase, citrate 6 7 synthase activities were measured in purified mitochondria. Wy: Wy14,643. Number of animals 8 per group is indicated. Mice in the fed state were sacrificed at the beginning of the light cycle. For the fasting experiment, male mice were fasted for 24 hours starting at the onset of the light cycle. 9 Statistically significant differences were calculated using a two-way ANOVA for genotype (G), 10 11 Wy14,643 (Wy), fasting (F) and interaction between the two parameters (I).

12

Supplemental Figure 1. 13

Similar levels of typical PPARa target gene induction were observed in the livers of WT and 14 *Thb*^{-/-} mice treated with two different PPAR α agonists. a) mock-treated and Wy-treated 15 (30mg/kg of body weight for 8 days) WT and $Thb^{-/-}$ mice and fasted for 6h prior to sacrifice b) 16 mock-treated and fenofibrate-treated (100mg/kg of body weight for 14 days) WT and Thb^{-/-} mice 17 and fasted for 6h prior to sacrifice. Liver RNA was isolated and RT-qPCR was performed. Five to 18 19 eight animals were used for each condition. Gene expression levels from the animals receiving vehicle only were set at 1. See supplemental Table 2 for primer sequences. FF: Fenofibrate. Wy: 20 Wy14,643. Acot3: Acyl-CoA thioesterase 3; Pdk4: Pyruvate dehydrogenase kinase-4; Fat/Cd36: 21 22 Fatty acid translocase; *a-Fabp*: adipose-Fatty acid binding protein (also known as aP2); *Thb*: Thiolase B; Cyp4a10: Cytochrome p450A10; Lpl: Lipoprotein Lipase; Fatp-1: Fatty acid transport-23 1.

24

25

2 Supplemental Table 1.

Micro-array analysis was performed on pooled liver (n=5) mRNA comparing the gene expression
signals induced by the deletion of *Thb* and by pharmacological intervention (Wy, 30 mg/kg of body
weight/ 8 days). Column C to F: Expression in mock-treated WT mice was arbitrarily set at 1.
Changes in gene expression are expressed as fold-changes in comparison with mock-treated WT
mice, receiving vehicle only.

9 Supplemental Table 2.

10 Primer sequences used for Real-Time Quantitative PCR.

-/-

Fidaleo et al., Figure 1

+/+

-/-+/+

+/+

-/- +/+ -/-

Fidaleo et al., Figure 2

Fidaleo et al., Figure 3

- 8

Fidaleo et al., Figure 4

			-	Wy		
Gene ID	Gene name	Thb	+ +	+ -		
1433444_at	Hmgcs1	[[
1427229_at	Hmgcr					
1418052_at	Mvk					
1427893_a_at	Pmvk					5
1417303_at	Mvd					3
1419505_a_at	Ggps1					
1451122_at	ldi1					4
1423418_at	Fdps					
1448130_at	Fdft1					
1415993_at	Sqle					3
1426913_at	Lss					
1450646_at	Cyp51					~
1423078_a_at	Sc4mol					2
1451457_at	Sc5d					
1448619_at	Dhcr7					1
1418129_at	Dhcr24					
1451457_at	Sc5d					
1448240_at	Mbtps1					0
1436883_at	Mbtps2					
1452174_at	Srebf2					
1426690_a_at	Srebf1					

Fidaleo et al., Figure 5

de novo cholesterol biosynthesis

Fidaleo et al., Figure 6

+/+

-/- +/+ -/-

-/- +/+ -/-

+/+

Fidaleo et al., Figure 7

Fidaleo et al., Figure 8

		-		V	Ny			
G Mitochondria	enoty	pe +/+	-/-	+/+	-/-	Genotype (G)	Wy14,643 (Wy)	Interaction (G*Wy)
CPT-Iα activity (nmol/min/mg of mitochondrial protein)	n=3	2.5 ± 0.3	2.7 ± 0.3	3.2 ± 0.0	3.4 ± 0.5	0.63	0.01	1.00
monoamine oxidase (nmol/min/mg of mitochondrial protein)	n=3	6.9 ± 0.8	7.1 ± 0.5	6.4 ± 0.6	5.8 ± 0.6	0.74	0.18	0.55
citrate synthase (nmol/min/mg of mitochondrial protein)	n=3	0.22 ± 0.01	0.23 ± 0.02	0.23 ± 0.01	0.25±0.01	1.00	1.00	1.00
<i>Cpt-1</i> α mRNA (%)	n=13	1.00 ± 0.13	0.95 ± 0.10	1.44 ± 0.13	3 1.51 ± 0.16	0.84	<0.0001	0.04
plasma β -hydroxybutyrate (mM)	n=13	0.34 ± 0.06	0.32 ± 0.08	0.38 ± 0.03	0.34 ± 0.1	0.63	0.63	1.00
plasma free fatty acids (mM)	n=8	0.87 ± 0.10	0.82 ± 0.06	0.51 ± 0.05	0.62 ± 0.06	0.56	<0.0006	0.32

			fed		24h	fasting	Genotype	Fasting	Interaction	
	Genotype		+/+	-/-	+/+	-/-	(G)	(F)	(G*F)	
plasma β-hydroxybutyrate (mM)	n=1	6	0.41 ± 0.04	0.41 ± 0.03	2.74 ± 0.18	2.64 ± 0.13	0.66	<0.0001	0.66	
plasma free fatty acids (mM)	n='	10	1.27 ± 0.09	1.17 ± 0.09	1.8±0.17	1.5 ± 0.06	0.10	0.0021	0.37	

Fidaleo et al., Table 1

0

-/-

FF

-/-+/+

_

Fidaleo et al., supplemental Figure 1

+/+

10

+/+ -/-

FF

-/-

+/+

_

0

-/-

+/+

_

+/+ -/-

FF

1

0

-/-

+/+

_

+/+

FF

10

0

-/-

1
2
3
4
5
6

Α	В	С	D	Е	F	
		-	fold-ch	ange	-	
Probe Set ID	Gene Symbol	WT	ко	WT-Wy	KO-Wy	-
Peroxisome bio	genesis					
1428716_at	Pex1	1.0	1.1	1.1	1.1	peroxisome biogenesis factor 1
1454044_a_at	Pex3	1.0	1.1	1.5	1.4	peroxisomal biogenesis factor 3
1417442_a_at	Pex3	1.0	1.0	1.7	1.5	peroxisomal biogenesis factor 3
1426770_at	Pex5	1.0	1.1	1.4	1.2	peroxisome biogenesis factor 5
1422063_a_at	Pex5	1.0	1.1	1.1	1.2	peroxisome biogenesis factor 5
1424078_s_at	Pex6	1.0	0.7	0.7	0.8	peroxisomal biogenesis factor 6
1454738_x_at	Pex6	1.0	1.1	1.0	0.9	peroxisomal biogenesis factor 6
1451226_at	Pex6	1.0	1.0	0.9	1.1	peroxisomal biogenesis factor 6
1418988_at	Pex7	1.0	1.0	1.1	1.1	peroxisome biogenesis factor 7
1456646_at	Pex10	1.0	1.0	1.2	1.1	peroxisome biogenesis factor 10
1449442_at	Pex11a	1.0	0.7	1.7	2.1	peroxisomal biogenesis factor 11a
1419365_at	Pex11a	1.0	0.7	1.4	1.8	peroxisomal biogenesis factor 11a
1420460_a_at	Pex11b	1.0	1.0	1.3	1.1	peroxisomal biogenesis factor 11b
1451213_at	Pex11b	1.0	0.9	0.9	0.9	peroxisomal biogenesis factor 11b
1429407_at	Pex11c	1.0	0.7	1.1	0.9	peroxisomal biogenesis factor 11c
1430856_at	Pex11c	1.0	1.5	1.2	1.2	peroxisomal biogenesis factor 11c
1430857_s_at	Pex11c	1.0	0.8	1.1	1.1	peroxisomal biogenesis factor 11c
1416259_at	Pex12	1.0	0.9	0.9	0.9	peroxisomal biogenesis factor 12
1422471_at	Pex13	1.0	1.1	1.0	1.2	peroxisomal biogenesis factor 13
1419053_at	Pex14	1.0	0.9	1.1	1.2	peroxisomal biogenesis factor 14
1425021 a at	Pex16	1.0	0.8	1.6	1.6	peroxisome biogenesis factor 16
1455208_at	Pex19	1.0	0.7	1.4	0.6	peroxisome biogenesis factor 19
Peroxisomal 8-	oxidation					
1416947 s at	Acaa1	1.0	0.2	2.9	0.6	thiolase a & b
1416946 a at	Acaa1	1.0	0.2	3.8	0.7	thiolase a & b
1456011 x at	Acaa1	1.0	1.4	2.6	2.4	thiolase a
1424451 at	Acaa1	1.0	0.0	2.1	0.0	thiolase b
1416409 at	Acox1	1.0	1.0	2.9	3.3	acvl-CoA-oxidase 1
1416408 at	Acox1	1.0	0.9	2.1	2.2	acyl-CoA-oxidase 1
1448382 at	MFP-1 / L-PBE / Ehhadh	1.0	0.7	5.2	5.6	MEP-1 / L-PBE/Ehhadh
1455777 x at	Hsd17b4/MFP-2	10	0.9	1.5	16	Hsd17b4 hydroxysteroid (17-beta) dehydrogenase 4
1417369 at	Hsd17b4/MFP-2	1.0	0.9	16	16	Hsd17b4, hydroxysteroid (17-beta) dehydrogenase 4
14484 <u>9</u> 1 at	Ech1	1.0	0.7	23	2.6	Ech1. enovI-COA hydratase 1
1449686 s at	Scn2	10	0.0	0.0	1.0	sterol carrier protein-2
1419974 at	Scn2	1.0	21	15	4.4	sterol carrier protein-2
1426210 at	Scn2	1.0	11	1.0	1. 	sterol carrier protein-2
1/20673 a of	Δοον2	1.0	1.1	1.1	1 /	acyl-Coonzyme & ovidase 2 branched chain
1/2007 3_a_al		1.0	1.1	1.2	1.4	urate ovidase
1416670 of	Apod2	1.0	1.1	1.0	1.0	
1410079_a	ADCUS	1.0	0.9	0.0	0.0	
1410430_a(Cat	1.0	1.9	0.9	0.9	ualalase
1410429_d_dl	Udi Acct2	1.0	1.0	U.9 7 0	0.9 7 0	valaidase
1422925_S_at	Acuio	1.0	1.0	1.0	1.3	autor universitiase o
1417449_at	ACOT8	1.0	0.6	2.0	1.9	acyi-CoA thioesterase 8

Fidaleo et al., Supplemental Table 1

1
2
3
4
5

Probe Set ID
Mitochondrial
1438156_x_at
1434866_x_at

A

C

WT

D

KO

fold-change

Ε

WT-Wy KO-Wy

F

B

Gene Symbol

143868, x,al Optia 10 0.9 12 1.6 camiline painting/transferase 1a, liver 143488, x,al Optia 1.0 0.9 1.2 1.6 camiline painting/transferase 1a, liver 141322, al Optia 1.0 0.9 1.2 1.6 camiline painting/transferase 2 1414323, al Decrt 1.0 0.8 2.4 2.2 2.4-denny (OA Arcbustes 1. Initochondrial 144648, al Decrt 1.0 0.8 2.1 2.2-denny (OA Arcbustes 1. Initochondrial 145272, al Hadha 1.0 0.9 2.1 2.2-denny (OA Arcbustes 1. Initochondrial 1442522, al Hadha 1.0 0.9 2.1 2.3-denny OA Arcbustes 1. Initochondrial 1442524, al Acad 1.0 1.1 1.6 1.7 1.5-byttropaso/Coenzyme A dehytroparase, short chain 1442245, al. Acad 1.0 1.4 1.7 soble camile family byttrophice 1.4 1.423108, as 1422458, al. Hingd 1.0 1.0 1.0 1.0 1.0 1.0 <th>Mitochondrial β-oxi</th> <th>idation and markers</th> <th></th> <th></th> <th></th> <th></th> <th></th>	Mitochondrial β-oxi	idation and markers					
143686 x, at. Cpt1a 10 0.9 1.6 camine paintby/transferase 1a, liver 1460409_at Cpt1a 1.0 0.9 1.6 2.0 camine paintby/transferase 1a, liver 141937_at Decr1 1.0 0.8 2.4 2.5 camine paintby/transferase 2 141937_at Decr1 1.0 0.8 2.4 2.5 camine paintby/transferase 2 142621_at Decr1 1.0 0.8 2.4 2.2 cherry (CoA reductase 1, michorhorial 14000 cherry = A chydrogense 3/4etoacy/Comme A thiobaselency/Come 142612_at Hadhb 1.0 0.8 2.1 2.2 chydrogense/Comme A chydrogense 3/4etoacy/Comme A thiobaselency/Come 142618_at Acadi 1.0 1.4 1.7 acy/Comme A chydrogenses, conc chain 142618_at Acadi 1.0 1.4 1.7 acy/Comme A chydrogenses, conc chain 142618_at Acadi 1.0 1.4 1.7 acy/Comme A chydrogenses, conc chain 142305 s, at Hargo 1.0 1.6 1.7 rocycomme A chydrogenses, conc chain	1438156_x_at	Cpt1a	1.0	0.9	1.2	1.6	carnitine palmitoyltransferase 1a, liver
14604G in Cpt1a 1.0 0.3 1.6 2.0 carnitine palmicity/tansferase 1a, liver 14135271, at Opc1 0.0 3 2.4 2.5 carnitine palmicity/tansferase 2 1443443, at Decr1 0.0 8 1.6 2.2 2.4-diency/ OA reductase 1, mitochondrial 1443443, at Decr1 0.03 2.4 2.2 2.4-diency/ OA reductase 1, mitochondrial 1422173, at Hadth 1.0 0.8 2.1 2.2 2.4-diency/ OA reductase 1, mitochondrial 142016, at Hadth 1.0 0.8 2.1 2.2 1.4-ditydoxacy-O-Coenzyme A deltydogenase, short chain 1424164, at Acadd 1.0 1.4 1.7 cash/Coenzyme A deltydogenase, long-chain 1424168, at Acadd 1.0 1.4 1.4 ash/Coenzyme A deltydogenase, long-chain 1424168, at Acadd 1.0 1.4 1.4 3.4/dotxoy-Sinethyllatar/O-Cenzyme A deltydogenase, long-chain 1424018, at Hings2 1.0 0.3 1.7 solute carrite family 2.5 (init	1434866 x at	Cpt1a	1.0	0.9	1.2	1.6	carnitine palmitoyltransferase 1a, liver
1413307_at Cpt2 10 0.8 2.4 2.5 carnine painting painteget painting painting painteget painting paintega	1460409_at	Cpt1a	1.0	0.9	1.6	2.0	carnitine palmitoyltransferase 1a, liver
1413937_at Decr1 1.0 0.8 2.4 2.8 2.4-dencyl CA/ reductase 1, mitochondrial 1443443_at Decr1 1.0 0.8 1.6 2.2 2.4-dencyl CA/ reductase 1, mitochondrial 1425273_at Hadha 1.0 0.8 2.1 2.2 hydroxyap/Coanzyme A dehydrogenase3-ketaacy/Coanzyme A thiolaselency/Coanzyme A dehydrogenase, short chain 1445026_at Acads 1.0 0.7 2.1 1.2 acy/Coanzyme A dehydrogenase, long-chain 1442164_at Acadd 1.0 0.7 2.1 acy/Coanzyme A dehydrogenase, long-chain 1423108_at St25820 1.0 0.8 1.7 1.8 solute carrier family 25 (mitochondrial camiline/acy/camitine translocase), member 20 142308_at St25820 1.0 0.8 1.7 1.7 solute carrier family 25 (mitochondrial camiline/acy/camitine translocase), member 20 142308_at Hingds 1.0 0.3 1.3 3-hydroxy-3-methydjulany-Coanzyme A kyse 142308_at Hingds 1.0 0.3 1.1 1.4 3-hydroxy-3-methydjulany-Coanzyme A kyse	1418321_at	Cpt2	1.0	0.8	2.4	2.5	carnitine palmitovitransferase 2
144484.3 at Decr1 10 0.8 1.6 2.2 2.4-dieroji CoA reductase 1, mitochondrial 145277.3 at Hadha 10 0.9 1.9 2.1 hydroxyacy-Coenzyme A dehydrogenase 3-ketoacy-Coenzyme A thiolaselency-Coenzyme A dehydrogenase 3-ketoacy-Coenzyme A thiolaselency-Coenzyme A dehydrogenase, short chain 1440176.at Acads 10 0.7 2.1 1.2 acyl-Coenzyme A dehydrogenase, short chain 1440807.at Acads 10 0.9 2.0 2.1 acety-Coenzyme A dehydrogenase, short chain 1428108.at Acadd 10 0.9 2.0 2.1 acety-Coenzyme A dehydrogenase, short chain 1428108.at Sti25a20 10 0.8 1.7 1.8 solute carrie family 25 (mitochondrial caminieany/carrie and acyl-camine and	1419367 at	Decr1	1.0	0.8	2.4	2.8	2,4-dienovl CoA reductase 1, mitochondrial
1452173_st Hadha 1.0 0.9 1.9 2.1 hydroxyac/Coenzyme A dehydrogenase3-ketoacy/Coenzyme A hiolaselenoy/Coen 1460184_st Hadhs 1.0 0.8 2.1 2.2 hydroxyac/Coenzyme A dehydrogenase3-ketoacy/Coenzyme A hiolaselenoy/Coen 1460184_st Hadhs 1.0 0.7 2.1 1.2 acct/Loenzyme A dehydrogenase, short chain 14482867_st Acadi 1.0 0.7 2.1 1.2 acct/Loenzyme A dehydrogenase, short chain 1424184_st Acadi 1.0 0.7 2.1 acct/Loenzyme A dehydrogenase, hort chain 1424184_st Acadi 1.0 1.4 1.7 as/Coenzyme A dehydrogenase, hort chain 1424184_st Acadi 1.0 1.6 1.7 as/coenzyme A hydrogenase, hort chain 1423108_st StaC52620 1.0 0.8 1.7 1.8 solute carrier family 2 (mitochaid carnitine/acytamitine translocase), member 20 1424308_st_at Hings2 1.0 0.7 1.3 1.3 3-hydroxy-smethydjutary-Coenzyme A hydrose 1431835_at Hings2 1.0 0.9 1.1 1.4 3-hydroxy-smethydjutary-Coenzyme A syntase 2	1449443 at	Decr1	1.0	0.8	1.6	2.2	2,4-dienovl CoA reductase 1, mitochondrial
142652_st Hadhb 1.0 0.8 2.1 2.2 hydroxyacyl-Coenzyme A dehydrogenase13-ketoacyl-Coenzyme A thiolaselenoyl-Coenzyme A dehydrogenase, short chain 146018_at Hadhac 1.0 0.7 2.1 1.2 acyl-Coenzyme A dehydrogenase, short chain 1440216_at Acadi 1.0 0.9 2.0 2.1 acyl-Coenzyme A dehydrogenase, short chain 144218_at Acadi 1.0 0.4 1.7 1.8 solute carrier family 2 (mitchondial carnitinetacylcamitine translocase), member 20 1423108_at Slc25s20 1.0 0.8 1.7 1.7 solute carrier family 2 (mitchondial carnitinetacylcamitine translocase), member 20 142308_a_at Hings2 1.0 0.7 1.3 1.3 shydroxy-5-methylglutary-Coenzyme A hydroxes 142358_a_at Hings2 1.0 0.7 1.3 1.3 shydroxy-5-methylglutary-Coenzyme A synthase 2 142357_at Cs 1.0 1.0 1.0 1.0 1.0 1.0 1423667_at Maoa 1.0 1.2 1.1 1.1 monoamine oxidase A 1423675_at Maoa 1.0 1.2 1.1 <t< td=""><td>1452173 at</td><td>Hadha</td><td>1.0</td><td>0.9</td><td>1.9</td><td>2.1</td><td>hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-Coenzyme A thiolase/enovl-Coer</td></t<>	1452173 at	Hadha	1.0	0.9	1.9	2.1	hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-Coenzyme A thiolase/enovl-Coer
1460191_at Hadhsc 1.0 1.1 1.6 1.7 L'3-hydroxyacyl-Coerzyme A dehydrogenase, short chain 1440216_at Acads 1.0 0.7 2.1 1.2 acpl-Coenzyme A dehydrogenase, short chain 1442807_at Acadi 1.0 0.7 2.1 1.2 acpl-Coenzyme A dehydrogenase, tesh tort hain 142108_at Sic25a20 1.0 0.8 1.7 1.8 solute carrier family 25 (introchondial carnithrelaxylcarnitire translocase), member 20 1423108_at Sic25a20 1.0 0.8 1.7 1.8 solute carrier family 25 (introchondial carnithrelaxylcarnitire translocase), member 20 1423108_at Sic25a20 1.0 0.8 1.7 1.8 solute carrier family 25 (introchondial carnithrelaxylcarnitire translocase), member 20 1423058_a_at Hingos2 1.0 0.8 1.7 1.8 3hydroxy-3-methydjulary-Coenzyme A syntase 2 1423058_a_at Hingos2 1.0 0.9 0.9 circarrier family 25 (introchondial carnithrelaxylcarnithe translocase), member 20 1423657_at Maca 1.0 1.4 1.6 1.7 monamine oxidase A 14235657_at Maca 1.0<	1426522 at	Hadhb	1.0	0.8	2.1	2.2	hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-Coenzyme A thiolase/enoyl-Coer
1460216_at Acads 1.0 0.7 2.1 1.2 acyl-Coenzyme A dehydrogenase, short chain 1448987_at Acadd 1.0 0.9 2.0 2.1 acyl-Coenzyme A dehydrogenase, tray long chain 1424164_at Acadd 1.0 0.4 1.7 rayl-Coenzyme A dehydrogenase, tray long chain 1423108_s.at Stc25a20 1.0 0.8 1.7 1.8 solute carrier family 25 (mitochondrial carrilline/acylcam/tine translocase), member 20 142308_s.at Hmgs1 0.0 1.6 1.6 3-hydroxy3methylgutary/Coenzyme A symbase 2 1422578_s.at Cs 1.0 0.6 1.7 3.1 3-hydroxy-3-methylgutary/Coenzyme A symbase 2 1422578_s.at Cs 1.0 1.0 0.9 citrale symbase 1423667_at Maca 1.0 1.2 1.1 1.1 monoamine oxidase A 1423677_at Maca 1.0 0.3 1.6 1.7 cytochrome P450, family 4, subfamily a, polypeptide 14 1423677_at Maca 1.0 0.3 1.6 1.7 cytochrome P450, family 4, subfamily a, polypeptide 14 1423458_at Cyp4a10	1460184 at	Hadhsc	1.0	1.1	1.6	1.7	L-3-hydroxyacyl-Coenzyme A dehydrogenase, short chain
1448957_at Acadl 1.0 0.9 2.0 2.1 acetyl-Coenzyme A dehydrogenase, long-chain 1424184_at AcadV 1.0 1.0 1.4 1.7 acyl-Coenzyme A dehydrogenase, long chain 1423108_s_at SLC25a20 1.0 0.8 1.7 1.8 solute carrier family 2 finitochondria camiline/acytamitine translocase), member 20 1423108_s_at Hmgcl 1.0 1.6 1.9 3-hydroxy-3-methylgluary-Coenzyme A synthase 2 1423658_a_at Hmgcl 1.0 0.9 1.1 1.4 3-hydroxy-3-methylgluary-Coenzyme A synthase 2 1423657_at Hmgcl 1.0 0.9 1.1 3-hydroxy-3-methylgluary-Coenzyme A synthase 2 1428667_at Maca 1.0 0.9 oltrate synthase 1 1428667_at Maca 1.0 1.2 1.1 1.1 monoamine oxidase A 1428667_at Maca 1.0 1.2 1.1 1.1 monoamine oxidase A 1428667_at Maca 1.0 0.3 1.1 1.1 rocochrome P450, family 4, subfamily a, polypeptide 14 1428667_at Maca 1.0 0.3	1460216_at	Acads	1.0	0.7	2.1	1.2	acyl-Coenzyme A dehydrogenase, short chain
1424184_at Acadvl 1.0 1.4 1.7 acyl-Coenzyme A dehydrogenase, very long chain 1423108_st SLC25a20 1.0 0.8 1.7 1.8 solute carrier family 25 (mitochondria carrilline translocase), member 20 1424309_st_at SLC25a20 1.0 0.8 1.7 1.8 solute carrier family 25 (mitochondria carrilline translocase), member 20 1424639_st_at Hmgcl 1.0 1.6 1.9 3-hydroxy-3-methylglutanyl-Coenzyme A lyase 1423658_st_at Hmgcl 1.0 1.0 1.0 0.9 citrate synthase 1420667_at Maco 1.0 1.0 0.9 citrate synthase 1 1420667_at Maco 1.0 1.2 1.1 1.1 monoamine oxidase A 143067_at Maco 1.0 1.2 1.1 1.1 monoamine oxidase B Microsomal e-oxidation Image 1.0 0.3 1.6 1.7 cytochrome P450, tamily 4, subfamily a, polypeptide 14 1423257_st Cyp4a10 1.0 0.3 1.6 1.7 cytochrome P450, tamily 4, subfamily a, polypeptide 10 1414678_at Codn1	1448987 at	Acadl	1.0	0.9	2.0	2.1	acetyl-Coenzyme A dehydrogenase, long-chain
1423108_at Sic25a20 1.0 0.8 1.7 1.8 solute carrier family 25 (mitochondinal camitine/acy/camitine translocase), member 20 1423108_s_at Hingi 1.0 0.6 1.7 1.7 solute carrier family 25 (mitochondinal camitine/acy/camitine translocase), member 20 1424638_at Hingisz 1.0 0.6 1.9 3-hydroxy-3-methydjutary-Coenzyme A synthase 2 1422578_at Cs 1.0 1.6 1.7 mitochondinal camitine/acy/camitine translocase), member 20 14226867_at Maca 1.0 1.0 0.9 citrate synthase 14236867_at Maca 1.0 1.4 1.6 1.7 monoamine oxidase A 142367_at Cyp4a14 1.0 0.3 1.6 1.7 cytochrome P450, family 4, subfamily a, polypeptide 14 1424043_at Cyp4a10 1.0 0.3 1.6 1.7 cytochrome P450, family 4, subfamily a, polypeptide 14 1424043_at Cold 0.0 3.0 3.9 aldehyde dehydrogenase family 3, subfamily 4, subfamily 4, 2 Electecle proliferation 1428467 Codn1 1.0 0.7 0.7 op	1424184 at	Acadvl	1.0	1.0	1.4	1.7	acyl-Coenzyme A dehydrogenase, very long chain
1423109_s_at Sic25a20 1.0 0.8 1.7 1.7 solute carrier family 25 (mitochondrial carnitine/ac/carnitine translocase), member 20 1424383_a_at Hingcs2 1.0 0.9 1.1 1.4 3-hydroxy-3-methylglutanyl-Coenzyme A synthase 2 142358_a_at Hingcs2 1.0 0.7 1.3 1.3 3-hydroxy-3-methylglutanyl-Coenzyme A synthase 2 1422677_at Cs 1.0 1.0 0.9 ol citrate synthase 1426867_a_at Cs 1.0 0.9 ol citrate synthase 1426867_at Mado 1.0 1.2 1.1 1.1 monoamine oxidase A 142857_at Cyp4a10 1.0 0.3 1.6 1.7 cytochrome P450, family 4, subfamily a, polypeptide 14 1423257_at Cyp4a10 1.0 0.3 1.1.1 1.1 otytochrome P450, family 4, subfamily a, polypeptide 10 1446986_at Codn1 1.0 1.1 0.6 0.8 cyclin D1 1446986_at Codn2 1.0 0.7 0.9 oydin D2 codn1 1446986_at Codn2 1.0 1.2 0.7 0.9	1423108 at	Slc25a20	1.0	0.8	1.7	1.8	solute carrier family 25 (mitochondrial carritine/acvlcarnitine translocase), member 20
142433 a. at Hingcl 1.0 1.6 1.9 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 142383 a. at Hingcs2 1.0 0.9 1.1 1.4 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 1422578 a. at Cs 1.0 0.7 1.3 1.3 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 1425676 7.a at Cs 1.0 1.0 0.9 citrate synthase 1426867 at Maca 1.0 1.4 1.6 1.7 1423678 at Maca 1.0 1.2 1.1 moramine oxidase A 1423657 at Maca 1.0 0.3 1.6 1.7 cytochrome P450, family 4, subfamily a, polypeptide 14 1423657 at Cyp4a10 1.0 0.3 1.1.1 1.1 oydorbroe P450, family 4, subfamily a, polypeptide 10 1445775 at Adh3az 1.0 0.3 3.9 aldehyde dehydrogenase family 3, subfamily 4, subfamily 4, 2 Cell cycle/cell poliferation	1423109 s at	Slc25a20	1.0	0.8	1.7	1.7	solute carrier family 25 (mitochondrial carnitine/acvlcarnitine translocase), member 20
1431833_a_at Hingss2 1.0 0.9 1.1 1.4 3 hydroxy-3-methylgutary-Coenzyme A synthase 2 1423686_a_at Hingss2 1.0 0.7 1.3 1.3 3-hydroxy-3-methylgutary-Coenzyme A synthase 2 1422586_at Cs 1.0 1.0 0.9 oitrate synthase 1425667 1422667_at Maoa 1.0 1.4 1.6 1.7 monoamine oxidase A 1423654_at Maob 1.0 0.3 1.6 1.7 monoamine oxidase A 1424364_at Maob 1.0 0.3 1.6 1.7 cytochrome P450, family 4, subfamily a, polypeptide 14 1424364_at Cyp4a10 1.0 0.3 1.6 1.7 cytochrome P450, family 4, subfamily a, polypeptide 10 1415776_at Alen3az 1.0 0.3 3.0 3.9 aidehyde dehydrogenase family 3, subfamily A2 Cold Codn1 1.0 0.1 1.6 0.8 cyclin D1 1447098,at Codn1 1.0 1.1 0.6 0.8 cyclin D1 144740_at Codn1 1.0 1.0 1.2 <td< td=""><td>1424639 a at</td><td>Hmacl</td><td>1.0</td><td>1.0</td><td>1.6</td><td>1.9</td><td>3-hvdroxv-3-methvlalutarvl-Coenzvme A lvase</td></td<>	1424639 a at	Hmacl	1.0	1.0	1.6	1.9	3-hvdroxv-3-methvlalutarvl-Coenzvme A lvase
1423858_a at Hingss2 1.0 0.7 1.3 1.3 3-hydroxy-3-methylgutar/-Coenzyme A synthase 2 1422677a_it Cs 1.0 1.0 0.9 citrate synthase 142067a_at Cs 1.0 1.0 0.9 citrate synthase 142067a_at Maoa 1.0 1.4 1.6 1.7 monoamine oxidase A 1423657_at Maob 1.0 1.2 1.1 1.1 monoamine oxidase A 142357_at Oxp4a14 1.0 0.3 1.6 1.7 cytochrome P450, family 4, subfamily a, polypeptide 14 142357_at Alchasz 1.0 0.3 11.1 11.1 optochrome P450, family 4, subfamily a, polypeptide 10 1445776_at Alchasz 1.0 0.3 11.1 11.1 optochrome P450, family 4, subfamily a, polypeptide 10 1445776_at Alchasz 1.0 0.3 3.0 3.9 aldehyde dehydrogenase family 3, subfamily A2 Cell cycle/cell proliferation 1.0 1.0 0.6 0.8 cyclin D1 1446898_at Cong2 1.0 0.7 1.4 1.6 cyclin D2 <td>1431833 a at</td> <td>Hmacs2</td> <td>1.0</td> <td>0.9</td> <td>1.1</td> <td>1.4</td> <td>3-hvdroxv-3-methvlglutarvl-Coenzyme A synthase 2</td>	1431833 a at	Hmacs2	1.0	0.9	1.1	1.4	3-hvdroxv-3-methvlglutarvl-Coenzyme A synthase 2
1422578_at Cs 1.0 1.0 0.9 citrate synthase 1425067_a_at Cs 1.0 1.0 0.9 citrate synthase 1426667_at Maoa 1.0 1.4 1.6 1.7 monoamine oxidase A 1428667_at Maoa 1.0 1.2 1.1 1.1 monoamine oxidase A 1428657_at Maob 1.0 0.3 1.6 1.7 cytochrome P450, family 4, subfamily a, polypeptide 14 1428453_at Cyp4a10 1.0 0.3 1.1 1.1 cytochrome P450, family 4, subfamily a, polypeptide 10 1415776_at Aidh3a2 1.0 0.9 3.0 3.9 aldehyde dehydrogenase family 3, subfamily A2 Cell cycle/cell proliferation 1448688_at Codn1 1.0 1.1 0.6 0.8 cyclin D1 14416488_at Cong2 1.0 1.2 0.7 0.9 cyclin D2 1448644_at Cong2 1.0 0.7 1.4 1.6 cyclin G2 1424001_at Mki67/p 1.0 1.2 1.4 1.4 Moloi S1.4 <t< td=""><td>1423858 a at</td><td>Hmacs2</td><td>1.0</td><td>0.7</td><td>1.3</td><td>1.3</td><td>3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2</td></t<>	1423858 a at	Hmacs2	1.0	0.7	1.3	1.3	3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2
1450667_at Cs 1.0 1.0 0.9 0.9 citrate synthase 1428667_at Maoa 1.0 1.4 1.6 1.7 monoamine oxidase A 1434354_at Maob 1.0 1.2 1.1 1.1 monoamine oxidase A 1423557_at Cyp4a14 1.0 0.3 1.6 1.7 cytochrome P450, family 4, subfamily a, polypeptide 14 1423557_at Cyp4a10 1.0 0.3 11.1 11.1 cytochrome P450, family 4, subfamily a, polypeptide 10 1415776_at Aldh3a2 1.0 0.9 3.0 3.9 aldehyde dehydrogenase family 3, subfamily A2 Cell cyclecell proliferation 0.6 0.8 cyclin D1 1414688_at Codn1 1.0 1.1 0.6 0.8 cyclin D2 1444884_at Codn2 1.0 1.2 0.7 0.9 cyclin D2 1444884_at Cong2 1.0 0.7 1.4 1.6 cyclin G2 1444884_at Cong2 1.0 0.8 0.7 0.5 polo-like kinase 2 (Drosophila)	1422578 at	Cs	1.0	1.0	1.0	0.9	citrate synthase
Hose Base Hose Base Hose Base Hose Base Microsomal @-oxidation 1.4 1.6 1.7 monoamine oxidase A 1423267_at Cyp4a14 1.0 0.3 1.6 1.7 cytochrome P450, family 4, subfamily a, polypeptide 14 1423257_at Cyp4a10 1.0 0.3 11.1 11.1 cytochrome P450, family 4, subfamily a, polypeptide 10 1415776_at Adh3a2 1.0 0.9 3.0 3.9 aldehyde dehydrogenase family 3, subfamily A2 Cell cycle/cell proliferation 1.0 1.0 0.6 0.8 cyclin D1 1448686_at Codn1 1.0 1.0 0.6 0.8 cyclin D1 1448684_at Codn2 1.0 1.2 0.7 0.9 cyclin D2 1448364_at Cong2 1.0 0.7 7.7 cyclin G2 1448364_at Cong2 1.0 0.8 0.7 0.5 polo-like kinase 3 (Drosophila) 14424001_at Mkl67ip 1.0 1.1 1.1 1.3 <td>1450667 a at</td> <td>Cs</td> <td>1.0</td> <td>1.0</td> <td>0.9</td> <td>0.9</td> <td>citrate synthase</td>	1450667 a at	Cs	1.0	1.0	0.9	0.9	citrate synthase
Hidrasserial Maob 1.0 1.2 1.1 1.1 monoamine oxidase B Microsomal & oxidation 1423257_at Cyp4a14 1.0 0.3 1.6 1.7 cytochrome P450, family 4, subfamily a, polypeptide 14 1424343_at Cyp4a10 1.0 0.3 1.1 1.1 r.cytochrome P450, family 4, subfamily a, polypeptide 10 1445868_at Codn1 1.0 1.1 0.6 0.8 cyclin D1 1447576_at Addh3a2 1.0 0.9 3.0 3.9 aldehyde dehydrogenase family 3, subfamily A2 Cell cycle/cell proliferation 1448584_at Codn1 1.0 1.0 0.6 0.8 cyclin D1 1448584_at Codn2 1.0 1.0 0.7 or yolin D2 1448364_at Cong2 1.0 0.7 1.4 1.6 cyclin G2 1444384_at Cong2 1.0 0.8 2.2 2.0 cyclin G2 1444386_at Cong2 1.0 0.8 0.7 0.5 polo-like kinase 2 (Drosophila) <td>1428667 at</td> <td>Maoa</td> <td>1.0</td> <td>1.4</td> <td>1.6</td> <td>1.7</td> <td>monoamine oxidase A</td>	1428667 at	Maoa	1.0	1.4	1.6	1.7	monoamine oxidase A
Microsomal e-oxidation 1423257_at Cyp4a14 1.0 0.3 1.6 1.7 cytochrome P450, family 4, subfamily a, polypeptide 14 1424943_at Cyp4a10 1.0 0.3 11.1 11.1 cytochrome P450, family 4, subfamily a, polypeptide 10 1415776_at Aldn3a2 1.0 0.9 3.0 3.9 aldehyde dehydrogenase family 3, subfamily A2 Cell cycle/cell proliferation 1448698_at Codn1 1.0 1.1 0.6 0.8 cyclin D1 1416122_at Codn1 1.0 0.6 0.8 cyclin D2 1448698_at Cong2 1.0 0.7 0.7 cyclin D2 1448688_at Cong2 1.0 0.7 1.4 1.6 cyclin G2 1448686_at Cong2 1.0 0.8 0.7 0.5 polo-like kinase 2 (Drosophila) 1434496_at Plk2 1.0 0.4 2.1 polo-like kinase 3 (Drosophila) 1434496_at Cdk32 1.0 1.2 1.5 1.2 cyclin-dependent kinase inhibitor 2C	1434354_at	Maob	1.0	1.2	1.1	1.1	monoamine oxidase B
1423257_at Cyp4a14 1.0 0.3 1.6 1.7 cytochrome P450, family 4, subfamily a, polypeptide 14 1424943_at Cyp4a10 1.0 0.3 11.1 11.1 cytochrome P450, family 4, subfamily a, polypeptide 10 1415776_at Aldh3a2 1.0 0.9 3.0 3.9 aldehyde dehydrogenase family 3, subfamily A2 Cell cycle/cell proliferation 1 1.0 1.1 0.6 0.8 cyclin D1 1417420_at Codn1 1.0 1.0 0.6 0.8 cyclin D1 1416122_at Codn2 1.0 1.2 0.7 0.9 cyclin D2 1448364_at Cong2 1.0 0.7 0.7 cyclin G2 1448364_at Cong2 1.0 0.8 2.2 2.0 cyclin G2 1448364_at Cong2 1.0 0.8 2.2 2.0 cyclin G2 1448364_at Cong2 1.0 1.1 1.1 1.3 Mki67 (FHA domain) interacting nucleolar phosphoprotein 1422005_at Plk2 1.0	Microsomal @-oxida	ation					
1424943_at Cyp4a10 1.0 0.3 11.1 11.1 cytochrome P450, family 4, subfamily a, polypeptide 10 1415776_at Aldh3a2 1.0 0.9 3.0 3.9 aldehyde dehydrogenase family 3, subfamily A2 Cell cycle/cell proliferation 1448698_at C cdn1 1.0 1.1 0.6 0.8 cyclin D1 1417420_at C cdn1 1.0 1.0 0.6 0.8 cyclin D1 1416122_at C cdn2 1.0 1.2 0.7 0.9 cyclin D2 1448698_at C cng2 1.0 0.7 1.4 1.6 cyclin D2 1448364_at C cng2 1.0 0.7 1.4 1.6 cyclin G2 1448364_at C cng2 1.0 0.8 2.2 2.0 cyclin G2 1442400_at Mki67ip 1.0 1.1 1.3 Mki67 (FHA domain) interacting nucleolar phosphoprotein 1427005_at Plk2 1.0 0.8 0.7 0.5 polo-like kinase 2 (Drosophila)	1423257 at	Cyp4a14	1.0	0.3	1.6	1.7	cytochrome P450, family 4, subfamily a, polypeptide 14
1415776_at Aidh3a2 1.0 0.9 3.0 3.9 aidehyde dehydrogenase family 3, subfamily A2 Cell cycle/cell proliferation 1448698_at Codn1 1.0 1.1 0.6 0.8 cyclin D1 1417420_at Codn1 1.0 1.2 0.7 0.9 cyclin D1 1416122_at Codn2 1.0 1.2 0.7 0.9 cyclin D2 1448364_at Cong2 1.0 0.7 1.4 1.6 cyclin G2 1448364_at Cong2 1.0 0.7 1.4 1.6 cyclin G2 1448364_at Cong2 1.0 0.7 1.4 1.6 cyclin G2 1448364_at Cong2 1.0 0.8 2.2 2.0 cyclin G2 1448364_at Cong2 1.0 0.8 0.7 0.5 polo-like kinase 2 (Drosophila) 1424001_at Mki67/ip 1.0 1.2 1.5 1.2 cyclin-dependent Kinase inhibitor 2C 1436486_at Cdkn2c	1424943_at	Cyp4a10	1.0	0.3	11.1	11.1	cytochrome P450, family 4, subfamily a, polypeptide 10
Cell cycle/cell proliferation 1448688_at Ccdn1 1.0 1.1 0.6 0.8 cyclin D1 1417420_at Ccdn1 1.0 1.0 0.6 0.8 cyclin D1 1416122_at Ccdn2 1.0 1.2 0.7 0.9 cyclin D2 1448364_at Ccdn2 1.0 0.7 0.7 cyclin G2 1448364_at Ccng2 1.0 0.7 1.4 1.6 cyclin G2 1448364_at Ccng2 1.0 0.7 1.4 1.6 cyclin G2 1448364_at Ccng2 1.0 0.8 2.2 2.0 cyclin G2 1448364_at Ccng2 1.0 0.8 0.7 0.5 polo-like kinase 2 (Drosophila) 1424001_at Mki67ip 1.0 1.1 1.1 1.3 Mki67ib2 2C 142406_at Pik2 1.0 0.5 1.4 2.1 polo-like kinase 3 (Drosophila) 143688_at Cdkn2c 1.0 1.2 1.5 1.2	1415776_at	Aldh3a2	1.0	0.9	3.0	3.9	aldehyde dehydrogenase family 3, subfamily A2
1448698_at Ccdn1 1.0 1.1 0.6 0.8 cyclin D1 1417420_at Ccdn1 1.0 1.0 0.6 0.8 cyclin D1 1416122_at Ccdn2 1.0 1.2 0.7 0.9 cyclin D2 1448364_at Ccdn2 1.0 0.7 0.7 cyclin G2 1448364_at Ccng2 1.0 0.7 1.4 1.6 cyclin G2 1448364_at Ccng2 1.0 0.7 1.4 1.6 cyclin G2 1448364_at Ccng2 1.0 0.8 2.2 2.0 cyclin G2 1448364_at Ccng2 1.0 0.8 2.2 2.0 cyclin G2 1448364_at Clong2 1.0 0.8 0.7 0.5 polo-like kinase 2 (Drosophila) 1424001_at Mki67ip 1.0 1.1 1.1 1.3 Mki67 (FHA domain) interacting nucleolar phosphoprotein 1427005_at Plk2 1.0 0.8 0.7 0.5 <pol>polo-like kinase 2 (Drosophila) 1416868_at Cdkn2c 1.0 1.2 1.5 1.2</pol>	Cell cycle/cell proli	feration					
1417420_at Ccdn1 1.0 1.0 0.6 0.8 cyclin D1 1416122_at Codn2 1.0 1.2 0.7 0.9 cyclin D2 1448364_at Codn2 1.0 1.0 0.7 0.7 cyclin D2 1448364_at Cong2 1.0 0.7 1.4 1.6 cyclin G2 1448364_at Cong2 1.0 0.7 1.4 1.6 cyclin G2 1448364_at Cong2 1.0 0.8 2.2 2.0 cyclin G2 1424001_at Mki67ip 1.0 1.1 1.1 1.3 Mki67 (FHA domain) interacting nucleolar phosphoprotein 1424005_at Pik2 1.0 0.8 0.7 0.5 polo-like kinase 2 (Drosophila) 1434496_at Pik2 1.0 0.5 1.4 2.1 polo-like kinase 3 (Drosophila) 1416868_at Cdkn2c 1.0 1.2 1.5 1.2 cyclin-dependent kinase inhibitor 2C 1435204_a_at Cdca3 1.0 1.2	1448698_at	Ccdn1	1.0	1.1	0.6	0.8	cyclin D1
1416122_at Ccdn2 1.0 1.2 0.7 0.9 cyclin D2 1448364_at Ccdn2 1.0 1.0 0.7 0.7 cyclin D2 1416488_at Ccng2 1.0 0.7 1.4 1.6 cyclin G2 1448364_at Ccng2 1.0 0.8 2.2 2.0 cyclin G2 1424001_at Mki67ip 1.0 1.1 1.1 1.3 Mki67 (FHA domain) interacting nucleolar phosphoprotein 1424001_at Mki67ip 1.0 0.8 0.7 0.5 polo-like kinase 2 (Drosophila) 1424005_at Plk2 1.0 0.8 0.7 0.5 polo-like kinase 3 (Drosophila) 1434496_at Plk3 1.0 0.5 1.4 2.1 polo-like kinase 3 (Drosophila) 1416868_at Cdkn2c 1.0 1.2 1.5 1.2 cyclin-dependent kinase inhibitor 2C 1437580_s_at Nek2 1.0 1.2 1.6 1.7 NIMA (never in mitosis gene a)- related expressed kinase 2 145204_a_at Tde2l 1.0 0.7 26 12 tumor differentially expressed	1417420_at	Ccdn1	1.0	1.0	0.6	0.8	cyclin D1
1448364_at Ccdn2 1.0 1.0 0.7 0.7 cyclin D2 1416488_at Ccng2 1.0 0.7 1.4 1.6 cyclin G2 1448364_at Ccng2 1.0 0.8 2.2 2.0 cyclin G2 1424001_at Mki67ip 1.0 1.1 1.1 1.3 Mki67 (FHA domain) interacting nucleolar phosphoprotein 1427005_at Plk2 1.0 0.8 0.7 0.5 polo-like kinase 2 (Drosophila) 1434496_at Plk3 1.0 0.5 1.4 2.1 polo-like kinase 3 (Drosophila) 1416868_at Cdkn2c 1.0 1.2 1.5 1.2 cyclin-dependent kinase inhibitor 2C 1437580_s_at Nek2 1.0 1.2 1.6 1.7 NIMA (never in mitosis gene a)- related expressed kinase 2 1452040_a_at Cdca3 1.0 1.3 2.2 1.9 cell division cycle associated 3 1450971_at Gadd45b 1.0 0.5 4.6 3.3 growth arrest and DNA-damage- inducible 45 beta 1416837_at Bax 1.0 0.5 4.6 3.3	1416122_at	Ccdn2	1.0	1.2	0.7	0.9	cyclin D2
1416488_at Ccng2 1.0 0.7 1.4 1.6 cyclin G2 1448364_at Ccng2 1.0 0.8 2.2 2.0 cyclin G2 1424001_at Mki67ip 1.0 1.1 1.1 1.3 Mki67 (FHA domain) interacting nucleolar phosphoprotein 1427005_at Plk2 1.0 0.8 0.7 0.5 polo-like kinase 2 (Drosophila) 1434496_at Plk3 1.0 0.5 1.4 2.1 polo-like kinase 3 (Drosophila) 1446868_at Cdkn2c 1.0 1.2 1.5 1.2 cyclin-dependent kinase inhibitor 2C 1437580_s_at Nek2 1.0 1.2 1.6 1.7 NIMA (never in mitosis gene a)- related expressed kinase 2 1452040_a_at Cdca3 1.0 1.3 2.2 1.9 cell division cycle associated 3 1452040_a_at Tde2l 1.0 0.7 26 12 tumor differentially expressed 2-like Pro-apoptotic genes 1450971_at Gadd45b 1.0 0.5 4.6 3.3 growth arrest and DNA-damage- inducible 45 beta 1416837_at	1448364_at	Ccdn2	1.0	1.0	0.7	0.7	cyclin D2
1448364_at Ccng2 1.0 0.8 2.2 2.0 cyclin G2 1424001_at Mki67ip 1.0 1.1 1.1 1.3 Mki67 (FHA domain) interacting nucleolar phosphoprotein 1427005_at Plk2 1.0 0.8 0.7 0.5 polo-like kinase 2 (Drosophila) 1434496_at Plk3 1.0 0.5 1.4 2.1 polo-like kinase 3 (Drosophila) 1446868_at Cdkn2c 1.0 1.2 1.5 1.2 cyclin-dependent kinase inhibitor 2C 1437580_s_at Nek2 1.0 1.2 1.6 1.7 NIMA (never in mitosis gene a)- related expressed kinase 2 1452040_a_at Cdca3 1.0 1.3 2.2 1.9 cell division cycle associated 3 1452040_a_at Tde2l 1.0 0.7 26 12 tumor differentially expressed 2-like Pro-apoptotic genes Image: state in the image: state inducible 45 1.0 0.5 4.6 3.3 growth arrest and DNA-damage- inducible 45 beta 1416837_at Bax 1.0 0.8 0.7 0.6 defender against cell death 1	1416488_at	Ccng2	1.0	0.7	1.4	1.6	cyclin G2
1424001_at Mki67ip 1.0 1.1 1.1 1.3 Mki67 (FHA domain) interacting nucleolar phosphoprotein 1427005_at Plk2 1.0 0.8 0.7 0.5 polo-like kinase 2 (Drosophila) 1434496_at Plk3 1.0 0.5 1.4 2.1 polo-like kinase 2 (Drosophila) 1416868_at Cdkn2c 1.0 1.2 1.5 1.2 cyclin-dependent kinase inhibitor 2C 1437580_s_at Nek2 1.0 1.2 1.6 1.7 NIMA (never in mitosis gene a)- related expressed kinase 2 1432040_a_at Cdca3 1.0 1.3 2.2 1.9 cell division cycle associated 3 1452040_a_at Tde2l 1.0 0.7 26 12 tumor differentially expressed 2-like Pro-apoptotic genes	1448364_at	Ccng2	1.0	0.8	2.2	2.0	cyclin G2
1427005_at Plk2 1.0 0.8 0.7 0.5 polo-like kinase 2 (Drosophila) 1434496_at Plk3 1.0 0.5 1.4 2.1 polo-like kinase 3 (Drosophila) 1416868_at Cdkn2c 1.0 1.2 1.5 1.2 cyclin-dependent kinase inhibitor 2C 1437580_s_at Nek2 1.0 1.2 1.6 1.7 NIMA (never in mitosis gene a)- related expressed kinase 2 1452040_a_at Cdca3 1.0 1.3 2.2 1.9 cell division cycle associated 3 1452040_a_at Tde2l 1.0 0.7 26 12 tumor differentially expressed 2-like Pro-apoptotic genes	1424001_at	Mki67ip	1.0	1.1	1.1	1.3	Mki67 (FHA domain) interacting nucleolar phosphoprotein
1434496_at Plk3 1.0 0.5 1.4 2.1 polo-like kinase 3 (Drosophila) 1416868_at Cdkn2c 1.0 1.2 1.5 1.2 cyclin-dependent kinase inhibitor 2C 1437580_s_at Nek2 1.0 1.2 1.6 1.7 NIMA (never in mitosis gene a)- related expressed kinase 2 1437580_s_at Cdca3 1.0 1.3 2.2 1.9 cell division cycle associated 3 1452040_a_at Tde2l 1.0 0.7 26 12 tumor differentially expressed 2-like Pro-apoptotic genes	1427005_at	Plk2	1.0	0.8	0.7	0.5	polo-like kinase 2 (Drosophila)
1416868_at Cdkn2c 1.0 1.2 1.5 1.2 cyclin-dependent kinase inhibitor 2C 1437580_s_at Nek2 1.0 1.2 1.6 1.7 NIMA (never in mitosis gene a)- related expressed kinase 2 1452040_a_at Cdca3 1.0 1.3 2.2 1.9 cell division cycle associated 3 1452040_a_at Tde2l 1.0 0.7 26 12 tumor differentially expressed 2-like Pro-apoptotic genes	1434496_at	Plk3	1.0	0.5	1.4	2.1	polo-like kinase 3 (Drosophila)
1437580_s_at Nek2 1.0 1.2 1.6 1.7 NIMA (never in mitosis gene a)- related expressed kinase 2 1452040_a_at Cdca3 1.0 1.3 2.2 1.9 cell division cycle associated 3 1452040_a_at Tde2l 1.0 0.7 26 12 tumor differentially expressed 2-like Pro-apoptotic genes	1416868_at	Cdkn2c	1.0	1.2	1.5	1.2	cyclin-dependent kinase inhibitor 2C
1452040_a_at Cdca3 1.0 1.3 2.2 1.9 cell division cycle associated 3 1452040_a_at Tde2l 1.0 0.7 26 12 tumor differentially expressed 2-like Pro-apoptotic genes	1437580_s_at	Nek2	1.0	1.2	1.6	1.7	NIMA (never in mitosis gene a)- related expressed kinase 2
1452040_a_at Tde2l 1.0 0.7 26 12 tumor differentially expressed 2-like Pro-apoptotic genes	1452040_a_at	Cdca3	1.0	1.3	2.2	1.9	cell division cycle associated 3
Pro-apoptotic genes 1450971_at Gadd45b 1.0 0.5 4.6 3.3 growth arrest and DNA-damage- inducible 45 beta 1416837_at Bax 1.0 0.9 1.2 0.7 Bcl2-associated X protein Anti-apoptotic genes Image: second s	1452040_a_at	Tde2l	1.0	0.7	26	12	tumor differentially expressed 2-like
1450971_at Gadd45b 1.0 0.5 4.6 3.3 growth arrest and DNA-damage- inducible 45 beta 1416837_at Bax 1.0 0.9 1.2 0.7 Bcl2-associated X protein Anti-apoptotic genes 1.0 0.8 0.7 0.6 defender against cell death 1	Pro-apoptotic gene	S					
1416837_at Bax 1.0 0.9 1.2 0.7 Bcl2-associated X protein Anti-apoptotic genes Image: Constraint of the state of t	1450971_at	Gadd45b	1.0	0.5	4.6	3.3	growth arrest and DNA-damage- inducible 45 beta
Anti-apoptotic genes 1418528_at Dad1 1.0 0.8 0.7 0.6 defender against cell death 1	1416837_at	Bax	1.0	0.9	1.2	0.7	Bcl2-associated X protein
1418528_at Dad1 1.0 0.8 0.7 0.6 defender against cell death 1	Anti-apoptotic gene	S					
	1418528_at	Dad1	1.0	0.8	0.7	0.6	defender against cell death 1

8 9 10

Fidaleo et al., Supplemental Table 1

1
2
3
4
5
6
7

8	
9	

Α	В	С	D	Ε	F			
		_	fold-ch	ange		j		1
Probe Set ID	Gene Symbol	WT	KO	WT-Wv	KO-Wv			
_				,			-	-
De novo choleste	rol biosynthesis							
1433445_x_at	Hmgcs1	1.0	0.7	2.3	1.2		3-hydroxy	3-hydroxy-3-methylglutaryl-C
1433443_a_at	Hmgcs1	1.0	0.7	2.5	1.3		3-hydroxy	3-hydroxy-3-methylglutaryl-C
1433444 at	Hmgcs1	1.0	0.5	2.5	1.1		3-hydroxy	3-hydroxy-3-methylglutaryl-C
1433446_at	Hmgcs1	1.0	0.6	2.0	1.1		3-hydroxy	3-hydroxy-3-methylglutaryl-C
1427229 at	Hmacr	1.0	0.9	1.5	1.1		3-hvdroxv	3-hvdroxy-3-methylalutaryl-C
1418052 at	Mvk	1.0	1.3	2.0	1.6		mevalona	mevalonate kinase
1427893 a at	Pmvk	1.0	0.7	1.1	1.0		phosphor	phosphomevalonate kinase
1448663 s at	Mvd	10	1.3	2.5	0.6		mevalona	mevalonate (diphospho) dec
1417303 at	Mvd	1.0	2.0	3.0	1.8		mevalona	mevalonate (diphospho) dec
1419805 s at	Gaps1	1.0	0.9	1.0	0.9		neranylne	deranvlderanvl dinhosphate
1419505 a at	Gaps1	1.0	0.8	1.0	1.0		aeranylae	geranylgeranyl diphosphate
1451122 at	Idi1	1.0	19	2.6	13		isonenten	isonentenvl-dinhosnhate del
1423418 at	Edns	1.0	1.0	2.0	0.7		farnesvl d	farnesyl dinhosnhate synthe
1/38322 v at	Edft1	1.0	1.1	2.7	1.2		farnesvl d	farnesyl diphosphate farnesy
1//8130 at	Edft1	1.0	1.1	2.0	1.2		forneevl d	farnesyl diphosphate farnesy
1/15003 of	Salo	1.0	1.0 2.4	2.4 6.1	1. 4 2.0		caualana	Idillesyl ulphosphale iames
1410990_at		1.0	2.4 1 C	0. 4 0.0	2.J 1 E		Innectoral	Syudience epuxicase
1420013_5_dl	LSS	1.0	0.1 1 0	2.J	G.I		lanosterol	lanosterol synthase
1420913_dl	LSS OursE4	1.0	1.ŏ	1.ŏ	1.1		lanosterur	Ianosteroi synthase
1450646_at		1.0	1.0	1.8	0.7		Cytochron	cytochrome P450, family 51;
1423078_a_at	Sc4mol	1.0	1.4	4.0	1.8		sterol-C4-	sterol-C4-methyl oxidase-like
1424709_at	Sc5d	1.0	0.8	0.9	0.7		sterol-C5-	sterol-C5-desaturase (tunga
1434520_at	Sc5d	1.0	1.1	0.7	0.6		sterol-C5-	sterol-C5-desaturase (funga
1451457_at	Sc5d	1.0	0.8	0.8	0.5		sterol-C5-	sterol-C5-desaturase (funga
1448619_at	Dhcr7	1.0	1.0	1.1	0.9		7-dehydro	7-dehydrocholesterol reduct
1451895_a_at	Dhcr24	1.0	1.1	1.7	1.6		24-dehydr	24-dehydrocholesterol reduc
1418130_at	Dhcr24	1.0	1.3	1.8	1.4		24-dehydr	24-dehydrocholesterol reduc
1418129_at	Dhcr24	1.0	1.3	1.9	1.3		24-dehydr	24-dehydrocholesterol reduc
1416222_at	Nsdhl	1.0	1.2	1.5	0.9		NAD(P) d	NAD(P) dependent steroid d
1448240_at	Mbtps1	1.0	1.0	0.8	0.9		membran	membrane-bound transcripti
1431385 a at	Mbtps1	1.0	1.0	0.8	1.0		membran	membrane-bound transcripti
1436883 at	Mbtps2	1.0	1.2	1.2	1.0		membran	membrane-bound transcripti
1426690 a at	Srebf1	1.0	17	0.7	0.7		sterol real	sterol regulatory element bin
1452174 at	Srehf2	1.0	0.0	0.7	1.0		eterol rea	sterol regulatory element hin
1/133520 at	Scan	1.0	10	1.0	1.0		QDERD d	SIETOT TEgulatory element on SDERD cleavage activating
1/5/671 of	locia1	1.0	1.0	1.4	1.0 0 0			inculin induced gene 1
1404071_at	li isiy i Incia?	1.0	1.3	1.1	0.0		insulin ind	insulin induced gene 1
141/900_d_dl	iiibiyz Inola	1.0	0.7	1.J	1.3			Insulin induced gene 2
1417982_at	insig2	1.0	0.8	1.1	1.2		insulin ina	Insulin induced gene 2

NB: Squalene synthase was not present on the arrays.

- 11

Α	В	C	D	Е	F	
Probe Set ID	Gene Symbol	WT	KO	WT-Wy	KO-Wy	-
Sterol transport/tr	afficking					
1421840_at	Abca1	1.0	1.0	1.2	1.1	ATP-binding cassette, sub-family A (ABC1), member 1
1421839_at	Abca1	1.0	0.9	1.2	1.0	ATP-binding cassette, sub-family A (ABC1), member 1
1419393_at	Abcg5	1.0	1.5	1.2	1.5	ATP-binding cassette, sub-family G (WHITE), member 5
1420656_at	Abcg8	1.0	1.4	1.0	1.1	ATP-binding cassette, sub-family G (WHITE), member 8
1449817_at	Abcb11	1.0	1.2	0.4	0.5	ATP-binding cassette, sub-family B (MDR/TAP), member 11
1421821_at	Ldir	1.0	1.2	1.1	0.9	low density lipoprotein receptor
1437453_s_at	Pcsk9	1.0	1.8	2.5	1.2	proprotein convertase subtilisin/kexin type 9
1423086_at	Npc1	1.0	1.1	1.1	0.9	Niemann Pick type C1
1448513_a_at	Npc2	1.0	1.0 1.0	0.8	0.7	Niemann Pick type C2 Niemann Pick type C2
1410901_at	INPG2	1.0	1.0	1.0	0.0	Niemann Pick type C2
Nuclear hormone	receptors (towards lipi	id metabolis	sm)			
1449051_at	Nr1c1-Pparα	1.0	1.5	1.3	1.5	peroxisome proliferator activated receptor alpha
1416353_at	Nr1h2-Lxrβ	1.0	0.9	0.8	0.7	nuclear receptor subfamily 1, group H, member 2
1450444_a_at	Nr1h3-Lxrα	1.0	0.8	0.8	0.9	nuclear receptor subfamily 1, group H, member 3
1419105_at	Nr1h4-Fxrα	1.0	0.8	0.8	0.8	nuclear receptor subfamily 1, group H, member 4
1449854_at	Nr0b2-Shp	1.0	0.8	0.6	1.1	nuclear receptor subfamily 0, group B, member 2
1429382_at	Nr1i3-Car	1.0	1.0	1.4	1.7	nuclear receptor subfamily 1, group I, member 3
1455614_at	Nr1i3-Car	1.0	0.7	1.1	1.0	nuclear receptor subfamily 1, group I, member 3
SREBP interacting	protein Poarge1b	1.0	1 2	0.0	1.0	perevisione proliferative activated recenter gamma coactivator 1 beta
1449940_al	Crehbn	1.0	0.0	1.0	0.8	CREB binding protein
1404000_at	Nr5a2-Lrh1	1.0	2.4	1.0	1.6	nuclear recentor subfamily 5, group A, member 2
1449706 s at	Nr5a2-Linn Nr5a2-Linn	1.0	14	1.4	1.0	nuclear receptor subfamily 5, group A, member 2
1456021 at	Atf6	1.0	0.7	1.1	1.0	activating transcription factor 6
1435444 at	Atf6	1.0	0.8	0.7	0.6	activating transcription factor 6
1450447 at	Nr2a1-Hnf4α	1.0	1.3	1.4	1.7	nuclear receptor subfamily 2, group A, member 1
1427001 s at	Nr2a1-Hnf4α	1.0	1.0	0.9	1.1	nuclear receptor subfamily 2, group A, member 1
1421983 s at	Nr2a1-Hnf4α	1.0	1.1	0.9	1.1	nuclear receptor subfamily 2, group A, member 1
1427000_at	$Nr2a1-Hnf4\alpha$	1.0	0.9	1.0	1.0	nuclear receptor subfamily 2, group A, member 1
Protein modification	on of SREBP					
1454958_at	Gsk3b	1.0	1.1	1.0	1.0	glycogen synthase kinase 3 beta
1439949_at	Gsk3b	1.0	1.0	1.0	1.0	glycogen synthase kinase 3 beta
1448174_at	Cul1	1.0	0.9	0.9	0.8	cullin 1
1416577_a_at	Rbx1	1.0	0.9	0.8	0.9	ring-box 1
1448387_at	Rbx1	1.0	1.1	0.9	1.0	ring-box 1
Miscellaneous (to	wards PPARalpha regu	ulated genes	6)			
1423166_at	Cd36	1.0	0.9	9.6	10.3	CD36 antigen
1450883_a_at	Cd36	1.0	0.9	9.5	9.0	CD36 antigen
1450884_at	Cd36	1.0	0.8	6.9	6.6	CD36 antigen
1417023_a_at	Fabp4	1.0	1.3	25.4	10.0	fatty acid binding protein 4, adipocyte
1415904_at	Lpl	1.0	1.9	5.6	6.0	lipoprotein lipase
1431056_a_at	Lpl	1.0	2.2	5.9	4.7	lipoprotein lipase
1456424_s_at	Pltp	1.0	1.0	3.6	3.0	phospholipid transfer protein
141/963_at	Pitp	1.0	0.7	4.0	3.5	phospholipid transfer protein
141/2/3_at	Pdk4	1.0	0.7	7.0	4.0	pyruvate dehydrogenase kinase, isoenzyme 4
14220/6_at	Acot4	1.0	1.0	2.9	3.7	acyl-uoA thioesterase 4
1422997_s_at	Acot1 /// Acot2	1.0	0.5	11.4	13.2	acyl-CoA thioesterase 1 /// acyl-CoA thioesterase 2
1439478_at	ACOL	1.0	0.6	∠.0	2.4	acyr-cua inioesierase 2

Fidaleo *et al.*, Supplemental Table 1

Gene	forward primer	reverse primer
Thb	ATCCGGTTCTCTCGGTCGA	TGTGGTCAAGCATAGCATGCA
Tha	CCTGAACAGTGCTGAAGTGAG	ACAGTACACATTTACTGCATCCC
Mfp-1	AAGCCATTGCCAAGGTACGGAAG	GCCTGGACTGAACGGACACAAG
Scpx/Scp2	GTCTCGTCGTCAGGGCTTAG	TTGACCACACCCAATTAGCA
Acox-I	GCCCAACTGTGACTTCCATT	GGCATGTAACCCGTAGCACT
Acot3	TCCAACATCGGCGGAAACTTA	ACGGGAATCAAGCTCTTCTGG
Pdk4	CCGCTTAGTGAACACTCCTTC	TCTACAAACTCTGACAGGGCTTT
Fat/Cd36	ATGGGCTGTGATCGGAACTG	GTCTTCCCAATAAGCATGTCTCC
Cpt1a	CTCAGTGGGAGCGACTCTTCA	GGCCTCTGTGGTACACGACAA
Cdk1	ATGATCCTGCCAAACGAATC	TCCATCCAGAGGGCTACATC
Cdk4	TGCCAGAGATGGAGGAGTCT	TTGTGCAGGTAGGAGTGCTG
Cdk1a/p21	GCTCACAGGACACTGAGCAA	GCTTTGACACCCACGGTATT
Pcna	TTGGAATCCCAGAACAGGAG	GTGGCTAAGGTCTCGGCATA
Pex11alpha	ACTGGCCGTAAATGGTTCAGA	CGGTTGAGGTTGGCTAATGTC
HMG-CoA synthase	GTGGCACCGGATGTCTTTG	ACTCTGACCAGATACCACGTT
HMG-CoA reductase	AGCTTGCCCGAATTGTATGTG	TCTGTTGTGAACCATGTGACTTC
Phosphomevalonate kinase	CATTGAGAACCACGGAGATG	CATCTGGCAGAACCACTGTT
Farnesyl diphosphate synthase	GGAGGTCCTAGAGTACAATGCC	AAGCCTGGAGCAGTTCTACAC
Farnesyl diphosphate farnesyl transferase-1	TCCCACTGCTGTGTAACTTCC	TGTCTACAAATTCTGCCATCCC
Squalene synthase	TCCCACTGCTGTGTAACTTCC	TGTCTACAAATTCTGCCATCCC
Squalene epoxidase	ATAAGAAATGCGGGGATGTCAC	ATATCCGAGAAGGCAGCGAAC
Lanosterol synthase	CAGCAGTGAGAGACCTGGAA	AGAAGCGTTGATGTGACTGG
Lanosterol-14alpha demethylase (CYP51)	CTGAGAAGCTCTCGTGCTGT	TTCAAATGCCATTCGGTCT
Steroid 5-alpha reductase 1	TGAGTGTCATGCTGAGGGAT	TGTCGGACAATTAACCAAGC
7-alpha dehydrocholesterol reductase	ACCTAGCAGCTCATCCACCT	CTAAGGCCACTGACTGGTGA
Srebp-2	CTGCAGCCTCAAGTGCAAAG	CAGTGTGCCATTGGCTGTCT
36b4	ATGGGTACAAGCGCGTCCTG	GCCTTGACCTTTTCAGTAAG

Fidaleo et al., Supplemental Table 2