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ABSTRACT 

Follicular lymphoma (FL) B cells contract tight connections with their microenvironment, 

which governs the pathogenesis and progression of the disease. Indeed, specific 

immune response gene signatures, obtained on whole biopsy samples, have been 

associated with patient survival. In this study we performed gene expression profiling of 

purified B-cell and non-B cell compartments obtained from FL and reactive lymph 

nodes. We identified 677 nonredundant genes defining the FL interface and involving 26 

FL-specific functional networks. This approach highlighted an IL-4-centered pathway 

associated with an activation of STAT6 that favors overexpression of IL-4-target genes. 

In addition, FL microenvironment was characterized by a strong enrichment in follicular 

helper T cells (TFH), as demonstrated through transcriptomic and flow cytometry 

analyses. The majority of phospho-STAT6pos B cells were located at the vicinity of cells 

expressing the PD-1 TFH marker. Moreover, purified FL-derived TFH, expressed IL4 at 

very high levels compared to purified tonsil-derived TFH or non-TFH microenvironment. 

Altogether, our study demonstrated that tumor-infiltrating TFH specifically express 

functional IL-4 in FL, creating an IL-4-dependent TFH-B cell axis. This crosstalk could 

sustain FL pathogenesis and represent a new potential therapeutic target.  

 

Keywords: follicular lymphoma, follicular helper T cells, microenvironment, IL-4 

 

INTRODUCTION 

Follicular lymphoma (FL) is the most common indolent non-Hodgkin’s lymphoma and 

remains virtually incurable. FL tumors arise from germinal center (GC) B cells and are 

characterized by the balanced chromosomal translocation t(14;18) leading to the 

deregulation of BCL2 expression.1 Occurring in about 85% of FL cases, this BCL2-JH 

translocation was also detected in a small proportion of circulating atypical B cells in 

healthy individuals, that represent potential premalignant intermediates of the FL 

pathogenesis.2 Therefore, translocated BCL2 gene is not sufficient per se to drive FL 

development, thus predicting the existence of additional genetic and/or environmental 

factors crucial for lymphomagenesis and clinical behavior. Several studies argue for FL 

as a disease under the dependency of strong interactions between tumor B cells and 

their microenvironment. Both stromal cells and CD40L signal efficiently promoted the 

survival of FL B-cells in vitro.3,4 In addition, within invaded lymph nodes (LN) and bone 

marrow, malignant B cells are found admixed with specialized stromal cells, including 
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follicular dendritic cells, and CD4pos T cells, thus mimicking the normal GC 

organization.1 Interestingly, CD4pos T cells in the follicles, called follicular helper T cells 

(TFH), were recently suggested to constitute a distinct lineage of T helper cells that 

arises independently of Th1, Th2, and Th17 effector subsets, and is required for normal 

B-cell selection and differentiation into long-lived plasma cells.5-7 However, no studies 

have addressed to date the role of TFH in FL pathogenesis. The cellular composition of 

the non-malignant infiltrate was described as related to FL prognosis but these studies 

have often generated conflicting results. High numbers of CD7pos, CD4pos, Foxp3pos, and 

PD-1pos T-cells were successively reported to predict a longer survival in FL patients.8-11 

Moreover, the spatial distribution, rather than a numerical change, of non-malignant 

cells seems to be important, since a perifollicular location of Foxp3pos T cells was 

associated with a better prognosis8 whereas FL with rapid transformation showed a 

predominantly intrafollicular CD4pos pattern of expression.12 However, these results 

remain controversial and a range of commonly used T-cell markers fail to identify a 

significant association with overall survival.8,13 Other studies reported that a reactive 

environment infiltrated by a low number of CD8pos T cells14 or a high content of CD68pos  

or CD163pos macrophages9,13 or mast cells15 was associated with adverse 

clinicobiologic manifestations and unfavorable outcome in FL patients that were treated 

with conventional chemotherapy. Of note, the predictive value of microenvironment cell 

populations in FL is highly dependent on specific treatment protocols.16,17 To draw a 

more complete picture of the influence of the microenvironment in FL, microarray 

analyses were performed and allowed to identify two specific molecular signatures 

associated with patient’s outcome independently of classical clinical features.18 One 

was associated with a favorable outcome and corresponded to T cell- and monocyte-

restricted genes; whereas the other one involved genes expressed by activated 

macrophages and dendritic cells and was associated with an adverse prognosis. 

Subsequent papers confirmed that the clinical behavior in FL is determined essentially 

by the gene expression profile of the microenvironment rather than by inherent 

properties of tumor cells themselves.19,20 However, the specific contribution of the non-

malignant compartment has never been addressed in these retrospective studies. 

To better understand the host-tumor interaction in FL, we performed comprehensive 

gene expression analyses on purified B-cell and non-B cell compartments of tumor and 

reactive LN. This study enables to explore molecular crosstalk between tumor cells and 

tumor-infiltrating immune cells by identifying a specific list of genes involved in the FL 
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interface. Among this list, we identified an IL-4-centered pathway and demonstrated that 

TFH are expanded within invaded LN and are the major IL-4 producing cells in FL. 

 

MATERIALS and METHODS 

Patients and Samples 

All tissues used for this study came from subjects recruited under institutional review 

board approval and informed consent process according to the Declaration of Helsinki. 

Samples were obtained either from freshly isolated LN from 29 patients with de novo FL 

at diagnosis, and 11 patients with reactive non-malignant disease (NEG) considered as 

normal counterpart, or from 11 human tonsils (TONS) collected from children 

undergoing routine tonsillectomy. All FL showed a predominantly follicular growth 

pattern, CD10 expression, and were classified into grades 1, 2, or 3a according to the 

WHO diagnostic criteria. Patients with FL grade 3b or with disease in relapse after 

treatment, as well as transformed FL were excluded. Clinical characteristics of FL 

patients are listed in supplementary Table S1. Tissues were rapidly dissociated after 

collection and flushed using syringe and needle. Cell suspensions were then filtered 

and washed by centrifugation to obtain the unselected cell fraction. 

 

Flow cytometry characterization of B and non-B subpopulations 

Flow cytometry analyses of cell suspensions obtained after mechanically dissociation 

were performed on a Cytomics FC500 (Beckman Coulter, Miami, FL) or a FACSAria 

(Becton Dickinson, Franklin Lakes, NJ) flow cytometer using several cocktails of mAbs 

(Supplementary Table S2). Percentages of tumor B cells among CD19pos B cells were 

determined as CD19poscells with a restricted expression of kappa or lambda light chain 

after subtraction of the expected percentage of normal B cells expressing this isotype.  

 

Cell sorting 

Purification of B (CD19pos) and non-B (CD19negCD22neg) fractions was performed using 

a two-step magnetic bead cell-sorting. First, CD19pos B lymphocytes were obtained by 

positive selection using CD19 microbeads (StemCell Technologies, Vancouver, 

Canada). Residual B cells were then eliminated from the unbound fraction by a second 

round of depletion using CD22 microbeads (Miltenyi Biotec, Gladach, Germany), 

obtaining therefore the CD19negCD22neg microenvironment compartment (Env). Purity of 

each fraction was assessed by flow cytometry on CD20 expression. 
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CD3posCD4posCXCR5hiICOShiCD25neg TFH and TFH-depleted/B cell-depleted cell 

compartment (Env nonTFH) were purified using a FACSAria cell sorter from tonsils and 

FL lymph nodes. 

 

RNA extraction 

Total RNA was extracted using AllPrepTM ARN/ADN mini kit (Qiagen, Valencia, CA), as 

recommended by the manufacturer including DNAse I treatment. RNA purity and 

integrity was assessed by capillary electrophoresis using the Bioanalyzer 2100 (Agilent, 

Santa Clara, CA) and the 2100 Expert software. All samples used for microarray studies 

displayed a RNA Integrity number (RIN) of at least 6.7 (mean: 9.2, range: 6.7-10). 

 

Microarray hybridization  

Microarray analyses were performed either on CD19pos fractions of 16 FL (FL_B) and 5 

non-malignant (NEG_B) LN, or CD19negCD22neg microenvironment fractions (8 FL_Env 

and 6 NEG_Env).  Biotinylated cRNA were amplified according to the small sample 

labeling protocol and hybridized on the GeneChip HG-U133 Plus 2.0 oligonucleotide 

arrays (Affymetrix, Santa Clara, CA), according to the manufacturer's instruction. Data 

analyses were performed using the ArrayAssist® software (Stratagene, La Jolla, CA, 

USA) (see supplementary data).  

 

Real-time quantitative PCR (RQ-PCR)  

Microarray results were confirmed by RQ-PCR on a set of 19 FL_Env, 8 NEG_Env, and 

6 CD19negCD22neg fractions obtained from tonsils (TONS_Env). Reverse transcription 

was performed on 1 µg of total RNA using the Superscript II reverse transcriptase and 

random hexamers (Invitrogen). On-demand gene expression assays and the Taqman 

Universal master mix on an ABI Prism 7000 Sequence Detection System (Applied 

Biosystems, Forster City, CA) were used for RQ-PCR. ABL was determined as the 

appropriate internal housekeeping gene. For each sample, the Ct value for the gene of 

interest was determined, normalized to its respective value of ABL and compared to the 

value obtained for NEG_Env, using the ∆Ct method. For IL4 mRNA expression, the 

median of FL_Env expression, evaluated by RQ-PCR, was 11.1 compared to NEG_Env 

(assigned to 1). We classified the FL cases according to IL4 low (IL4lo < 10) or high 

(IL4hi > 12) relative expression. Statistical analyses were performed with Prism software 

(GraphPad software Inc, San Diego, CA) using a Mann-Whitney non-parametric U-test 
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(* P<0.05, ** P<0.01, *** P<0.001). In addition, GCET2/HGAL was explored on purified 

FL_B treated or not with IL-4 (R&D Systems, 10 ng/ml) whereas IL4 was quantified on 

purified TFH versus Env non TFH obtained from both tonsils and FL. 

 

Immunohistochemistry 

Tonsils (n=3), reactive lymph nodes with follicular hyperplasia (n=7) and follicular 

lymphoma (n=12) biopsies were analyzed as previously described.21 Briefly, after 

appropriate antigen retrieval with microwave heating in high pH Target Retrieval 

Solution (DakoCytomation, Glostrup, Denmark), deparaffinized tissue sections were 

stained with anti-Phospho-STAT6/Tyr641 Ab (polyclonal rabbit, dilution 1/30, Cell 

Signaling Technology, Danvers, MA), using an indirect immunoperoxidase method 

(ImmPRESS anti-rabbit, Vector Laboratories, Burlingame) and diaminobenzidine (DAB, 

Vector Laboratories) as chromogen. For double immunostaining, slides were first 

incubated with anti-CD20 (clone L26, Dako), anti-CD5 (clone 4C7, Novocastra, 

Newcastle, UK) or anti-PD1 (clone NAT, Abcam, Cambridge, UK) mAb and labelled 

using the alkaline phosphatase – conjugated ABC procedure (Vector Laboratories). 

Naphtol phosphate fast red was used as chromogen (Sigma, Saint Louis, MO). Then, 

slides were incubated with anti-phospho-STAT6/Tyr641 and detected as described 

above. External positive controls included nodular sclerosis classical Hodgkin 

lymphomas as well as paraffin embedded blocks of L428 Hodgkin lymphoma-derived 

and MedB1 primary mediastinal B-cell lymphoma-derived cell lines. Images were 

captured with a Zeiss Axioskop2 microscope (Zeiss, Oberkochen, Germany) and 

Neofluar 100x/0.1 NA optical lenses (Zeiss). Photographs were taken with a DP70 

Olympus camera (Olympus, Tokyo, Japan). Image acquisition was performed with 

Olympus DP Controller 2002, and images were processed with Adobe Photoshop v7.0 

(Adobe Systems, San Jose, CA). 

 

RESULTS 

Validation of our cell sorting method 

To validate our approach of cell separation, we analyzed by flow cytometry the different 

compartments before and after cell purification. Malignant B cells were evaluated on the 

basis of kappa/lambda (K/L) staining on CD19pos cells and, before cell sorting, 

represented more than 75% of the total cell count and 90% of B lymphocytes [median: 

96.5%; range: 75-100]. After the two-step purification, B cell purity was at least 92% of 
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the CD19-sorted fractions [median: 97%; range: 92-100], while the non-B-cell fractions 

were contaminated by less than 12% of CD20pos B cells [median: 0.7%; range: 0-12]. To 

further explore our cell purification method, we demonstrated, using tonsils samples, the 

unbiased enrichment of T cell subsets (Supplementary Figure S1), NK cells 

(CD3negCD16posCD56pos), myeloid (LinnegHLA-DRposCD11cpos) and plasmacytoid 

dendritic (LinnegHLA-DRposCD123pos) cells in non-B cell fractions, whereas the 

kappa/lambda ratio was preserved in B cells (Supplementary Figure S1). 

 

Microarray analysis of the FL specific interface  

We used a microarray approach to characterize gene expression patterns in different 

purified subpopulations of 16 FL (16 FL_B and 8 FL_Env) and 6 non-malignant (NEG) 

LN (5 NEG_B and 6 NEG_Env). These 35 Samples were labeled and hybridized onto 

Affymetrix U133 Plus 2.0 oligonucleotide arrays. Raw data were normalized using GC-

RMA method and filtered to select probesets (PS) with standard deviation to mean ratio 

superior to 80%. This method reduces the panel to 8779 PS showing the highest 

expression variation. Unsupervised analyses of either B-cell compartments (n=21) or 

non-B cell compartments (n=14) allowed to differentiate FL from NEG samples (Figure 

1A). To determine the gene expression pattern specific to each cell compartment 

implicated in the host-tumor crosstalk, a step-wise statistical approach was conducted 

on the 35 samples by combining a SAM method and an asymptotic unpaired Mann-

Whitney non-parametric test. Based on this approach, we defined four different PS lists 

(Figure 1B, Left Panel): 1) 886 PS differentially expressed between FL and normal B 

cells, representing the FL-specific B signature; 2) 897 PS differentially expressed 

between FL and normal non-B microenvironment, representing the FL-specific 

microenvironment signature; 3) 4127 PS distinguishing B and non-B FL samples (FL 

interface); and 4) 2308 PS distinguishing B and non-B reactive samples (normal 

interface). In order to define the specific host-tumor interface, which contains genes 

specifically implicated in the crosstalk between tumor B cells and their 

microenvironment, we established two ways to select relevant PS. We first subtracted 

the normal interface signature (2308 PS) from the FL interface signature (4127 PS) 

ending therefore with a 2206 PS signature called FL specific interface-1. The second 

way consisted to sum the FL-specific B PS to the FL-specific microenvironment PS, 

allowing the definition of the FL specific interface-2 involving 1698 PS (Figure 1B, 

Middle Panel). Finally, the overlap merging between these two previous genelists 
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involved 788 highly specific FL-interface PS corresponding to 677 non-redundant genes 

and characterizing what we further designed as the FL tumor-microenvironment specific 

interface (Figure 1B, Right Panel). Among this list, 219 PS were up-regulated in FL B 

cells and 569 PS up-regulated in FL non-B cell compartment (Table S3).  

 

IL-4 is upregulated in FL and promotes malignant B-cell activation 

Within the 788-PS list defining the FL specific interface, we identified, using Ingenuity 

pathway analysis, 26 FL-specific functional networks, including an IL-4 centered 

pathway, a cell growth and proliferation pathway, and an immune response pathway 

(Table S4). We pointed out that cell growth, T-lymphocyte proliferation and T-

lymphocyte activation were altered in the FL microenvironment, with upregulation of 

BATF, IFNRAR2, TNFRSF9, TRAF1, CCL4, IL10, IL15, IL4, TNRFRSF4, or TNFRSF18 

gene expression. In addition, a Gene Ontology analysis of the 788-PS list confirmed a 

statistically significant overrepresentation of genes involved in the biological processes 

of lymphocyte proliferation (GO: 0042100, P=0.00066) or lymphocyte activation 

(GO:0046649, P=0.00016), especially T-cell activation (GO:0042110, P=0.00011). 

According to the Onto-Tools pathway impact analysis, IL4 was present in 6 out of the 

top 20 functional pathways relevant for the 788-PS list description. Moreover, we 

performed hierarchical clustering analysis based on the previously described immune-

response 1 and 2 signatures.18 Of interest, the immune-response 1 segregated the 

FL_Env from the NEG_Env indicating a preferential T-cell signature in the FL cases 

(Figure S2). To further explore the T-cell implication in FL tumorogenesis and 

specifically through the IL-4 centered pathway, we first validated by RQ-PCR the 

overexpression of IL4 mRNA in FL_Env, compared to NEG_Env (Figure 2A). Similarly, 

IL4 was expressed at a very low level in non-B cell fraction from inflamed benign tonsils. 

The result confirmed the recently described higher levels of IL-4 protein in FL compared 

to benign follicular hyperplasia.22 In this previous study, activation of STAT6 was poorly 

detectable, probably due to the use of whole tissue lysates. Given that FL B cells, like 

normal GC-derived B cells, strongly expressed CD124, the IL-4 receptor alpha (Figure 

2B), we decided to investigate the expression of activated phospho-STAT6 in situ by 

immunohistochemistry in malignant versus normal B cells. In reactive tonsils and lymph 

nodes (n=10), only exceptional single cells positive for P-STAT6 (1 or 2 per section in 

magnification x 200) (Figure 2C, panel 1) were observed. These cells were located in 

the interfollicular area or in the mantle zone of follicles and were not observed within 
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GC. In only one case of reactive lymph node, a cluster of P-STAT6pos cells was found in 

the paracortex. By contrast, a high number of P-STAT6 positive cells was evidenced in 

all FL cases with interpretable staining (n=10), and were mainly located within the 

neoplastic follicles. These P-STAT6 positive cells consisted of either multiple scattered 

cells or small aggregates with a tendency of distribution at the periphery of malignant 

follicles (Figure 2C, panels 2 and 3). Double staining revealed that the P-STAT6 positive 

cells were CD20pos B lymphocytes (Figure 2C, insert in panel 3. Of note, the level of 

STAT6 mRNA was not different between FL_B and NEG_B compartments (data not 

shown). Since IL-13 was not overexpressed in FL non-B cell compartments (data not 

shown), this phosphorylation of STAT6 is more likely to result from IL-4 than from IL-13. 

The overexpression of IL-4 within FL microenvironment was thus associated to a strong 

activation of malignant B cells. In agreement, we found that both IL4I1 and HOXC4, two 

previously described IL-4 target genes,21,23 belonged to the 886-PS FL_B list 

(Supplementary Figure S3A). Similarly, GCET2/HGAL, another gene reported as 

induced by IL-4 in normal B cells and in some malignant B-cell lines,24 was significantly 

upregulated in FL_B compartment (Supplementary Figure S3B) even if it was excluded 

from the microarray analysis by the initial SD-based filtering. Interestingly, we 

demonstrated that GCET2/HGAL expression was also increased by IL-4 in purified 

primary B cells obtained from FL patients (Figure 2D). 

 

IL-4 is predominantly produced by FL-derived TFH  

IL-4 is widely recognized as a Th2 cytokine in the periphery even if recent studies have 

suggested that, within reactive LN, TFH are the main IL-4-secreting T cells, in agreement 

with the critical role of this cytokine for antibody production.7,25-27 In order to identify the 

IL-4 producing cells in FL context, we first compared by RQ-PCR, in the 

microenvironnement of FL versus nonmalignant samples, the expression of BCL6, 

GATA3, and TBX21/TBET transcription factors, which are involved in the commitment 

to TFH, Th2, and Th1 differentiation respectively. Both, the BCL6 expression and the 

GATA3/TBX21 ratio were increased in FL tumors, suggesting a simultaneous 

enrichment in TFH and Th2- polarized CD4pos T cells. In addition, IL10, the second 

prototypic Th2 cytokine, was also overexpressed in FL_Env (Figure S4A). Since TFH 

also express low levels of GATA3,27 we decided to further explore the potential 

contribution of TFH to FL pathogenesis through the synthesis of IL-4. First, a Gene Set 

Enrichment Analysis (GSEA) approach was used in order to specifically assess the 
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over-representation of previously described TFH genes within the FL microenvironment. 

Given the recent demonstration in both mice and human that CXCR5 and ICOS are the 

two most relevant TFH phenotypic markers, we defined our TFH signature based on the 

datasets previously published by Rasheed et al., where CXCR5hiICOShiCD4pos T cells 

were isolated from tonsils and compared, using Affymetrix U133A/B microarrays, to 

purified non-TFH, naïve T cells, central memory T cells, and effector memory T cells.28 

We underlined 326 PS significantly upregulated in TFH cells compared to the other 

CD4pos T-cell subpopulations and corresponding to 267 non-redundant genes. Having 

ranked the microenvironment cell samples according to FL versus NEG distinction, we 

found that FL_Env were significantly enriched in genes specifically overexpressed in 

TFH cells (P<0.01 using both SNR-based ranking and FC-based ranking) (Figure S4B). 

Interestingly, when we performed an unsupervised hierarchical clustering restricted to 

the 226 PS of the TFH signature belonging to our initial dataset of 8879 PS, we were 

able to segregate FL cases from non-tumoral tissues (data not shown), indicating that 

the TFH signature was sufficient by itself to distinguish the FL microenvironment from the 

non-malignant microenvironment. The cluster of coordinately regulated TFH-associated 

genes was underlined in Figure 1A. Moreover, unsupervised analysis based on TFH 

signature revealed the clustering of FL_Env according to their IL4 mRNA expression 

level (Figure 3), providing additional evidence that IL-4 could be secreted by the TFH 

compartment. Furthermore, we also found by GSEA analysis a significant enrichment of 

the TFH signature in FL with high expression of IL4hi (P<0.001; data not shown). In 

agreement, we validated by RQ-PCR the overexpression of CXCL13, CXCR5, and 

PDCD1, three canonical human TFH markers, in FL_Env compared to NEG_Env (Figure 

S4C). In order to take into account the inflammatory process that develops within FL 

microenvironment, we decided to explore also the non-B cell compartment obtained 

from chronically activated tonsils. In fact, substantial differences were seen in the 

degree of GC compartmentalization between human lymph node GC and human tonsil 

GC, including an accumulation of GC T cells in the latter one.29 Interestingly, the level of 

expression of CXCL13, CXCR5, and PDCD1 in tonsil microenvironment was also 

upregulated compared to normal LN in similar extent than FL LN. We then quantified by 

flow cytometry the percentage of CD4posCD25neg T cells coexpressing high levels of 

CXCR5 and ICOS TFH markers (Figure 4A) and found a significant expansion of the TFH 

cell compartment, in both FL tumors and tonsils compared to normal LN (Figure 4B). Of 

note, the two reactive LN with higher percentages of TFH corresponded to samples with 
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a strong follicular hyperplasia. FL microenvironment is thus characterized, like samples 

with strong GC activation, by a high infiltration of TFH cells. Within FL biopsies, P-

STAT6pos B cells were found in close contact to CD5pos T cells and most of them were 

located at the vicinity of cells expressing the PD-1 TFH marker (Figure 4C). Previously, it 

had been very difficult to identify IL-4 producing cells in situ25 and TFH are highly 

susceptible to apoptosis in vitro.28 To definitively determine the IL-4 producing cells, we 

thus decided to purify the TFH and the non-B non-TFH cell subsets in FL and tonsils and 

to screen these cell compartments for IL4 mRNA. IL4 was highly produced by the TFH 

fraction issued from FL compared to the other non-malignant cells of the 

microenvironment, whereas tonsil-derived TFH expressed a low but significant level of 

IL4 mRNA (Figure 4D). In addition, when considering more specifically the non-TFH 

CD4posCXCR5negICOSneg T cell subset, we confirmed that TFH are the predominant IL4 

producing CD4pos T cells in FL (data not shown). Collectively, these results indicated 

that FL-infiltrating TFH specifically produced very high levels of IL-4.  

 

DISCUSSION 

Follicular lymphoma represents a paradigm of microenvironment involvement in cancer 

behavior. Indeed, as previously described, the aggressiveness of the disease and the 

prognosis were carried by molecular features of non-malignant cells.18 Various studies 

have demonstrated the potential for using gene expression profiles for the assessment 

of tumor specific pathways. In order to explore the cellular crosstalk between lymphoma 

cells and their microenvironment, previous studies developed, in few biopsy samples, 

cell sorting experiments allowing the purification of both a CD19pos malignant and a 

CD19neg non-malignant subpopulations in order to validate some specific findings 

obtained by microarray on global tissues.18 To characterize the FL cell niche and 

molecular features that sustain tumor B-cell growth within a specific microenvironment, 

we carried out an exhaustive gene profiling study based on a validated purification 

method separating systematically fresh tumor cell suspension into CD19pos and 

CD19negCD22neg compartments and we compared de novo FL to non-malignant LN.  

Various genelists were generated leading to the definition of the FL interface as the 

specific host-tumor interface, including an IL-4-centered signature. We were able to 

identify by microarray the overexpression of IL4 RNA in FL, demonstrating the better 

sensibility of our purification-based microarray approach compared to previous studies, 

ruling out the idea that for IL-4 no correlation may exist in FL between gene expression 
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and protein levels.23 Of interest, although the size of our FL cohort and our study design 

did not allow the exploration of patient’s prognosis in regard to gene profile, we found 

that the immune-response 1 described by Dave et al. could segregate the FL from the 

non-malignant microenvironment indicating a preferential T-cell signature among the FL 

cases.18 In addition, our FL specific interface showed a preferential expression of the 

CXCL13 chemokine in FL. Therefore both findings together suggest that the FL 

microenvironment retain features of the germinal center light zone.30 Whereas we 

detected, as previously described,31 an upregulation of IL4R mRNA in purified FL cells 

compared to normal CD19pos B cells and CD19posCD10pos GC B cells (data not shown), 

CD124 was similarly expressed at the cell surface in FL cells and tonsil-derived GC B 

cells, indicating that the major tumor-associated event in the IL-4 pathway lies in the 

microenvironment. We detected significant in vivo activation of STAT6 in malignant B 

cells in contrast to normal GC B cells, in agreement with a functional IL-4-dependent 

signaling. Strikingly, STAT6-associated signal has been associated with other B-cell 

malignancies. In primary mediastinal large B-cell lymphoma, STAT6 is constitutively 

activated in both cell lines and primary samples32 whereas Hodgkin Reed-Sternberg 

cells produce autocrine IL-13 resulting in STAT6 activation in classical Hodgkin 

lymphoma.33 However, even if IL-4 overexpression was already described in whole FL 

biopsies,22 we reinforced the belief that a paracrine secretion of IL-4 by tumor 

microenvironment could be involved in lymphomagenesis. STAT6 is a critical signaling 

molecule for IL-4-mediated protection of spontaneous and Fas-induced cell death in 

mice primary B cells.34 Moreover, even if few data are available on the direct effect of 

IL-4 on FL cells,35 in particular due to the lack of appropriate cell lines, STAT6 

knockdown induces apoptosis in Hodgkin lymphoma cell lines36 and IL-4 increases cell 

proliferation of GC-like diffuse large B-cell lymphomas (DLBCL) through STAT6 

phosphorylation.24 A high proportion of genes overexpressed in FL B cells compared to 

normal CD19pos B cells, including MME/CD10, BCL6, and MTA3, corresponded in fact 

to GC-associated genes (data not shown). However, our approach, that compares 

purified FL cells, representing GC-derived neoplastic B cells, with normal B cells 

including both GC and non-GC derived B cells, is a suboptimal approach to characterize 

specifically FL B-cell features. One could therefore hypothesize that, since FL B cells 

gene profiling showed important molecular features of normal GC B cells and given that 

FL could evolve into GC-like DLBCL,37 the association of IL-4 overexpression and 

STAT6 activation could favor malignant B cell survival and proliferation. In addition, as 
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previously described for GC-like DLBCL lines, IL-4 increased the expression of 

GCET2/HGAL in FL cells, and, given the role of HGAL in modulating GC B-cell 

motility,38 could thus contribute to the confinement of malignant B cells to the GC. 

Moreover, IL-4 drives macrophages toward a M2 phenotype endowed with 

immunoregulatory and proangiogenic properties, and several studies have indicated 

that tumors could educate recruited monocytes to exhibit a M2-like phenotype39 

potentially implicated in the adverse prognostic value of a high number of tumor-

associated macrophages in FL.13 Interestingly, the IL-4-specific target gene IL4I1 was 

recently found as specifically expressed by malignant B cells in GC-derived B-cell 

lymphomas including FL, whereas no expression was observed in tumor cells of T/NK 

neoplasms, mantle cell lymphomas, or marginal zone lymphomas.22 Moreover, a 

significant correlation (P=0.036) was found between high IL4 mRNA expression and a 

low FLIPI score. However, a large cohort will be necessary to explore the prognostic 

value of IL-4/IL-4 target gene overexpression in FL.  

Besides IL-4, several other cytokines were found to be overexpressed in FL_Env. In 

particular, we confirmed herein our previous results describing the induction of 

inflammatory cytokines, including TNF and IFNG, in FL microenvironment3 in 

agreement with the former detection of these two factors in FL-invaded LN using in situ 

hybridization or PCR experiments.40,41 The reason of the discrepancy between these 

data and the study of Calvo K. et al that reported a decrease of TNF-α and IFN-γ 

proteins in FL whole biopsies22 is not clear. Of course, gene expression does not 

always correlate with protein expression but, since elevated levels of circulating TNF-α 

have been found in FL and DLBCL patients,42 another possible explanation could be the 

higher sensitivity of our purification-based method. In agreement, both FASLG and 

GZMA belonged to the 897-PS genelist defining the FL microenvironment, suggesting 

an activated T-cell signature in this disease.  

Numerous studies have described several years ago that IL-4 is produced by the Th2 T-

cell subset and promotes the Th2 polarization. In agreement with the overexpression of 

IL4 in FL microenvironment, we reported an increased GATA3/ TBET ratio in this 

disease, a finding generally interpreted as a bias in the Th1/Th2 balance. This result fit 

well with previous data showing that the few tumor-reactive effector T cells within FL 

tumors display a Th2 functional profile after in vitro stimulation.43 In addition, a mouse 

model of T-dependent lymphomagenesis has been recently developed where repeated 

infusions of idiotype-specific Th2 cells support the development of B-cell lymphoma, 
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which could be conversely eradicated by Th1 cells.44 Finally, we detected a significant 

upregulation of IL10 expression, another emblematic Th2 cytokine, within FL 

microenvironment. Interestingly, SNP in the IL10 promoter were associated with 

increased risk for both DLBCL and FL.45 However, the segregation of helper T cells into 

unique highly specialized subsets has been recently challenged by several studies 

suggesting a common inductive history with intermediate stages exhibiting higher 

functional plasticity than previously believed.46 Gene expression profiling and analyses 

of knock-out mice models have first suggested that TFH cells constitute a separate Th 

cell lineage with distinct developmental programming and specific effector functions, like 

providing help to B cells for their differentiation, into Ig-secreting cells.47 In addition, 

recent findings suggest that TFH represent the normal counterpart of 

angioimmunoblastic T-cell lymphomas.47,48 Moreover, recent papers suggest that IL-4 

secretion by lymphoid cells is highly related to TFH cells in mice after helminth infection 

and in human inflamed tonsils25-27,47. We here demonstrate for the first time that 

chronically activated tumor-infiltrating CXCR5hiICOShi TFH express high levels of IL-4 in 

FL suggesting major therapeutic implications.  

IL-4 dependent STAT6 activation was reported to modulate the behavior of another very 

important CD4pos T-cell subset; i.e regulatory T cells (Treg). However, whereas initial 

studies clearly demonstrated that STAT6 directly represses TGFβ1-mediated FOXP3 

transcription and overrules inducible Treg differentiation,49 exogenous IL-4 conversely 

maintains FOXP3 level in natural Treg and promotes their proliferation.50 In agreement, 

we found no correlation between the number of TFH and the number of Treg within FL 

LN (data not shown).  

In summary, we propose a new sensitive and specific gene profiling approach allowing 

the identification of genes involved in the crosstalk between malignant cells and their 

non-malignant microenvironment. Using this original and fully validated method, we 

revealed that FL microenvironment, along with P-STAT6 activated FL B cells, is 

characterized by a strong infiltration by TFH cells displaying a specific activation profile 

characterized by the expression of IL-4. These findings could be very useful to better 

understand lymphoma biology and to develop effective targeted therapies in this still 

incurable disease. 

 

ACKNOWLEDGMENTS 



15 
 

This work was supported by research fundings from the Institut National du Cancer 

(INCa libre 2005 – PL070), the Association pour la Recherche Contre le Cancer (ARC 

AO 2007), the Ligue Régionale contre le Cancer (AO 2004) and the Association pour le 

Développement de l'Hémato-Oncologie (ADHO). D.R. is supported by an INCa 

fellowship. The authors thank the “Centre de Ressources (CRB)-Santé” of Rennes’ 

hospital, Patrick Tas and Jean-Michel Picquenot for providing non-malignant and 

follicular lymph nodes, Christophe Ruaux for providing tonsil samples, and the “Institut 

Fédératif de Recherche (IFR)-140” of Rennes’University for cell sorting core facility. 

 

CONFLICT OF INTEREST 

The authors declare no competing financial interests. 

 

Supplementary information is available at the Leukemia’s website. 

 

REFERENCES 

1. Bende RJ, Smit LA,van Noesel CJ. Molecular pathways in follicular lymphoma. 
Leukemia 2007 Jan; 21(1): 18-29. 

2. Roulland S, Navarro JM, Grenot P, Milili M, Agopian J, Montpellier B, et al. Follicular 
lymphoma-like B cells in healthy individuals: a novel intermediate step in early 
lymphomagenesis. J Exp Med 2006 Oct 30; 203(11): 2425-2431. 

3. Ame-Thomas P, Maby-El Hajjami H, Monvoisin C, Jean R, Monnier D, Caulet-
Maugendre S, et al. Human mesenchymal stem cells isolated from bone marrow and 
lymphoid organs support tumor B-cell growth: role of stromal cells in follicular 
lymphoma pathogenesis. Blood 2007 Jan 15; 109(2): 693-702. 

4. Travert M, Ame-Thomas P, Pangault C, Morizot A, Micheau O, Semana G, et al. 
CD40 ligand protects from TRAIL-induced apoptosis in follicular lymphomas through 
NF-kappaB activation and up-regulation of c-FLIP and Bcl-xL. J Immunol 2008 Jul 15; 
181(2): 1001-1011. 

5. Nurieva RI, Chung Y, Hwang D, Yang XO, Kang HS, Ma L, et al. Generation of T 
follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 
17 cell lineages. Immunity 2008 Jul; 29(1): 138-149. 

6. King C, Tangye SG,Mackay CR. T follicular helper (TFH) cells in normal and 
dysregulated immune responses. Annu Rev Immunol 2008; 26: 741-766. 

7. Ma CS, Suryani S, Avery DT, Chan A, Nanan R, Santner-Nanan B, et al. Early 
commitment of naive human CD4(+) T cells to the T follicular helper (T(FH)) cell 
lineage is induced by IL-12. Immunol Cell Biol 2009 Nov-Dec; 87(8): 590-600. 

8. Lee AM, Clear AJ, Calaminici M, Davies AJ, Jordan S, MacDougall F, et al. Number 
of CD4+ cells and location of forkhead box protein P3-positive cells in diagnostic 
follicular lymphoma tissue microarrays correlates with outcome. J Clin Oncol 2006 
Nov 1; 24(31): 5052-5059. 

9. Byers RJ, Sakhinia E, Joseph P, Glennie C, Hoyland JA, Menasce LP, et al. Clinical 
quantitation of immune signature in follicular lymphoma by RT-PCR-based gene 
expression profiling. Blood 2008 May 1; 111(9): 4764-4770. 

10. Carreras J, Lopez-Guillermo A, Fox BC, Colomo L, Martinez A, Roncador G, et al. 
High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated 



16 
 

with improved overall survival in follicular lymphoma. Blood 2006 Nov 1; 108(9): 
2957-2964. 

11. Carreras J, Lopez-Guillermo A, Roncador G, Villamor N, Colomo L, Martinez A, et al. 
High numbers of tumor-infiltrating programmed cell death 1-positive regulatory 
lymphocytes are associated with improved overall survival in follicular lymphoma. J 
Clin Oncol 2009 Mar 20; 27(9): 1470-1476. 

12. Glas AM, Knoops L, Delahaye L, Kersten MJ, Kibbelaar RE, Wessels LA, et al. Gene-
expression and immunohistochemical study of specific T-cell subsets and accessory 
cell types in the transformation and prognosis of follicular lymphoma. J Clin Oncol 
2007 Feb 1; 25(4): 390-398. 

13. Farinha P, Masoudi H, Skinnider BF, Shumansky K, Spinelli JJ, Gill K, et al. Analysis 
of multiple biomarkers shows that lymphoma-associated macrophage (LAM) content 
is an independent predictor of survival in follicular lymphoma (FL). Blood 2005 Sep 
15; 106(6): 2169-2174. 

14. Alvaro T, Lejeune M, Salvado MT, Lopez C, Jaen J, Bosch R, et al. 
Immunohistochemical patterns of reactive microenvironment are associated with 
clinicobiologic behavior in follicular lymphoma patients. J Clin Oncol 2006 Dec 1; 
24(34): 5350-5357. 

15. Taskinen M, Karjalainen-Lindsberg ML,Leppa S. Prognostic influence of tumor-
infiltrating mast cells in patients with follicular lymphoma treated with rituximab and 
CHOP. Blood 2008 May 1; 111(9): 4664-4667. 

16. Canioni D, Salles G, Mounier N, Brousse N, Keuppens M, Morchhauser F, et al. High 
numbers of tumor-associated macrophages have an adverse prognostic value that 
can be circumvented by rituximab in patients with follicular lymphoma enrolled onto 
the GELA-GOELAMS FL-2000 trial. J Clin Oncol 2008 Jan 20; 26(3): 440-446. 

17. de Jong D, Koster A, Hagenbeek A, Raemaekers J, Veldhuizen D, Heisterkamp S, et 
al. Impact of the tumor microenvironment on prognosis in follicular lymphoma is 
dependent on specific treatment protocols. Haematologica 2009 Jan; 94(1): 70-77. 

18. Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC, et al. Prediction 
of survival in follicular lymphoma based on molecular features of tumor-infiltrating 
immune cells. N Engl J Med 2004 Nov 18; 351(21): 2159-2169. 

19. Glas AM, Kersten MJ, Delahaye LJ, Witteveen AT, Kibbelaar RE, Velds A, et al. 
Gene expression profiling in follicular lymphoma to assess clinical aggressiveness 
and to guide the choice of treatment. Blood 2005 Jan 1; 105(1): 301-307. 

20. Harjunpaa A, Taskinen M, Nykter M, Karjalainen-Lindsberg ML, Nyman H, Monni O, 
et al. Differential gene expression in non-malignant tumour microenvironment is 
associated with outcome in follicular lymphoma patients treated with rituximab and 
CHOP. Br J Haematol 2006 Oct; 135(1): 33-42. 

21. Carbonnelle-Puscian A, Copie-Bergman C, Baia M, Martin-Garcia N, Allory Y, Haioun 
C, et al. The novel immunosuppressive enzyme IL4I1 is expressed by neoplastic cells 
of several B-cell lymphomas and by tumor-associated macrophages. Leukemia 2009 
May; 23(5): 952-960. 

22. Calvo KR, Dabir B, Kovach A, Devor C, Bandle R, Bond A, et al. IL-4 protein 
expression and basal activation of Erk in vivo in follicular lymphoma. Blood 2008 Nov 
1; 112(9): 3818-3826. 

23. Schaffer A, Kim EC, Wu X, Zan H, Testoni L, Salamon S, et al. Selective inhibition of 
class switching to IgG and IgE by recruitment of the HoxC4 and Oct-1 homeodomain 
proteins and Ku70/Ku86 to newly identified ATTT cis-elements. J Biol Chem 2003 
Jun 20; 278(25): 23141-23150. 

24. Lu X, Nechushtan H, Ding F, Rosado MF, Singal R, Alizadeh AA, et al. Distinct IL-4-
induced gene expression, proliferation, and intracellular signaling in germinal center 
B-cell-like and activated B-cell-like diffuse large-cell lymphomas. Blood 2005 Apr 1; 
105(7): 2924-2932. 



17 
 

25. King IL,Mohrs M. IL-4-producing CD4+ T cells in reactive lymph nodes during 
helminth infection are T follicular helper cells. J Exp Med 2009 May 11; 206(5): 1001-
1007. 

26. Reinhardt RL, Liang HE,Locksley RM. Cytokine-secreting follicular T cells shape the 
antibody repertoire. Nat Immunol 2009 Apr; 10(4): 385-393. 

27. Zaretsky AG, Taylor JJ, King IL, Marshall FA, Mohrs M,Pearce EJ. T follicular helper 
cells differentiate from Th2 cells in response to helminth antigens. J Exp Med 2009 
May 11; 206(5): 991-999. 

28. Rasheed AU, Rahn HP, Sallusto F, Lipp M,Muller G. Follicular B helper T cell activity 
is confined to CXCR5(hi)ICOS(hi) CD4 T cells and is independent of CD57 
expression. Eur J Immunol 2006 Jul; 36(7): 1892-1903. 

29. Brachtel EF, Washiyama M, Johnson GD, Tenner-Racz K, Racz P,MacLennan IC. 
Differences in the germinal centres of palatine tonsils and lymph nodes. Scand J 
Immunol 1996 Mar; 43(3): 239-247. 

30. Allen CD, Ansel KM, Low C, Lesley R, Tamamura H, Fujii N, et al. Germinal center 
dark and light zone organization is mediated by CXCR4 and CXCR5. Nat Immunol 
2004 Sep; 5(9): 943-952. 

31. Husson H, Carideo EG, Neuberg D, Schultze J, Munoz O, Marks PW, et al. Gene 
expression profiling of follicular lymphoma and normal germinal center B cells using 
cDNA arrays. Blood 2002 Jan 1; 99(1): 282-289. 

32. Guiter C, Dusanter-Fourt I, Copie-Bergman C, Boulland ML, Le Gouvello S, Gaulard 
P, et al. Constitutive STAT6 activation in primary mediastinal large B-cell lymphoma. 
Blood 2004 Jul 15; 104(2): 543-549. 

33. Skinnider BF, Elia AJ, Gascoyne RD, Patterson B, Trumper L, Kapp U, et al. Signal 
transducer and activator of transcription 6 is frequently activated in Hodgkin and 
Reed-Sternberg cells of Hodgkin lymphoma. Blood 2002 Jan 15; 99(2): 618-626. 

34. Wurster AL, Rodgers VL, White MF, Rothstein TL,Grusby MJ. Interleukin-4-mediated 
protection of primary B cells from apoptosis through Stat6-dependent up-regulation of 
Bcl-xL. J Biol Chem 2002 Jul 26; 277(30): 27169-27175. 

35. Schmitter D, Koss M, Niederer E, Stahel RA,Pichert G. T-cell derived cytokines co-
stimulate proliferation of CD40-activated germinal centre as well as follicular 
lymphoma cells. Hematol Oncol 1997 Nov; 15(4): 197-207. 

36. Baus D, Nonnenmacher F, Jankowski S, Doring C, Brautigam C, Frank M, et al. 
STAT6 and STAT1 are essential antagonistic regulators of cell survival in classical 
Hodgkin lymphoma cell line. Leukemia 2009 May 14. 

37. Davies AJ, Rosenwald A, Wright G, Lee A, Last KW, Weisenburger DD, et al. 
Transformation of follicular lymphoma to diffuse large B-cell lymphoma proceeds by 
distinct oncogenic mechanisms. Br J Haematol 2007 Jan; 136(2): 286-293. 

38. Lu X, Chen J, Malumbres R, Cubedo Gil E, Helfman DM,Lossos IS. HGAL, a 
lymphoma prognostic biomarker, interacts with the cytoskeleton and mediates the 
effects of IL-6 on cell migration. Blood 2007 Dec 15; 110(13): 4268-4277. 

39. Hagemann T, Biswas SK, Lawrence T, Sica A,Lewis CE. Regulation of macrophage 
function in tumors: the multifaceted role of NF-kappaB. Blood 2009 Apr 2; 113(14): 
3139-3146. 

40. Peuchmaur M, Emilie D, Crevon MC, Brousse N, Gaulard P, D'Agay MF, et al. 
Interleukin-2 and interferon-gamma production in follicular lymphomas. Am J Clin 
Pathol 1991 Jan; 95(1): 55-62. 

41. Warzocha K, Ribeiro P, Renard N, Bienvenu J, Charlot C, Coiffier B, et al. Expression 
of genes coding for the tumor necrosis factor and lymphotoxin ligand-receptor system 
in non-Hodgkin's lymphomas. Cancer Immunol Immunother 2000 Nov; 49(9): 469-
475. 

42. Salles G, Bienvenu J, Bastion Y, Barbier Y, Doche C, Warzocha K, et al. Elevated 
circulating levels of TNFalpha and its p55 soluble receptor are associated with an 
adverse prognosis in lymphoma patients. Br J Haematol 1996 May; 93(2): 352-359. 



18 
 

43. Anichini A, Mortarini R, Romagnoli L, Baldassari P, Cabras A, Carlo-Stella C, et al. 
Skewed T-cell differentiation in patients with indolent non-Hodgkin lymphoma 
reversed by ex vivo T-cell culture with gammac cytokines. Blood 2006 Jan 15; 107(2): 
602-609. 

44. Zangani MM, Froyland M, Qiu GY, Meza-Zepeda LA, Kutok JL, Thompson KM, et al. 
Lymphomas can develop from B cells chronically helped by idiotype-specific T cells. J 
Exp Med 2007 May 14; 204(5): 1181-1191. 

45. Lan Q, Zheng T, Rothman N, Zhang Y, Wang SS, Shen M, et al. Cytokine 
polymorphisms in the Th1/Th2 pathway and susceptibility to non-Hodgkin lymphoma. 
Blood 2006 May 15; 107(10): 4101-4108. 

46. Fazilleau N, Mark L, McHeyzer-Williams LJ,McHeyzer-Williams MG. Follicular helper 
T cells: lineage and location. Immunity 2009 Mar 20; 30(3): 324-335. 

47. Marafioti T, Paterson JC, Ballabio E, Chott A, Natkunam Y, Rodriguez-Justo M, et al. 
The inducible T-cell co-stimulator molecule is expressed on subsets of T cells and is 
a new marker of lymphomas of T follicular helper cell-derivation. Haematologica  Mar; 
95(3): 432-439. 

48. de Leval L, Rickman DS, Thielen C, Reynies A, Huang YL, Delsol G, et al. The gene 
expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link 
between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) 
cells. Blood 2007 Jun 1; 109(11): 4952-4963. 

49. Takaki H, Ichiyama K, Koga K, Chinen T, Takaesu G, Sugiyama Y, et al. STAT6 
Inhibits TGF-beta1-mediated Foxp3 induction through direct binding to the Foxp3 
promoter, which is reverted by retinoic acid receptor. J Biol Chem 2008 May 30; 
283(22): 14955-14962. 

50. Pillemer BB, Qi Z, Melgert B, Oriss TB, Ray P,Ray A. STAT6 activation confers upon 
T helper cells resistance to suppression by regulatory T cells. J Immunol 2009 Jul 1; 
183(1): 155-163. 



19 
 

FIGURE LEGENDS 
 

Figure 1: Microarray analysis and « FL specific interface » definition.  

(A) Cluster diagrams of B and non-B cell compartments in FL and non-malignant lymph 

nodes. Hierarchical clustering of the CD19pos compartments (Left Panel) and 

CD19negCD22neg compartments (Right Panel) issued from FL lymph nodes (FL_B or 

FL_Env) and non-malignant lymph nodes (NEG_B or NEG_Env). The relative level of 

gene expression is depicted according to the shown color scale. To the right of the 

dendrogram, the positionning of the genes making up the TFH signature. (B) Schematic 

approach to identify host-tumor interface gene expression. Left Panel: Microarray 

signature overlapping of the four B and non-B, follicular and non-malignant 

compartments to define the FL interface (4127 PS), the normal interface (2308 PS), FL-

specific B signature (886 PS) and FL-specific non-B environment signature (897 PS). 

Middle Panel: FL specific interface 1 is defined as the FL interface cleared of probesets 

overlapping with the normal interface; interface 2 is defined as the addition of the FL-

specific B and FL-specific non-B signatures. Right Panel: The so called “FL specific 

interface” defined the most relevant genes involved in the FL and microenvironment 

interface, represented by the probesets which overlapped between FL-specific interface 

1 and interface 2.  

 

Figure 2: Specific expression of functional IL-4 and PSTAT6 in FL 

microenvironment.  

(A) Gene expression of IL4 in non-B cell fractions. RQ-PCR quantification of IL4 in 

CD19negCD22neg fractions obtained from FL lymph nodes (FL_Env), non-malignant 

lymph nodes (NEG_Env) and tonsils (TONS_Env). The arbitrary value of 1 was 

assigned to the median expression of NEG_Env. (B) CD124 membrane expression on 

B cells. Expression of CD124 on CD19pos B cells from FL lymph nodes (FL_B) and non-

malignant lymph nodes (NEG_B), as well as CD19posCD10pos germinal center B cells 

from tonsils (TONS_GC B) was analyzed as the ratio of mean fluorescence intensity 

(rMFI). (C) Immunohistochemical staining of Phospho STAT6: 1/ a single P-STAT6pos 

cell with nuclear staining (brown) is observed within the GC of a reactive tonsil with 

follicular hyperplasia (arrow), 2 and 3/ a significant number of P-STAT6pos cells are 

present in neoplastic follicles in FL, consisting of clusters predominating at the periphery 

of follicles (C2, see details in insert) or scattered positive cells (C3); as shown in insert 
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(C3), P-STAT6pos cells (brown) are CD20pos (red) B cells. Original magnifications: x100 

(C2), x200 (C1, C3), x400 (inserts). (D) Gene expression of GCET2/HGAL in B cells. 

RQ-PCR quantification of GCET2/HGAL in purified CD19pos fractions from FL lymph 

nodes (FL_B) cultured with (IL-4) or without (CTL) IL-4 for 2 days. The arbitrary value of 

1 was assigned to the median expression of unstimulated (CTL) FL_B. (*P<0.05, 

***P<0.001). 

 

Figure 3: Classification of FL_Env displaying various IL4 expressions based on 

the TFH signature. 

Hierarchical clustering of FL_Env was performed on the selected genes making up the 

TFH signature. The FL_Env cases were assigned to IL4low (IL4lo) or IL4high (IL4hi) 

expression according to their relative mRNA expression compared to NEG_Env (see 

Materials and Methods).  

 

Figure 4: Specific expression of IL-4 by FL-infiltrating TFH. 

(A) Strategy for flow cytometry analysis and cell sorting of TFH cells. TFH are defined as 

CXCR5hiICOShi cells within CD4posCD25neg T cells. (B) Quantification of the TFH cell 

compartment. Enumeration by flow cytometry of CXCR5hiICOShiCD25neg cells within 

CD4pos T cells in FL lymph nodes, non-malignant (NEG) lymph nodes, and tonsils 

(TONS). (C) Double staining of P-STAT6pos cells in FL samples. 1/ P-STAT6pos cells 

(brown) are in close contact with CD5pos T cells (red), 2/ numerous PD1pos cells (brown) 

within a neoplastic follicle are seen among P-STAT6pos (red) cells; insert illustrates P-

STAT6pos cells at the vicinity of PD1pos cells. Original magnification, x200 (C2), x400 

(C1, insert). (D) Gene expression of IL4 in TFH versus nonTFH microenvironment. RQ-

PCR quantification of IL4 in TFH and TFH-depleted B cell-depleted cell compartment (Env 

non TFH) cell sorted from FL lymph nodes (7 FL_TFH  and 4 FL_Env nonTFH) and tonsils 

(7 TONS_TFH and 4 TONS_Env nonTFH). The arbitrary value of 1 was assigned to the 

median expression obtained for 4 CD19negCD22neg fractions from FL lymph nodes. Bar 

represents the median. (**P<0.01; ***P<0.001) 
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SUPPLEMENTARY MATERIALS AND METHODS 

 

Data Analyses of Microarrays  

Expression signal values and P-values were obtained for each probeset (PS) using the 

ArrayAssist® software (Stratagene, La Jolla, CA, USA) by the Robust Multichip 

Averaging algorithm using GC content of probes in normalization (GC-RMA). 

Background was discarded by selecting the PS with a standard deviation to mean ratio 

superior to 0.8. A hierarchical clustering algorithm was used to group genes on the 

basis of similarity and data visualization was carried out with Cluster and Treeview 

(Eisen softwares, Stanford, CA). Supervised analyses included two approaches : 1) 

Significance Analysis of Microarrays (SAM) software, using 500 permutations, a fold 

change (FC) >2 or <0.5 and an false rate discovery (FDR) of 5% for comparison of 

tumor and reactive B compartments or FDR of 1% for comparison of B versus non-B 

compartments; 2) Unpaired Mann-Whitney non parametric test carried out with 

ArrayAssist® software and selection of PS with a |FC|>2 and a P-value less than 0.01. 

Generated gene lists were then crossed to retain only overlapping PS. Networks and 

canonical pathways were generated through the use of Ingenuity Pathways Analysis 

(Ingenuity Systems, www.ingenuity.com) or by Gene Ontology analysis and the Onto-

Tools impact pathway analysis (http//vortex.cs.wayne.edu/Projects.html).1 

Raw data (Affymetrix U133A CEL files) from 15 samples corresponding to 5 CD4pos T-

cell subpopulations purified from tonsils (CXCR5hiICOShi TFH, and CXCR5negICOSneg/lo 

nonTFH) or peripheral blood (CXCR5negCD45RAneg CCR7neg effector memory T cells, 

CXCR5negCD45RAnegCCR7pos central memory T cells, and CXCR5negCD45RApos naïve 

T cells) were downloaded from ArrayExpress (http://www.ebi.ac.uk/microarray-as/ae/, 

Experiment # E-MEXP-750)2. Data were normalized using MAS 5.0 (R software V2.8.1) 

and only the 11719 PS with a "present" call in at least 3 samples were retained for 

further analyses. The TFH signature was defined as the list of PS upregulated in TFH 

compared to all the other T-cell subsets using the Partek Genomic Suite software 

(|FC|>2 and P<0.05 using a Mann-Whitney test). Gene Set Enrichment Analysis 

(GSEA) was then performed as previously described3 to assess the overexpression of 

TFH-related gene sets in the FL_Env versus NEG_Env samples. Non redundant gene 

datasets were generated and two different statistics were used to rank the genes: 

signal-to-noise ratio (SNR) and FC of expression. A P-value was calculated for a 
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weighted enrichment score (ES) by using a sample-based permutation test procedure 

including 1000 permutations.  
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SUPPLEMENTARY FIGURES LEGENDS 

 

Figure S1: Validation of cell sorting procedure by flow cytometry characterization 

of B and non-B subpopulations.  

(A) CD20 expression on B and non-B cell fractions. CD20 expression analyzed by flow 

cytometry in tonsil-derived CD19pos (Left Panel) or CD19negCD22neg (Right Panel) 

fractions. (B) Isotype expression on B cells. Flow cytometry expression of kappa 

isotype on CD20pos B cells or CD20posCD10pos germinal center B cells obtained from 

tonsils. Analysis were performed before (dark panel) or after (grey panel) CD19pos cell 

sorting showing that both unseparated cell suspensions and purified B cells present 

similar K/L cell repartition. Bars represent the mean +/- SD of 3 independent 

experiments. (C) Flow cytometry analysis of tonsil-derived CD3pos T subpopulations. 

Percentages of CD4pos, CD8pos, TCRγδpos, CD4posCD25posFoxp3pos (Treg) and 

CD4posCXCR5hiICOShiCD25neg (TFH) cells were defined within CD3pos lymphocytes. 

Analysis were performed before (dark panel) or after (grey panel) CD19negCD22neg cell 

sorting. Bars represent the mean +/- SD of 5 independent experiments.  

 

Figure S2: Immune Response signature in FL microenvironment. 

Hierarchical clustering of non-B cells compartments purified from FL (FL_Env) and non-

malignant (NEG_Env) lymph nodes based on IR1 signature according to Dave et al.18  

 

Figure S3: Overexpression of IL-4 induced genes in FL_B cells.  

Expression of IL4I1 (A, left panel), HOXC4 (A, right panel) and GCET2/HGAL (B) as 

detected on Affymetrix microarrays in purified CD19pos B cells isolated from FL (FL_B) 

versus nonmalignant lymph nodes (NEG_B). (** P <0 .01). 

 

Figure S4: TFH signature in FL microenvironment. 

(A) Expression of the transcription factors involved in helper T cell commitment. RQ-

PCR quantification of BCL6, GATA3, TBX21 and IL10 in CD19negCD22neg fractions 

obtained from FL lymph nodes (FL_Env), non-malignant lymph nodes (NEG_Env) and 

tonsils (TONS_Env). The arbitrary value of 1 was assigned to the median expression of 

NEG_Env. GATA3 and TBX21 expression are shown as the ratio of 2-DDCT obtained for 

GATA3 and TBX21. (B) GSEA Enrichment Score (ES) curves for the TFH signature in 

ENV-samples. Vertical black lines indicate the position of each of the 267 non-
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redondant genes comprising the TFH signature and the green curves represent the 

running sum of the weighted ES. Left panel: Comparison of FL_Env and NEG_Env 

using the SNR statistic to rank the genes. Right Panel: Comparison of FL_Env and 

NEG_Env using the fold change between the average of the 8 FL_Env versus the 

average of the 6 NEG_Env to rank the genes. (C) Validation of the expression of TFH 

genes. RQ-PCR quantification of CXCL13, CXCR5, and PDCD1 in CD19negCD22neg 

fractions obtained from FL lymph nodes (FL_Env), non-malignant lymph nodes 

(NEG_Env) and tonsils (TONS_Env). The arbitrary value of 1 was assigned to the 

median expression of NEG_Env. (*P<0.05; **P<.01; ***P<0.001) 
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Table S1: FL patient characteristics 
 

  Bioclinical  
characteristics  
(n=29) 

   
Sex ratio     M/F 15/14 
   
Age (n)   ≤ 60ys 13 
 > 60ys 16 
   
Tumor grade (n) 1 17 
 2 11 
 3a 1 
   
FLIPI risk group* (n) Low 9 
 Intermediate 10 
 High 10 
   
Tumor B cells among CD19pos 
cells before cell sorting (%) 

 
Median 

 
96.5 

 Range 76-100 
   
BCL2 protein expression** (n)  27 

 
IgH-BCL2 gene fusion*** (n) 
t(3;14) (n) 

 20 
1 

 
 
* Follicular Lymphoma International Prognostic Index (FLIPI) values were classified as 
low (0-1), intermediate (2) or high (3 to 5). 
** BCL2 protein expression was analyzed by flow cytometry and/or 
immunohistochemistry. 
*** BCL2 rearrangements were determined by PCR according to Biomed2 
recommendations1 or by FISH analysis 
 
Référence :  

 1. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL, et al. Design and 
standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene 
recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. 
Leukemia 2003 Dec; 17(12): 2257-2317. 
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Table S2: Antibodies for flow cytometry analyses 
 

Anti-human 
monoclonal 

antibody 

Conjugation* Supplier** 

   
CD3 
CD3 

FITC 
ECD 

BC 
BC 

CD4 PC5 BC 
CD4 FITC BC 
CD8 PC7 BC 
CD10 PC5 BC 
CD11c APC BD 
CD16 FITC BC 
CD19 PC7 BC 
CD19 PB EB 
CD20 FITC BC 
CD20 PC7 BC 
CD20 VB M 
CD25 PC5 BC 
CD25 APC BD 
CD56 PE BC 
CD123 PE BD 
CD124 PE BC 
CXCR5 PE RD 
FOXP3 PE EB 

γδ PE BD 
HLA-DR ECD BC 

ICOS BIOT EB 
LIN FITC BD 

Kappa light chain FITC D 
Lambda light chain PE D 

   
 

* FITC: fluorescein isothiocyanate; PC5: phycoerythrin cyanin 5; PC7: phycoerythrin cyanin 7; APC: 
allophycocyanin; ECD: energy-coupled-dye; VB: Vioblue; PB: pacific blue; BIOT: biotinylated 
monoclonal antibody (revealed by streptavidin-PC5 or PC7 from Beckman Coulter) 
** D: Dako (Glostrup, Denmark); BC: Beckman Coulter (Fullerton, CA); BD: BD Bioscience (San 
Diego, CA); EB: eBiosience (San Diego, CA); M: Miltenyi Biotec (Gladach, Germany); RD: R&D 
Systems (Abingdon, UK). 
 
 
 


