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Abstract 
 

Protein structures are valuable tools for understanding protein function. However, 

protein dynamics is also considered a key element in protein function. Therefore, in addition 

to structural analysis, fully understanding protein function at the molecular level now requires 

accounting for flexibility. However, experimental techniques that produce both types of 

information simultaneously are still limited. Prediction approaches are useful alternative tools 

for obtaining otherwise unavailable data.  

It has been shown that protein structure can be described by a limited set of recurring 

local structures. In this context, we previously established a library composed of 120 

overlapping long structural prototypes (LSPs) representing fragments of 11 residues in length 

and covering all known local protein structures. Based on the close sequence-structure 

relationship observed in LSPs, we developed a novel prediction method that proposes 

structural candidates in terms of LSPs along a given sequence. The prediction accuracy rate 

was high given the number of structural classes. In this study, we utilise this methodology to 

predict protein flexibility. We first examine flexibility according two different descriptors, the 

B-factor and root mean square fluctuations from molecular dynamics simulations. We then 

show the relevance of using both descriptors together. We define three flexibility classes and 

propose a method based on the LSP prediction method for predicting flexibility along the 

sequence. The prediction rate reaches 49.6%. This method competes rather efficiently with 

the most recent, cutting-edge methods based on true flexibility data learning with 

sophisticated algorithms, Accordingly, flexibility information should be taken into account in 

structural prediction assessments. 
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Introduction  
 

Knowledge on protein 3D structures is essential for better understanding protein 

functions. In the case of enzymes, determination of 3D structures has helped elucidate why 

residues far apart in the sequence are involved in a given catalytic reaction. When proteins are 

implicated in disease mechanisms, structures of targeted proteins are especially useful for 

designing new drugs. Drug design has become extremely challenging due to the necessity for 

high-throughput screening of new target proteins and to the emergence of drug resistance 
1-3

. 

Although essential, structural information does not suffice to fully understand protein 

function. Protein function is frequently associated with conformational changes that can cover 

a large range of amplitude scales. Protein dynamics has proved to be at the heart of catalysis 

processes as it is involved in the regulation of turnover rates, in ligand/target recognition and 

binding and in product release. Protein dynamics are strongly implicated in allosteric 

regulation 
4-6

 and more generally in molecular recognition processes 
7-9

 and protein stability. 

Conformational changes are also the basis of misfolding and aggregation, both of which are 

responsible for neurodegenerative disorders 
10

. Therefore, information on protein flexibility is 

as crucial as protein structure to elucidate protein function and to enhance drug design 
6, 7

. 

Regarding the importance of protein dynamics for elucidating protein function, an 

interesting hypothesis has been proposed 
4
 whereby it is postulated that protein evolution has 

led to the potential for multiple conformations —critical for function — rather than a single, 

optimal folded state. Therefore, understanding relationships between structure, energy 

landscapes, dynamics and function is now a major challenge. Consequently, the classic 

paradigm of the sequence-structure-function relationship is now considered as an 

oversimplified view and dynamics should be included in a new paradigm of protein function 

that entails the sequence-structure-dynamics-function relationship. 
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Moreover, the recent discovery of the importance of intrinsically disordered proteins in 

the last decade has strongly reinforced interest in studying protein flexibility 
11

. These 

proteins are mostly associated with essential biological functions such as regulation and 

signalling 
9, 12

. However, the term ―disorder‖ hides a wide variety of processes. It can involve 

random coil, associated with rapidly interchanging conformations, as well as molten globules, 

showing highly ordered secondary structures but without stabilisation by tertiary contacts 
13

. 

Hence, the extent of disorder can be extremely variable, involving short or long unfolded 

regions or the entire protein. Interestingly, intrinsic disorder and flexibility seem to be 

differentially encoded in the primary sequence 
14, 15

. 

In comparison to the extensive and challenging studies on disorder, very few approaches 

have been truly dedicated to the analysis and prediction of flexibility of ordered proteins, 
9, 16

, 

apart important works that rely on 3D structures for predicting dynamics (for a review see ref. 

17
 and 

18
) Accordingly, tools for predicting the flexibility properties from sequence of ordered 

proteins would be a tremendous improvement
19

. As for the disorder concept, flexibility 

encompasses many different features. Different flexibility properties can be observed 

depending on observation timescale 
6
. Moreover, depending on the type of motion and the 

extent of the region involved, two main classes of flexibility can be distinguished. The first 

one is related to local motions involving few residues. This kind of flexibility restricted 

mainly to the residue scale, is related to the capacity of a local structure (a small set of atoms) 

to deform or to change conformation..In this case, the concept of ―deformability‖ can be 

introduced. The second class involves motions of longer fragments and long-range 

conformational changes, such as loop motions and even domain motions. In this case, the 

motions of different residues in a sequence are highly inter-correlated. This observation has 

led to the emergence of the concept of mobility 
20

. Mobility and deformability are 

complementary but not necessarily associated, e.g., hinge regions can undergo local 
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conformational modifications without fluctuating, whereas regions undergoing rigid-body 

movements can present large-amplitude fluctuations without becoming deformed.  

Flexibility prediction methods generally define flexibility through -carbon B-factor 

values obtained from X-ray experiments. These so-called ―temperature‖ factors reflect atom 

mobility due to thermal vibration and static disorder. Furthermore, correlation between B-

factors and disorder predictor outputs has recently been explored 
21

. Most flexibility 

prediction methods, developed so far and based on sequence information alone, exploit 

evolutionary information, predicted secondary structures and/or accessibility 
22

 coupled with 

elaborate regression methods such as logistic regression 
14

, support vector regression (SVR) 

23, 24
, or neural networks 

25
. Other methods, such as the CamP method, use alternative 

descriptors of flexibility such as protection factor values obtained by equilibrium hydrogen 

exchange experiments 
26

. These descriptors seem to explore larger amplitude fluctuations than 

B-factors. The Wiggle series approach focuses on functional large-scale fluctuations extracted 

from Gaussian network modelling 
27

. A few methods which focus on the deformability 

concept are also available. FlexRP 
28

 is based on the analysis of multiple experimental 

structures in the Protein Data Bank (PDB, 
29

). Based on a novel sequence representation and 

feature selection coupled to machine learning, the FlexRP method predicts flexible/non-

flexible regions. Finally, the continuum secondary structure prediction method 
30

 is based on 

DSSPcont 
31

 and predicts regions undergoing conformational modifications as observed in the 

comprehensive Database of Macromolecular Movements (MolMovDB) 
32

.  

These studies all show that flexibility is closely related to structural properties that, in 

turn, depend on sequence. This relationship may influence the success of structural prediction, 

i.e., some predicted conformations considered as incorrect, may actually reflect the structural 

flexibility through alternative conformational states. In the present study, we explore this 

hypothesis and propose a novel and simple approach to predict flexibility. We take advantage 



 6 

of the method we previously elaborated to predict local protein structures. We have described 

global protein structures using a limited set of recurring local structures 
33-36

: a library of 120 

overlapping representative fragments of 11 amino acids in length named long structural 

prototypes (LSP) is now available (see supplementary data I). These LSPs encompass all 

known local protein structures and ensure good quality 3D local approximation 
37

. The length 

of representative fragments makes it possible to account for long-range interactions and 

correlations. Using the sequence-structure relationships deduced from this library, prediction 

methods in terms of LSPs can now be elaborated 
37, 38

. The prediction method is based on 

evolutionary information coupled with an efficient learning method called support vector 

machines (SVM). This method provides a list of five possible structural candidates for a 

target sequence. The prediction rate reaches 63.1%, a rather high value given the high number 

of structural classes. Finally, the index that we developed can evaluate the structural 

―predictability‖ of a sequence, a property that may be related to ―structural plasticity‖ 
38

. 

In the present paper, we first analyse the flexibility of fragments in representative 

datasets. We examine protein flexibility using two different approaches, X-ray experiments 

and in silico simulations. Different in silico strategies can be envisaged. For instance, normal 

mode analysis could be chosen, in particular using elastic network model (ENM) or GNM. 

Motions described by ENM or GNM low-frequencies modes are generally highly collective, 

i.e. a large set of atoms moves concertedly. These motions are much more related to mobility 

rather than flexibility. Alternatively, molecular dynamics (MD) simulations performed in a 

realistic environment have been shown to be well adapted for depicting protein dynamics and 

for describing deformation of local regions
39

, i.e. deformability, generally associated with 

high(er) frequency modes of motions. Consequently, results of MD simulations were used in 

the present rather than normal mode analysis because the present study focuses on more local 

conformational changes. 
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We consider two descriptors for quantifying protein dynamics. The first one is the most 

commonly used descriptor, X-ray B-factors 
10, 25, 39, 40

 and the second one, frequently used in 

MD, is the root mean square fluctuation (RMSF) that measures the amplitude of atom 

motions during simulation. We then combine both descriptors to define flexibility classes and 

examine the flexibility classes of LSPs. Finally we evaluate the usefulness of using local 

structure prediction for deciphering the putative flexible zones of a structure from its 

sequence. This method turns out to be rather efficient compared to the most commonly used 

ones, based on the true learning of flexibility with sophisticated strategies. We also propose a 

confidence index for predicting the quality of the flexibility prediction rate. 

Materials and Methods 
 

Protein structure datasets. A dataset of 172 X-ray high-resolution (≤ 1.5 Å) globular 

protein structures was extracted from the Protein Data Bank (PDB) using the PDB-REPREDB 

database web service 
41

. In this dataset, the proteins shared less than 10% sequence identity 

and differed by at least 10 Å C root mean square deviation (C RMSD). A second filter was 

applied: selected protein structures were 70 to 200 residues long (as in 
30

), composed of a 

single domain and were not involved in a protein complex, and did not have extensive number 

of contacts with ligands. A final dataset of 43 protein structures was obtained. The structures 

included in this dataset covered the distribution of known folds described by the SCOP 

classification: 5 all- , 10 all- , 6  and 22 proteins 
42

. Moreover, the secondary 

structures contained in the dataset according to the DSSP method was representative of 

known protein structures
43

: 35.1 % of residues were in -helix, 27.4% in -strand, 19.7% in 

turn and 17.8% in coil. In a larger, non-redundant databank composed of 1421 X-ray 

structures with resolution higher than 1.5 Å, sequence identity smaller than 30% and C  
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RMSDs larger than 10 Å (selected using PDB-REPRDB), the distribution of secondary 

structures was 37.8, 21.4, 20.9 and 19.9%, respectively. 

Protein structures in the dataset were then analysed in terms of overlapping fragments of 

11 residues long. Each fragment was assigned to one of the 120 long structure prototypes 

(LSPs) according to our previous definition 
37

 (see supplementary data I). The assignment was 

based on a minimal C  RMSD criterion between the fragment under consideration and the 

representative LSP. In other words, it consisted in computing C  RMSDs between each 

protein fragment and each of the 120 prototypes. The LSP assigned to the fragment 

corresponded to the LSP with the lowest RMSD.. 

For validation purposes, we considered a second, independent and larger dataset 

(hereafter called the ‗Validation set‘), and previously defined as Set 3 in ref. 
37, 38

). This set 

was composed of 259 protein structures with resolution higher than 2 Å, pairwise sequence 

identity lower than 30%, C RMSDs higher than 10 Å. The set included 64,229 fragments, 

also assigned to LSPs. 

 

Extraction of experimental B-factors. We extracted C  B-factors from the PDB files of 

the protein structures dataset. For purposes of comparison, the raw values were normalized 

for each protein using the method in ref. 
40

. After removing outliers detected statistically with 

a median-based approach, the normalized B-factors were calculated as B-factorNorm = (B-

factorRaw- )/ where  and  stand for the mean and the standard deviation of the C  B-

factor, respectively. Flexibility of each 11-residue long, overlapping fragment in the dataset 

was characterised by the B-factorNorm associated with its central C . 

 

Molecular dynamics simulations. Molecular dynamics (MD) simulations were 

performed for all protein structures with GROMACS 3.3.1 software 
44

, using GROMOS96 
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43A1 force field 
45

 and simple point charge (SPC) explicit water model 
46

. Each protein 

structure was immersed in a periodic water box neutralised with Na
+
 or Cl

-
 counter ions. The 

system was then energy-minimised with a steepest-descent algorithm for 1000 steps. The MD 

simulations were performed in isotherm-isobar thermodynamics ensemble, with temperature 

and pressure kept fixed at 300 K and 1 bar, respectively using the Berendsen algorithm 
47

. The 

coupling time constants were T=0.1 ps and P=0.5 ps for temperature and pressure, 

respectively. Bond lengths were constrained with LINCS 
48

, which allowed an integration step 

of 2 fs, The generalized reaction field algorithm 
49

 was used for long-range electrostatic 

interactions using a dielectric constant of 54 and a cut-off of 1.4 nm for non-bonded 

interactions. For each system, a short MD simulation (100 ps) in which protein atom positions 

were constrained but water molecules and ions were free was first performed, then the system 

was fully relaxed for 5 ns. Structures were recorded every 1 ps during this unrestrained phase. 

The analyses were conducted on the production phase, i.e., the phase beginning when the C  

RMSD reached a plateau with respect to the starting structure. For each protein, we checked 

that the secondary structures were generally conserved and that the snapshots not too far from 

the initial structure (C  RMSD < 3 Å). Based on these criteria, we discarded three protein 

structures. Finally, 40 proteins cumulating nearly 150 ns, were further analysed. This set 

corresponds to 4,942 fragments of 11 residues in length. 

Simulations were extended to 10 more nanoseconds for 37 proteins. The starting 

conformation and the starting velocities corresponded to the final conformation and final 

velocities of the 5-ns simulation detailed above. However, the forces having not been kept, 

the 10ns-simulations cannot be considered as a simple continuation of the 5 ns ones. 

Consequently, these simulations allowed evaluating the effect of the simulation duration and 

sampling a slightly different conformational space.  
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Flexibility measurements from MD simulations. C  root mean square fluctuation (C  

RMSF) was calculated using GROMACS tools 
44

 after superimposing snapshot structures on 

the initial conformation. C  RMSF gives the mean amplitude of each C movement 

compared to a mean reference position:

 

RMSFNorm

i 1

T
(
r 
R t

i
r 
R ave

i )2

t 0

T

 where T is the 

production time expressed in snapshot number, 
r 
R t

i  the coordinates of C  atom i of structure at 

time t and 
r 
R ave

i , average coordinates of C  atom i over production time. Raw RMSF values 

were normalized for each protein. The RMSFNorm associated with the central C  of each 11-

residue fragment characterised the flexibility using MD. 

 

Three flexibility classes from two descriptors of protein dynamics. Both experimental 

B-factorNorm and RMSFNorm values were used to analyse protein flexibility. We chose to 

define three flexibility classes (see Figure 1). Consequently, two threshold pairs were required 

to separate the three classes. The first threshold pair ( B1, F1) separated rigid residues from 

intermediate residues and the second threshold pair ( B2, F2) separated intermediate residues 

from flexible residues ( B and F refer to B-factorNorm and RMSFNorm thresholds, respectively). 

The three classes thus defined were indexed 1, 2 and 3 from the most rigid to the most 

flexible. 

Each C

classes according to its observed B-factorNorm and RMSFNorm values. Hence, each 11-residue 

long fragment was assigned to the flexibility class of its central residue. These assigned 

classes are referred to as the observed flexibility classes of fragments.  
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Characterisation of local structure flexibility. We characterised the flexibility of each 

LSP in the abovementioned library 
37

. We calculated the propensity of fragments belonging to 

an LSP, noted LSPs, to be associated with flexibility class f, noted Cf, as  

NN

C

LSPC

s

f

s

f

f

s

s

f

s

f LSP

C

LSP

C

C

LSP

LSP

C

f

sfLSP

C
n

n

n

n

n

n

)(y Probabilit

)/(y Probabilit
P  

where n s

f

LSP

C
is the number of fragments in LSPs assigned to flexibility class Cf, n sLSP the total 

number of fragments in LSPs, nCf  the total number of fragments in flexibility class Cf , and N 

the total number of fragments (subscript s ranges from 1 to 120 and subscript f from 1 to 3). 

Consequently, P s

f

LSP

C
 measures the strength with which LSPs fragments belongs to a Cf class, 

compared to random assignment. Finally, the flexibility class Cf maximizing P s

f

LSP

C
was 

assigned to the corresponding LSPs. Each LSPs class was also characterized by an average B-

factorNorm and RMSFNorm , respectively noted mB and mF. The corresponding values were 

obtained by averaging B-factor values (or RMSF values) over the fragments corresponding to 

a given LSP. 

 

Deducing dynamics from local structure prediction features. Protein sequences were 

extracted from the protein structure dataset, parsed into overlapping 11-residue long 

fragments and used for local structure prediction. For each 11-residue long sequence 

fragment, the LSP was predicted using the strategy developed in ref. 
38

. We also considered 

longer 21-residue sequence windows to account for a long-range effect. The method provided 

the five top-scoring LSP candidates for each target fragment sequence. Then, for each of the 

five predicted LSPs, the corresponding flexibility class Cf was assigned. The final, unique 

flexibility class value for the target sequence fragment was simply the rounded average of the 
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five flexibility classes. We also predicted B-factorNorm (respectively RMSFNorm) values for 

each fragment sequence by computing the average mB (mF) characterising the five LSP 

candidates. 

To assess the whole prediction strategy and avoid introducing any bias, (i) we checked 

that protein structures in the present dataset were not included the training set used for 

developing our LSP prediction method; (ii) we used a jackknife procedure for selecting the 

optimal ( B1, F1, B2, F2) quadruplet and evaluating the related prediction (see Assessment 

section below) and (iii) we also carefully checked that the LSP prediction rate for the current 

dataset was similar to the prediction rate previously obtained  
38

. Whatever the evaluation 

scheme, based on classical Q120 or a geometrical criterion, the values were consistent with our 

previous results (35.7 and a 61.3% prediction rate, respectively). 

 

Assessment of flexibility predictability from local structure prediction. Two evaluation 

schemes were used to evaluate flexibility predictability from local structure. First, assessment 

of the flexibility class prediction was done by calculating the prediction rate Q3 = TP/N where 

TP (true positive) is the number of fragments correctly predicted and N the number of 

fragments. As in ref. 
25

, we also computed the F-measure, combining accuracy (ACC) and 

coverage (COV) using a harmonic mean: F 2
.ACC COV

ACC COV
. Second, B-factorNorm and 

RMSFNorm value predictions were evaluated by calculating the Pearson correlation coefficient 

between real observed (R) and predicted (P) values. Moreover, as proposed in ref. 
21

, R values 

were clustered into 23 groups and the correlation was computed between the mean R of all 

groups and the corresponding mean P. 

 

Determining thresholds for flexibility classes. The delimitation of flexibility classes 

was rather arbitrary and all the more difficult because we considered two descriptors jointly. 
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The quadruplet values that delimit the three flexibility classes were chosen according to a 

scoring procedure, which primarily aims at optimising the overall flexibility prediction rate 

while maintaining a well-balanced prediction rate for each flexibility class. A grid search was 

performed where the flexibility prediction rate was computed for each quadruplet. The grid 

search obeyed the following rules: (a) the thresholds B1, B2, F1 F2 took all possible 

values in [-2; -0.5][0.5; 5] by steps of 0.1, and (b) a class should include at least 15% of 

fragments. On average, 71,255 quadruplets were tested. The scoring procedure consisted in 

the following steps: (i) the procedure was initialised by a null score S; (ii) quadruplets 

guaranteeing flexibility classes populated by more than 10% of LSPs won one point (S=S+1); 

(iii) quadruplets associated with the best 25% average Q3 won an additional point (S=S+1); 

(iv) quadruplet for which the prediction rate is among the 25% best balanced for the three 

classes won one more point.  

At this step, two supplementary indices specially designed for evaluating the relevance 

of a multiclass prediction were introduced: the squared correlation coefficient, R
2
(X,Y), which 

measures the non-linear dependence between observed (X) and predicted (Y) states, and 

Neq(Y/X) which is the conditional equivalent number of predicted states Y given the observed 

states X 
50

. Quadruplets that resulted in one of the 25% highest R
2
(X,Y) values won an 

additional point and finally quadruplets that led to one of the 25% lowest Neq(Y/X) values 

obtained a supplementary point. At this stage, the procedure was re-iterated from step (ii)if 

several quadruplets were identical for the highest scores S, until only one quadruplet was 

kept. The grid search was performed on the MD dataset using all 40 proteins except one to 

assess the true performance using a jackknife procedure. With this procedure, a threshold 

quadruplet was selected for each one of the 40 rounds of jackknife (one round per protein). 

Finally, the selected quadruplet corresponded to the mean over the 40 rounds. 
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Prediction quality was quite stable for similar quadruplets. Each step of selection was 

very strict and many quadruplets were eliminated. Only 1.5 % of quadruplets obtained a score 

of 4 and the highest scores, i.e., from 5 to 9 were associated with 0.41% of quadruplets (see 

supplementary data II). 

We also tested different ranges of threshold values for grids and different quadruplet 

selection methods. The described algorithm led to the best results. The procedure was also 

applied to the large validation dataset with similar results.  

The procedure can be tested at the following url: 

http://www.dsimb.inserm.fr/dsimb_tools/predyflexy. The web site is still under development 

and due to limited computer resources, the number of jobs is restricted. 

 

 

 

Results 

In this section, we present our results on the two main questions addressed in this paper: 

(i) the definition of flexibility classes and (ii) the prediction of flexibility from sequence 

through the prediction of local structures. 

 

Defining and quantifying flexibility 

Flexibility descriptors. We studied protein dynamics using two different descriptors, B-

factors determined from crystallography experiments and root mean square fluctuations 

(RMSF) computed from molecular dynamic simulations. The first index is a classical 

descriptor used in most approaches of flexibility prediction. It has the advantage that it can be 

deduced from X-ray diffraction experimental data. The second index is less frequently used 

and is obtained from simulation data. It has the advantage of representing protein dynamics 

http://www.dsimb.inserm.fr/dsimb_tools/predyflexy
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behaviour in solution, as in NMR experiments. For both descriptors, we focused on the 

properties of the alpha carbons (C ). 

A comparison of raw B-factor values with raw RMSF values led to a 0.29 Pearson 

correlation coefficient, which is rather low. After normalising these values for each protein, 

the correlation between B-factors (B-factorNorm) and RMSFs (RMSFNorm) increased to 0.46 

leading to 0.50 on average on a per-protein basis (a value named in the following) with a 

standard deviation of 0.20 (see Figure 1), This result is weakly sensitive to the length of the 

simulations. Indeed, when the simulations were extended for ten more ns (i.e. 15ns in total),  

value equalled 0.48 instead of 0.50 (data not shown). In addition, when larger proteins (size > 

200 residues) were examined, the corresponding average value reached 0.58 (data not 

shown)..  

We also considered ENM results and noticed that the relationship between X-Ray B-

factors and ENM-RMSF was stronger on average than with MD-RMSF ( 8). An 

identical  (0.68) was obtained between ENM-B-Factors and MD-RMSF. Surprisingly, the 

value decreased with longer simulations ( =0.57) (see supplementary data III). 

Clearly, the two descriptors were related but far from identical: some residues were 

considered as flexible according to B-factorNorm but rigid according to MD RMSFNorm and vice 

versa. Hence, a single descriptor combining both descriptors would be helpful to better 

qualify and quantify flexibility properties (see below)  

 

Flexibility of local structure prototypes. The results described above do not take into 

account any specific location or (local) structures of the residues in the protein. Here, we 

analysed protein flexibility with respect to local structures in a library that we previously 

developed 
37

. This library contains 120 long structure prototypes (LSPs) and encompasses the 

structures of all 11-residue fragments observable in known protein 3D structures. All 120 
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LSPs are necessary to characterise the whole set of 3D protein structures. Nevertheless, for 

purposes of presentation, we roughly grouped LSPs into four categories according to their 

secondary structure content, i.e., helical, extended core, extended edges and connection 

structures grouping 16, 13, 40 and 51 LSPs, respectively 
37

. Apart from their important role in 

structural description, LSPs were a key element for predicting sequence flexibility in the 

present study (see below). 

LSP flexibility properties were described by normalised B-factors (and normalised 

RMSFs) associated with the central  carbon of the LSP (sixth residue). Figure 2 shows the 

relation between the mean B-factorNorm mB and the mean RMSFNorm mF calculated for each 

LSP category. In contrast to what was presented above for the whole set of protein fragments, 

a high Pearson correlation coefficient of 0.77 was observed between the two descriptors. 

According to B-factorNorm, the three most rigid LSPs were LSP 9, 10 and 107. They all 

belonged to the extended core local structures category. The most flexible LSPs were LSP 89, 

87 and 55. The first two LSPs are connection structures whereas the third one corresponds to 

an extended edge structure. According to RMSFNorm, the three most rigid structural prototypes 

were LSP 9, 10 and 97 but LSP 107 was classified as the 6
th

 most rigid LSP. As observed 

with B-factorNorm, these rigid LSPs correspond to extended core structures. The three most 

flexible LSPs were the connection structures 85, 113 and 103. Thus, using LSPs, both 

descriptors provided a very similar description of flexibility, despite some minor 

discrepancies. 

Flexibility classes. To define flexibility classes, two main issues were addressed: (i) the 

number of flexibility classes and (ii) the limits between these classes. Defining these classes is 

rather arbitrary and it is difficult to delimit them 
25

. Most approaches developed thus far 

consider only two flexibility classes (Boolean classes). We decided to go one step further and 

considered three flexibility classes (rigid, intermediate and flexible); more importantly, we 
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used both descriptors, B-factorNorm and RMSFNorm. Two thresholds were thus required to 

separate (i) rigid from intermediate residues ( B1, F1) and (ii) intermediate residues from 

flexible residues ( B2, F2), where B and F refer to Bfactor and RMSF descriptors, 

respectively (see Figure 1). To define these thresholds, the best parameters were selected so as 

to optimally discern the sequence specificities of each class and thereby maximize their 

predictability. The optimal quadruplet (one pair of index values for each threshold) was 

obtained after a grid search coupled with a selection procedure (see Materials and Methods 

and supplementary data II). The rigid and intermediate flexibility classes were similarly 

populated with 40.4% and 36.7% of protein fragments, respectively, whereas only 22.9% 

were classified in the most flexible class. Standard deviation values increased with the 

flexibility index averages as shown in Figure 1 (see red dots). 

 

LSPs and flexibility classes. We also examined the distribution of the 120 LSPs in each 

flexibility class defined above. We found that 35.8% of LSPs were assigned to the rigid class 

(see Materials and Methods), while 25.0 and 39.2% LSPs were assigned to the intermediate 

and the flexible classes, respectively. Using secondary structure content as categories, we 

observed that the rigid class was comprised of 23.3% of helical LSPs, 30.2% of extended core 

structures and 46.5% of extended edges (see Table 1). Interestingly, the rigid class included 

all the extended core LSPs but was devoid of connection LSPs. The intermediate flexibility 

class contained 13.3, 43.3 and 43.3% of helical, connection and extended edge LSPs, 

respectively. The flexible class had 4.3% of helical LSPs, 80.9% of connection LSPs and 

14.9% of extended edge LSPs. In contrast to extended core structures, helical LSPs were 

observed in all three flexibility classes. Of the 16 helical LSPs, two (LSP 43 and 44) were 

observed in the flexible class.  
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As suggested by a reviewer, we examined end-to-end distance (EToE) of each LSP and 

their associated B-factors (or RMSF) or flexibility class (see Supplementary data IV). The 

most extended LSPs with the largest EToE values had the lowest B-factors (rigid class) while 

the most compact ones with the shortest EToE showed the largest B-factors (flexible class). 

However, this criterion was not accurate enough to finely classify the LSPs in flexibility 

classes. Indeed, LSPs with similar EToE distances were distributed in the three classes of 

flexibility. Nevertheless, beyond EToE measure, the shape of LSPs could be a powerful 

indicator of the flexibility but a better description of the shape is required, with additional 

parameters to consider. 

Predicting flexibility through prediction of local structure 

In contrast to most classical flexibility prediction methods based on sequence 

information, our new approach takes advantage of the relationship between LPSs and 

flexibility classes. We applied the previously developed LSP-SVM_PSSM method 
38

, which 

yields an ordered list of five LSP candidates. For each LSP candidate in the list, the 

corresponding flexibility class value (1, 2 or 3 for rigid, intermediate or flexible, respectively) 

based on the above results was predicted. The final flexibility class prediction corresponds to 

the rounded average of the five values and its value was applied to the central residue of the 

sequence. No training was performed on the flexibility datasets: for a given target sequence, 

flexibility was inferred uniquely on the basis of flexibility characteristics of the predicted LSP 

candidates.  

 

Inferring a flexibility class for each residue in a sequence. The LSP-SVM_PSSM 

method led to an average, very well-balanced prediction rate of 49.4% for the three defined 

flexibility classes. The score remained relatively low due to a poor prediction rate for the 

intermediate flexibility class (see Table 2). Table 2 shows that 86.5% of rigid protein 
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fragments were predicted to be rigid or intermediate. Likewise, 94.2% of flexible fragments 

were predicted to belong to an intermediate or flexible class. In contrast, confusion between 

flexible and rigid classes was very low. Less than 13.5% of fragments observed in the rigid 

class were predicted to be flexible, whereas only 6.0% of fragments observed in the flexible 

class were predicted to be rigid. More importantly, this prediction rate was considerably 

higher than a random prediction rate. A random prediction would have given 36.0%, with 

only 8.5 and 13.8% of rigid and flexible fragments correctly predicted. 

 

Predicting LSP flexibility: A detailed analysis of flexibility prediction shows different 

prediction rates for each LSP. To illustrate our results as clearly as possible, we give the 

prediction rates for each LSP as a function of RMSFNorm (see Figure 3). Very similar results 

were obtained with BfactorNorm, thereby confirming the similarity of the two descriptors when 

using the LSP dataset. A significant correlation coefficient (r = -0.71) between prediction 

rates and mean RMSFNorm, was obtained. Considering the categories of the four secondary 

structures described above, we observed that helical and extended core LSPs often had better 

prediction rates compared to the two other categories. As mentioned above, helical and 

extended core LSPs are generally associated with low flexibility. Accordingly, 100% of 

extended core LSPs and 62.5% of helical LSPs were assigned to the rigid flexibility class. In 

contrast, connection LSPs and extended edge LSPs were the most difficult to predict. This 

result is presumably related to a lower structural prediction rate for the connection LSP 

category, which could in turn affect the flexibility prediction rate 
38

. The connection LSP 

category was also mainly associated with the highest flexibility index, (74.5% connection 

LSPs) and none to the most rigid class (see also Figure 2). The extended edge category, the 

second most difficult structural category to predict, also showed high flexibility properties 
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with 17.5% of extended edge LSPs assigned to the most flexible class and 32.5% to the 

intermediate class.  

Hence, the difficulty of structural prediction seems to be closely related to highly 

dynamic properties. 

Inferring flexibility profiles for proteins from sequence. To explore further, we 

considered predicted BfactorNorm and RMSFNorm descriptors separately for each position along 

protein sequences. For each position, values were simply obtained by averaging the mb (mf for 

RMSFNorm) of the five predicted LSP candidates. Considering the values in 23 flexibility bins 

as was done in ref. 
21

, the correlation between observed and predicted values reached 0.71 and 

0.69 for BfactorNorm and RMSFNorm, respectively. When outliers were excluded, correlations 

were 0.94 and 0.96, respectively. This correlation is slightly better than the best correlation 

value obtained by the PONDR VSL1 prediction methods in CASP6 
51

. 

As an illustration, we give the detailed results obtained for the rat intestinal fatty acid-

binding protein sequence 
52

 for which the structure (PDB code 1FIC) has been solved at high 

resolution (1.2 Å). Figures 4 and 5 illustrate the predicted flexibility profiles defined by 

BfactorNorm and RMSFNorm, respectively. Based on raw values, the correlation coefficient was 

0.43 and 0.60 for BfactorNorm and RMSFNorm, respectively, and 0.53 and 0.67 when outliers 

were excluded. Considering the 23 categories, the correlation coefficients for this protein 

reached 0.67 and 0.61 for BfactorNorm and RMSFNorm profiles, respectively. 

This example is also representative of different situations that arise when measuring 

flexibility and assessing prediction. For example, residues 20 to 22 of the protein were 

assigned to  the flexible class with RMSFNorm and to a lesser extent with BfactorNorm,. Both 

predictions thus identified these residues as flexible ones. Moreover, the local structure 

prediction of these fragments centred on positions 20 to 22 was quite accurate. For the three 

positions, the top four predicted LSPs were indeed the observed ones (connection LSPs 30, 
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31, 32) and other candidates were also quite consistent. Surprisingly, NMR order parameters, 

S
2
, 

53
 indicate a rigid region, the S

2 
values being 0.92, 0.55 and 0.90, for the three positions, 

respectively. This discrepancy between predicted and observed values is difficult to explain 

insofar as NMR experiments are deemed to be appropriate for measuring flexibility. This last 

example illustrates the fact that different factors, such as environment, long-range interactions 

can affect flexibility descriptors. 

Similarly, residues 33 to 35 were observed to belong to the flexible class with 

RMSFNorm but not with BfactorNorm. Predicted profiles indicated these residues as flexible. 

Interestingly, these residues belong to the small helical region that has been proposed to be a 

―portal‖ for ligands toward a buried cavity within the core of the protein 
52, 54

. In addition, 

NMR experiments 
53

 have shown that the region from V26 to N35 is characterized by very 

low order parameters in the apo-form of the protein, but not in the holo-form. Therefore, the 

dynamic properties of these residues may facilitate the entry of the ligand into the binding 

cavity. These NMR results match our predictions, showing a high flexibility for these residues 

that X-ray B-factors do not depict. Although the mechanism of entry of the fatty acids into the 

protein cavity is not yet fully understood 
54

, these residues seem to be very important for 

protein function. 

Overall, these promising results suggest that relevant information can be gleaned from 

this type of analysis on other proteins. 

 

Defining a confidence index for flexibility prediction. The methodology proposed here 

can supply structural information but also information on flexibility properties. Moreover, it 

provides an additional means to assess the quality of the prediction. With LSP prediction, we 

defined a confidence index (CI), based on the discriminative power of the SVM classifiers. 

This index, graded from 1 to 19, was shown to directly estimate the quality of prediction for 
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each predicted fragment sequence. It thus identifies easy-to-predict regions (high confidence 

index) and regions more difficult to predict (low confidence index) 
38

.  

The results are illustrated in Figure 6, where the flexibility prediction rate is represented 

as a function of the local structure prediction confidence index (CI). Overall, the flexibility 

prediction rate was very stable whatever the CI value. However, there were differences, 

depending on the flexibility class considered. For rigid fragments, the flexibility prediction 

rate increased with the local structure prediction CI. For low CI (<6), the prediction rate was 

quite poor (9.52%) but for high CI (>13) the prediction rate reached 59.9%. Importantly, 

61.0% of rigid fragments were associated with high CI whereas only 5.3% were found in the 

low CI zones. For flexible fragments, the situation was inversed, but the flexibility prediction 

rate was less sensitive to the local structure prediction CI categories. The prediction rate was 

high (68.3%) for low CI and decreased (48.5%) for high CI. The distribution of flexible 

fragments was more similar between these two extremes, i.e., 23.5 and 28.4% fragments were 

found in low CI and high CI categories, respectively. Low sequence informativity for 

structural prediction was informative for predicting flexibility and inversely, high sequence 

informativity for structural prediction for predicting rigidity.  

 

Discussion 

Choice of descriptors: For comparison purposes, we analysed the flexibility classes 

obtained using B-factorNorm or RMSFNorm, separately. The flexibility classes were 

consequently delimited by new optimised parameters , the only constraint being to maintain 

a similar distribution of fragments as previously observed in each class. Table 3 quantifies the 

confusion between the three classes defined with B-factorNorm and the three classes obtained 

with RMSFNorm. The values were normalised by the total number of fragments. Off diagonal 

values were rather similar, with differences between the same pairs of classes below 1%. 
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Consequently, fragments were generally determined to be flexible (or rigid) using either 

experimental B-factors or with RMSF values. Hence, since the distribution of fragments was 

conserved, we did not observe any systematic bias due to the selected descriptor.  

Given the limitations of MD simulations, i.e., limited simulation time, approximations in 

force field and differences in environmental representation, the prediction similarity of both 

descriptors result may appear to be rather surprising. However, B-factors also include some 

approximations. B-factors are obtained as a result of a theoretical model fitted to experimental 

data and their accuracy strongly depends on crystal resolution. Moreover, the crystal 

environment also influences atomic fluctuations 
55

. All together, both descriptors provide 

accurate information on flexibility and are valuable for defining flexibility classes.  

Interestingly, molecular dynamics simulations provide additional information that 

cannot be captured with a unique crystal structure, namely transitions between different 

structural states. A preliminary analysis shows for instance, that 5.6% of fragments assigned 

to a connection LSP in PDB structures changed assignment in the earliest steps of the MD 

simulation. Assignment changes were usually to another connection LSP (98.7%). Moreover, 

these fragments visited on average 3.6 other LSP classes during the MD simulation. The 

extended edge category also exhibited interesting dynamical properties, with 6.7% of 

extended edge fragments changing assignment in the first MD steps: 4.8% changed to another 

extended edge LSP, 1.4% to a connection LSP and 0.5% to an extended core LSP. During 

MDs, fragments assigned to extended edge LSPs in X-ray structures visited on average 4.6 

other assignments.  

NMR data would be an interesting alternative for describing flexibility 
56

. NMR 

experiments can monitor protein motions on a broad range of timescales. In particular, order 

parameters S
2
 are powerful descriptors for characterising fast dynamic sites. Slow protein 

dynamics frequently associated with large conformational changes can be described by spin-
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spin relaxation data (R2). Recent advances in the characterisation of protein-backbone motions 

from residual dipolar couplings (RDCs) also provide quantitative internal motional modes and 

amplitudes from experimental data alone 
57

. However, despite these important advances, 

NMR experiments are limited by protein size. 

Prediction errors. The prediction rates obtained in this study are rather promising given 

the simplicity of the procedure. The prediction rate can be improved yet further. Prediction 

failures can be attributed to (i) an incorrect structural prediction and/or (ii) different flexibility 

properties of fragments coded by the same LSPs. In any case, long-range interactions play a 

major role and are presumably partially responsible for the observed discrepancies. The case 

of the prokaryotic phospholipase A2 (PDB code 1LWB, chain A) is a clear illustration of this 

type of discrepancy. This protein has two long-range disulfide bridges (C45-C61, C97-C107) 

that stabilise the 3D structure. A 21-residue loop is predicted as highly flexible, but it is 

actually highly rigid due to the cystine residues in the loop. One solution is to couple our 

method with a method that predicts disulfide bridges. 

The number of occurrences of each structural group also influences the capacity to 

decipher the sequence-structure relationship. Therefore, overlapping properties of LSPs may 

play a significant role. LSP length (11 residues) accounts for long-range interactions, but only 

partially. One solution is to lengthen LSPs. Unfortunately, the number of fragments in a given 

structural class rapidly decreases with length. As a consequence, this may weaken the 

sequence-structure relationship. 

 

Comparison with sophisticated flexibility prediction methods. Finally, we assessed our 

method by comparing our results to those of recently developed, sophisticated methods. The 

PROFbval 
25

 method carries out a two-class prediction (rigid/flexible) on normalised B-factor 

values. Flexibility classes are defined according to a strict and a non-strict threshold, i.e., 0.03 
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and -0.3, respectively. Based on this method, we modified our flexibility classes by using only 

BfactorNorm and considering only two classes defined based on PROFbval thresholds. We 

performed the prediction and its evaluation on the MD dataset. We also used our larger, 

independent Validation dataset (see Materials and Methods) that contains longer proteins and 

is more similar to the assessment set used for PROFbval. Table 4 shows that F-measures of 

48.1 and 72.0% were obtained for strict and non-strict thresholds, respectively, on the MD 

dataset. On our Validation set, the results were 44.9 and 69.7%, respectively, whereas 

PROFbval method obtained 53.3 and 71.9% (Table 4). Results using our method are 

extremely encouraging given the fact that the parameters used in this method were not the 

optimal ones. The similarity of the results obtained with a non-strict threshold confirms that 

our method is rather efficient compared to other more sophisticated methods in the field, 

which are based on a true learning of the flexibility data.  

We also assessed a two-class prediction based on the two descriptors defined in the 

present study. We evaluated the results with a non-strict threshold that separates the 

intermediate class and the flexible class. This choice conserves a distribution of the residues 

in each group similar to the one observed with PROFbval thresholds (see Table 4). The results 

obtained using our method are slightly better than PROFbval ones, with 74.8% accuracy, 

84.5% coverage and an F-measure of 79.4%. This confirms that LSP description is truly 

useful for addressing flexibility prediction. 

We performed a similar comparison with the method recently developed by Pan & Shen 

[24]. The results were obtained with the procedure implemented on the PredBF web server. 

The corresponding results for the MD dataset are reported in Table 4 (PredBF column). We 

first observed that the distribution of PredBF B-factor values was quite different from 

Schlessinger‘s values or ours for the MD dataset. Consequently, using our strict B-factor 

threshold (2.3), the rigid class appeared less populated than the flexible residues in the strict 
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ensemble. The PROFbval threshold (0.03) would presumably tend to reinforce this effect. 

Hence, the efficiency was difficult to compare although the values seem similar to PROFbVal 

results. In contrast, using our non-strict B-factor threshold (-1.4), the distribution of flexible 

and rigid fragments appeared similar to our corresponding distribution. The prediction rates 

for Acc, Cov and F were quite comparable even slightly better with our approach. 

 

Conclusion  

Here, we presented an original approach that studies and predicts sequence flexibility in 

protein structures. The systematic exploration of dynamics associated with the 120 LSPs led 

to the characterisation of differential local structure behaviours. Aside from the well-known 

behaviour of loops with generally higher flexibility compared to that of repetitive secondary 

structures, we demonstrated subtle interdependence between defined local protein structures 

and flexibility properties. Accordingly, some motifs can be more mobile than others. We also 

show that sequence information contained in local protein structures can also be used to 

predict flexibility characteristics. The flexibility prediction strategy we propose here is 

directly derived from our local structure prediction method. The results of this successful 

proof of concept are as efficient as recently developed, elaborate methods without requiring 

any sophisticated training procedures. In addition, our results suggest that some discrepancies 

between predicted and observed local structures may actually be due to alternative, accessible 

local structures when dynamics are taken into account. This observation further enhances the 

usefulness of our local structure prediction method, which proposes several structural 

candidates for a target sequence. We showed here that LSP prediction is in itself very 

informative of protein flexibility properties. Finally, due to the simplicity of the procedure, 

further improvements can be easily implemented. Thus, using the LSP flexibility information 
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content coupled with an appropriate learning process should greatly improve predictions of 

protein flexibility.  
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Figure Legends 

 
 

Figure 1 – Normalised B-factor values according to normalized RMSF values as determined 

from molecular dynamics simulations. The two diagonal lines delimit the three flexibility 

classes defined by the quadruplet ( B1 F1, B2 F2) = (-1.5, -0.5, 2.2, 1.1) 
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Figure 2 - Relationship between the mean B-factorNorm mB and the mean RMSFNorm mF per 

LSP class. Dot colour represents the secondary structure LSP category, with helical, extended 

core, connection and extended edge LSPs in black, red, green and blue, respectively. The 

black line is the first bisector. The brown dashed line gives the regression line.  
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Figure 3 - Relationship between observed flexibility and prediction rate for each LSP class. 

Flexibility was measured by the mean RMSFNorm mF. Dot colour represents the secondary 

structure LSP category, with helical, extended, connection and extended edge LSPs in black, 

red, green and blue, respectively. The brown dashed line gives regression line. 
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Figure 4 - Flexibility prediction on the rat intestinal fatty acid-binding protein (PDB code 

1IFC, 131 residues). Top: observed and predicted B-factorNorm values, bottom: observed and 

predicted RMSFNorm values. Black dotted lines indicated observed values and red lines 

indicate predicted values. Outlier values are symbolised by triangles.  
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Figure 5 - Observed and predicted flexibility descriptors mapped on the rat intestinal fatty 

acid-binding protein structure (PDB code 1IFC). A. Normalized B-factors, B. Predicted B-

factors, C. Normalized RMSF from molecular dynamics simulations, D. Predicted RMSF. 
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Figure 6 - Flexibility and prediction rate according to the local structure prediction 

confidence index (CI). Flexibility descriptors are given on the left y-axis. RMSFNorm and B-

factorNorm averages according to CI categories are indicated by blue and green lines, 

respectively. Prediction rates are given on the right y-axis. Local structure prediction rates 

according to CI are indicated in black and flexibility prediction rates obtained with the 

quadruplet defined on the whole dataset are in red.  

 


