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Neuronal microtubules have major central functions as
progenitor division, neuronal morphogenesis or differentia-
tion and axonal transport. In line with the probable involve-
ment of neuronal cytoskeleton disorganization in psychiatric
disorders (Robertson et al. 2006; Ross et al. 2006; Talbot
et al. 2006; Camargo et al. 2007; Desbonnet et al. 2009),
mice lacking the protein STOP (stable tubule only poly-
peptide knock out, STOP KO, Andrieux et al. 2002), a
microtubule-associated protein (MAP) essential for neuronal
morphogenesis and maintenance (Bosc et al. 1996; Guillaud
et al. 1998), display many characteristics, considered to be
landmarks of schizophrenia (Frankle et al. 2003).

STOP KO mice exhibit brain anatomical abnormalities
such as enlarged ventricles and reduced cortical and
diencephalic volumes (Powell et al. 2007). They show
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Abstract

The deletion of microtubule-associated protein stable tubule

only polypeptide (STOP) leads to neuroanatomical, bio-

chemical and severe behavioral alterations in mice, partly

alleviated by antipsychotics. Therefore, STOP knockout (KO)

mice have been proposed as a model of some schizophrenia-

like symptoms. Preliminary data showed decreased brain

serotonin (5-HT) tissue levels in STOP KO mice. As literature

data demonstrate various interactions between microtubule-

associated proteins and 5-HT, we characterized some fea-

tures of the serotonergic neurotransmission in STOP KO

mice. In the brainstem, mutant mice displayed higher tissue

5-HT levels and in vivo synthesis rate, together with marked

increases in 5-HT transporter densities and 5-HT1A autore-

ceptor levels and electrophysiological sensitivity, without

modification of the serotonergic soma number. Conversely, in

projection areas, STOP KO mice exhibited lower 5-HT levels

and in vivo synthesis rate, associated with severe decreases

in 5-HT transporter densities, possibly related to reduced

serotonergic terminals. Mutant mice also displayed a deficit of

adult hippocampal neurogenesis, probably related to both

STOP deletion and 5-HT depletion. Finally, STOP KO mice

exhibited a reduced anxiety- and, probably, an increased

helpness-status, that could be because of the strong imbal-

ance of the serotonin neurotransmission between somas and

terminals. Altogether, these data suggested that STOP dele-

tion elicited peculiar 5-HT disconnectivity.

Keywords: anxiety/depression, electrophysiology, neuro-

genesis, schizoaffective disorders, stable tubule only poly-

peptide, STOP KO mice.
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hyperdopaminergia in the limbic system evidenced by an
increased dopamine (DA) evoked efflux in the nucleus
accumbens (Brun et al. 2005), a decreased DA uptake by
accumbic synaptosomes, a lower level of D2 and D3 DA
receptors in some brain areas (Bouvrais-Veret et al. 2008)
and an increased glucose utilization in the DA cell body
areas (Hanaya et al. 2008). Mutant mice also exhibit a
probable hypoactivity of glutamatergic neurotransmission
characterized by a decreased number of hippocampal
synaptic vesicles and a deficit in the long term potentiation
(Andrieux et al. 2002), a decreased vesicular glutamate
transporter 1 mRNA level in hippocampus (Eastwood et al.
2007) and an increased glutamine metabolism (Brenner
et al. 2007). STOP KO mice show purposeless and
disorganized activity, impaired social interactions and
maternal behavior (Andrieux et al. 2002; Begou et al.
2008). They are hypersensitive to the locomotor effect of
mild stress and of psychostimulants as amphetamine,
nicotine and cocaine (Brun et al. 2005; Bouvrais-Veret
et al. 2007, 2008). Mutant mice are deficient in sensory-
gating mechanisms (Fradley et al. 2005) and learning
performance in the novel object recognition and olfactory
discrimination tasks (Powell et al. 2007; Begou et al. 2008)
and in the cued version of the Morris watermaze test
(Bouvrais-Veret et al. 2007). Importantly, some symptoms
appear post-pubertally (Begou et al. 2007) and part of
dysfunctions are alleviated by chronic treatment with
antipsychotics (Andrieux et al. 2002; Brun et al. 2005;
Delotterie et al. 2009). Finally, the gene encoding MAP6,
the human homolog of STOP, is localized on chromosome
11q14, a region highly associated with schizotypal person-
ality disorders (Lewis et al. 2003) and an association
between MAP6 gene polymorphism and schizophrenia has
been reported (Shimizu et al. 2006).

Preliminary data on STOP KO mice showed significant
alterations in brain levels of monoamines, including DA
(Bouvrais-Veret et al. 2008) and serotonin (5-HT). Interac-
tions between some neurotransmitters and MAPs have been
reported at both the transcriptional and post-transcriptional
levels. Concerning the serotonergic neurotransmission, con-
vergent studies showed that (i) serotonin depletion in rats
triggers a loss of MAP2 in hippocampal dendrites (Whi-
taker-Azmitia et al. 1995), (ii) acute or chronic antidepres-
sant treatments with selective serotonin reuptake inhibitors
stimulate microtubule dynamics in the rat hippocampus
(Perez et al. 1995; Bianchi et al. 2009) and (iii) selective
MAPs colocalize in cortical dendrites or directly interact
with some serotonin receptors (Cornea-Hébert et al. 1999,
2002; Sun et al. 2008). Interestingly, epidemiologic studies
showed co-segregation of schizophrenia and mood disorders
within families (Laursen et al. 2005; Gottesman et al. 2010)
and recent genetic investigations point at various suscepti-
bility genes common to these psychiatric disorders, such as
those encoding DISC1 (disrupted-in-schizophrenia1), neu-

regulin 1, dysbindin-1 and catechol-O-methyltransferase
(Craddock and Forty 2006). Finally, mice with mutations
in the DISC1 gene exhibit phenotype related to either
schizophrenia or depression, depending on the location of
the punctual mutation (Clapcote et al. 2007).

For all these reasons, we investigated the effects of the
microtubule-associated STOP protein deletion on various
parameters of serotonergic neurotransmission in STOP KO
mice, using molecular, anatomical, physiological and behav-
ioral approaches. Altogether, our results showed that STOP
deletion triggers dramatic alterations of the serotonin neuro-
transmission, with marked imbalance of 5-HT tone in
brainstem vs. forebrain areas and associated consequences
on adult hippocampal neurogenesis and on anxiety- and
depression-related behaviors.

Materials and methods

Animals
Stable tubule only polypeptide deficient mice were obtained by

putting the lacZ gene in the place of the exon 1 of STOP gene

(MAP6, Denarier et al. 1998), present in all characterized STOP

isoforms (A-, E-, F-, N- and O-STOP, Aguezzoul et al. 2003;

Galiano et al. 2004). Thus, the exon 1 deletion results in the

absence of any detectable STOP isoforms in STOP KO mice

(Andrieux et al. 2002). Homozygous wild-type (WT) mice and

STOP KO littermates were obtained by crossing (F2) heterozygous

50 : 50 BALBc/129 SvPas-F1 and genotyped as previously

described (Andrieux et al. 2002). Animals were kept under

standard conditions, with a 12 h light/dark cycle (lights on at

07:30 h) and allowed to habituate to the animal holding room for at

least 1 week prior to use. All experiments were conducted on WT

and STOP KO mice of the same litters and at 3–5 months of age, in

accordance with the European Communities Council directive (86/

809/EEC).

Drugs
5-Bromo-2¢-deoxyuridine (BrdU), clorgyline hydrochloride, 5-

hydroxytryptamine hydrochloride (5-HT, serotonin), fluoxetine

hydrochloride and 3-hydroxy-benzylhydrazine (NSD 1015) were

purchased from Sigma-Aldrich (Saint Quentin-Fallavier, France).

Venlafaxine hydrochloride was from Tocris (Bristol, UK) and

ipsapirone hydrochloride from Bayer-Troponwerke (Cologne, Ger-

many). BrdU, clorgiline, NSD 1015 and venlafaxine were dissolved

in 0.9% NaCl and administered intraperitoneally (100 lL per 10 g

body weight). Polyclonal antibodies against rabbit anti-5-HT were

from Calbiochem (La Jolla, CA, USA), rabbit anti-tryptophan

hydroxylase 2 (TPH2) and guinea pig anti-doublecortin (DCX) from

Chemicon (Temecula, CA, USA), rat anti-BrdU from Abcys (Paris,

France), mouse anti-Mash1 from BD Pharmingen (Franklin Lakes,

NJ, USA), mouse anti-NeuN from Millipore (Molsheim, France)

and rabbit anti-b-galactosidase from Rockefeller (New York,

NY, USA). [3H]Citalopram (2.22–3.18 TBq/mmol) and [meth-

oxy-3H]WAY 100635 (2.22–3.18 TBq/mmol) were purchased from

GE Healthcare (Orsay, France) and [125I]-IgG (74–370 kBq/lg,
9 kBq/mL) from Perkin Elmer (Orsay, France).
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Determination of 5-HT, 5-hydroxytryptophan and 5-
hydroxyindolacetic acid tissue levels and of in vivo tryptophan
hydroxylase activity
The concentrations of endogenous 5-HT, its precursor 5-hydroxy-

tryptophan (5-HTP) and its metabolite 5-hydroxyindolacetic acid (5-

HIAA) were determined by HPLC and electrochemical detection as

previously reported (Bouvrais-Veret et al. 2008). After centrifuga-
tion and neutralization, 10 lL-aliquots of brain homogenates were

injected into a HPLC column (Ultrasphere IP, Beckman, Villepinte,

France; 25 · 4.6 cm, C18 reversed-phase, particle size 5 lm). The

mobile elution phase (flow rate: 1 mL/min) consisted of 70 mM

KH2PO4, 2.1 mM triethylamine, 0.1 mM EDTA, 1.25 mM octane

sulphonate and 16% methanol, adjusted to pH 3.02. The electro-

chemical detection system (ESA 5011, Bedford, MA, USA)

comprises an analytical cell with dual coulometric monitoring

electrodes (+50 mV and +350 mV).

For the in vivo measurement of TPH2 activity, animals received

100 mg/kg NSD 1015 intra peritoneal (i.p.), to block aromatic L-

amino acid decarboxylase, and were killed 30 min later. Accumu-

lated 5-HTP levels were measured as described above.

Autoradiographic labelings
Mice were killed by cervical dislocation and their brains frozen in

isopentane at )30�C. Serial 10 lm coronal sections were cut at

)20�C, thaw-mounted on Superfrost Plus� slides (Mensel-Glaser,

Braunschweig, Germany) and stored at )80�C until use.

Radiolabeling of 5-HT transporter and 5-HT1A receptors
Labeling of the 5-HT transporter (SERT) was performed according

to Fabre et al. (2000b), by incubating slides for 60 min at 22�C in

50 mM Tris–HCl buffer, pH 7.4, containing 120 mM NaCl, 5 mM

KCl and 2.5 nM [3H]citalopram, without or with 10 lM fluoxetine

to determine non-specific binding. Sections were then washed, dried

and exposed to BAS-TR Fuji Imaging screen (Fujifilm Europe,

GMbH, Dusseldorf, Germany) for 1 week. Labeling of 5-HT1A

receptors was done as previously reported (Fabre et al. 2000a), by
incubating sections for 60 min at 22�C in 100 mM Tris–HCl buffer,

pH 7.4, containing 2 nM [methoxy-3H]WAY 100635, without or

with 10 lM 5-HT to determine non-specific binding. After washes

and drying, sections were exposed to BAS-TR Fuji Imaging screen

for 3 weeks.

Autoradiographic quantification
Standard radioactive microscales were exposed onto each Imaging

screen to ensure that labeling densities were in the linear range. The

screens were scanned with a Fuji Bioimaging Analyzer BAS-5000

and the densitometry performed with MCIDTM analysis software.

Specific labelings of four sections per area were averaged per mouse.

Electrophysiological recordings
Extracellular recordings of dorsal raphe 5-HT neurons were

performed on slices as previously reported (Mannoury la Cour

et al. 2001). The mouse brains were immersed in an ice-cold

artificial CSF (aCSF) containing 126 mM NaCl, 3.5 mM KCl,

1.2 mM NaH2PO4, 1.3 mM MgCl2, 2 mM CaCl2, 25 mM NaHCO3

and 11 mM D-glucose, maintained at pH 7.3 by continuous bubbling

with carbogen (95% O2/5% CO2) for 1 h at 22�C. Then, 400 lm-

coronal sections were placed on a nylon mesh and superfused

continuously with oxygenated aCSF (34�C, 2–3 mL/min). Extra-

cellular recordings were made with glass microelectrodes filled with

2 M NaCl (10–15 MW). Baseline activity was recorded for 5–

10 min before the application of the 5-HT1A receptor agonist

ipsapirone (0–100 nM). The integrated firing rate was computed as

consecutive 10 s samples. The effect of ipsapirone was evaluated by

comparing the mean discharge frequency during 2 min before its

addition with that recorded at the peak of its action, that is, 3–

10 min after starting ipsapirone infusion.

Immunohistochemistry
Mice received an i.p. injection of 10 mg/kg clorgyline 3 h before

anesthesia by sodium pentobarbital (80 mg/kg, i.p.) and were

perfused transcardially with 4% paraformaldehyde. After post-

fixation overnight, 30 lm-coronal sections were cut using a

vibratome.

After treatment with 3% H2O2, free-floating sections were pre-

incubated in phosphate-buffered saline containing 4% bovine serum

albumin and 0.1% Triton X-100 for 1 h at 22�C. Sections were

incubated overnight at 4�C with polyclonal antibodies against 5-HT

(1 : 100 000), TPH2 (1 : 1500), or SERT (1 : 3600, a generous gift

of R.D. Blakely). Sections were then immunolabeled by the

immunoperoxidase method as previously described (Bernard et al.
2008).

Serotonin soma counting and fiber density determination
For each mouse, 5-HT- and TPH2-immunoreactive neurons were

counted within the dorsal raphe (DR) and the median raphe nuclei

(Bregma )4.16 to )5.02, according to Franklin and Paxinos 1997)

and SERT-immunoreactive fiber density was measured within the

dorsal dentate gyrus (Bregma )2.06 to )1.46) and the cingulate

cortex (Cg Cx, Bregma 1.10 to 1.70). Sections were observed under

bright field illumination and the resultant signals were quantified

using the cell counting software Mercator Lite 3.0B (Explora Nova,

La Rochelle, France) or the multi length and surface measure

functions of the software Image J (NIH, Bethesda, MD, USA). All

the cell counts, the fiber lengths and the surface areas were measured

using an optic microscope (Zeiss Axioscop 2 plus, Le Pecq, France)

at 40· magnification and a RVB camera (Zeiss Axiocam, Le Pecq,

France). The number of 5-HT- and TPH2-positive cells, within the

DR and the median raphe, was determined in seven different coronal

sections, 120 lm apart, and were averaged per region and per

mouse. To avoid false double counting, only cells with nucleus were

taken into account. The SERT-immunoreactive fiber lengths were

determined in 10 microscopic fields randomly selected per section,

corresponding to 10% of the dentate gyrus or the Cg Cx, in five

different coronal sections, 120 lm apart, without considering the

intensity of staining. The fiber densities, calculated as the ratio of the

total fiber lengths over the total surface of the microscopic fields,

were finally averaged per region and per mouse.

Quantitative determination of neurogenesis
To analyze cell proliferation, mice were i.p. injected with 100 mg/kg

BrdU, twice a day for 2 days and killed on the third day. To analyze

neurogenesis and survival, mice received 50 mg/kg BrdU twice a

day for 4 days and were killed 6 weeks later. After perfusion with

4% paraformaldehyde, the brains were cryoprotected in 30%

sucrose and coronal free-floating sections were collected.
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For immunofluorescence, labelings were performed as previously

described (Raponi et al. 2007) using rat anti-BrdU (1 : 500), mouse

anti-Mash1 (1 : 100), guinea pig anti-DCX (1 : 2000), mouse anti-

NeuN (1 : 4000) and rabbit anti-b-galactosidase (1 : 1000). The

double BrdU-NeuN immunolabeling and the immunoperoxidase

BrdU labeling were performed as reported (Tang et al. 2009).
Immunoperoxidase BrdU labeled nuclei were counted within the

subgranular zone (SGZ) of the dentate gyrus, using optical

microscope Nikon TS 100 (Kingston, England), on one over eight

free-floating 20-lm sections per mouse. The number of BrdU/

NeuN double labeled cells was quantified using a confocal

microscope Leica TCP SP2 (Wetzlar, Germany). NeuN immuno-

reactivity of each BrdU cells was analyzed in the entire z-axis with
a 0.5 lm step to exclude false double labeling. One over six free-

floating 25-lm sections was analyzed per mouse, spanning the

dentate gyrus.

Behavioral investigations
All the behavioral experiments were performed between 10:00 and

16:00 h, on males and/or females of both genotypes, as specified.

Elevated plus maze test
The elevated plus maze test was conducted in an apparatus

consisting of a central platform (7 · 7 cm), two open and two

closed arms (30 · 7 cm), located at a height of 55 cm above the

floor, under a 50 lux illumination. Mice placed in the central

platform were allowed to freely explore the maze for 5 min. Scores

of mice which did make less than five entries into the open + closed

arms or which did not entry into the open or closed arms were not

taken into account in the statistical analyses.

Open field test
The open field test was conducted in a 100 lux illuminated sound-

attenuated room. Mice were introduced in a corner of the arena

(100 · 100 · 30 cm) and allowed to freely explore the open field

for 9 min. Scores of mice that did not visit the central square were

not taken into account in the statistical analyses.

Tail suspension test
Thirty minutes after i.p. administration of saline or venlafaxine,

mice were suspended by the tail, using a paper adhesive tape, to a

hook in a chamber of the apparatus (Idtech Bioseb ATP, Vitrolles,

France). Their immobility time was mechanically and automatically

recorded during a 6-min test period.

Treadmill locomotion
Motor performances of female mice were assessed according to

(Antri et al. 2003; Lapointe et al. 2006). Briefly, mice were placed

with all four limbs on a moving treadmill and allowed to walk

freely. In order to determine the maximal speed (Vmax) at which

mice were able to run, the speed of the treadmill belt was

progressively increased until mice gave up running. The evaluation

of locomotor capabilities of the animals was done by the

observation of four parameters: capability to support the body

weight with limbs, interlimb coordinations, quality of foot

placement on the walking surface and amplitude of the locomotor

movement. Motor performances were quoted on a scale using a

maximal score of 22 points.

Statistical analyses
Data were subjected to factorial one-, two-, three or four-way

ANOVA, with sex, genotype or treatment as between-group factors

and time as within-group factor. Significant main effects were

further analyzed by post hoc comparisons of means using Fisher’s

test.

The concentration of ipsapirone producing 50% reduction (IC50)

of DR 5-HT neuron firing was calculated by nonlinear regression

using GraphPad Prism 5.0a software (GraphPad Software Inc., La

Jolla, CA, USA). The means ± SEM were compared using Student’s

t-test. For all tests, statistical significance was set at p < 0.05.

Results

5-HT levels and in vivo tryptophan hydroxylase activity
We first measured the tissue levels of 5-HT and its main
metabolite 5-HIAA, as well the in vivo TPH2 activity in
various areas of WT and STOP KO mice of both genders in
equal proportion (Table 1). No significant differences
between genders [5-HT: F(1,68) = 0.84; 5-HIAA: F(1,68) =
0.02, 5-HTP: F(1,127) = 0.09] were noted and data for males
and females were pooled.

A trend to higher levels of 5-HT and 5-HIAAwas found in
the brainstem containing the raphe nuclei in STOP KO vs.
WT mice. In contrast, 5-HT and 5-HIAA levels were
significantly lower in forebrain areas in mutant mice, except
in the substantia nigra plus the ventral tegmental area where
no differences were found compared to WT mice. The
parallel decreases of 5-HT and 5-HIAA levels resulted in no
significant modifications of their ratio in all studied areas,
suggesting that the turnover of 5-HTwas not altered in STOP
KO vs. WT mice.

The in vivo TPH2 activity (estimated from 5-HTP
accumulation) in STOP KO vs. WT mice was significantly
higher in the brainstem, lower in the hippocampus, the stri-
atum and the frontal cortex and not modified in the substantia
nigra + the ventral tegmental area and in the nucleus
accumbens.

5-HT transporter densities
The densities of the 5-HT transporter (SERT) were deter-
mined by quantification of autoradiographic [3H]citalopram
labeling in various brain areas of WT and STOP KO mice
of both genders in equal proportion (Fig. 1, Table 2).
Analyses of data showed no significant effect of gender
[F(1,348) = 0.11].

The relative density of SERT was markedly altered in all
areas studied in STOP KO vs. WT mice. It was significantly
higher by 90–120% in both the dorsal and median raphe
nuclei and by 40–60% in the substantia nigra and the ventral
tegmental area of mutants compared to WT mice. In contrast,
SERT level was significantly less in all forebrain areas
examined in mutants. The amplitude of the reduction varied
from 20% to 90%, according to areas.
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The opposite variations of SERT levels in brainstem vs.
forebrain areas were confirmed by measuring [3H]citalopram
specific binding to membrane preparations (Table S1).

Analysis of the variations of SERT density in various brain
areas of STOP KO compared to WT mice showed that they
grossly followed both rostro-caudal and dorso-ventral gradi-
ents, with the higher decrease in the retrosplenial cortex at the
anteriority level of the raphe nuclei and of the substantia nigra
in mutants (Table 2). A highly significant correlation
[r2 = 0.8364, F(1,26) = 148.3, p < 0.0001] was found between
SERT level decreases and 5-HT fiber length (determined
according to Vertes 1991 and Vertes et al. 1999; Figure S1).

Density and function of the 5-HT1A autoreceptors
We quantified the densities of 5-HT1A receptors radiolabeled
by [3H]WAY100635 (Fig. 1, Table 3), localized on both the
serotonergic (autoreceptors) and non-serotonergic (post-syn-
aptic receptors) somas (Verge et al. 1986). Analyses of data
showed no significant effect of gender (equal proportion of
females and males, F(1,256) = 0.39).

In STOP KO compared to WT mice, the density of 5-
HT1A receptors was significantly increased by 60–70% in
the dorsal and median raphe nuclei and by 30% in the
retrosplenial cortex, at the anteriority level of the substantia

nigra, whereas it was not significantly modified in all the
other areas studied, except in the cingulate cortex where it
decreased by 20%.

We then assessed whether the increased 5-HT1A autore-
ceptor labeling has consequences on the control of 5-HT
neuron firing (Fig. 2). Statistical analysis revealed no signif-
icant effect of genotype on the basal firing activity of
serotonergic neurons in the dorsal raphe nucleus of STOP KO
compared to WT male mice (Fig. 2b). The addition of the 5-
HT1A receptor agonist ipsapirone to aCSF superfusing slices
resulted in a concentration-dependent inhibition of the dorsal
raphe neuron firing (Fig. 2a and c). Inhibitions by ipsapirone
at 30 and 60 nM were significantly higher in STOP KO than
in WT mice (Fig. 2c). This larger response in mutant mice
yielded a leftward displacement of the concentration-response
curve and a significant 37% decrease of the IC50 value of
ipsapirone, that is, 35.6 ± 2.7 nM and 22.3 ± 1.5 nM,
p < 0.01, in WT vs. STOP KO mice, respectively.

Serotonin soma counting and fiber density determination
Serotonergic somas of male WT and STOP KO mice were
labeled by an antiserum directed against either TPH2, or 5-
HT after administration of a monoamine oxidase A inhibitor
to increase 5-HT tissue levels (Fig. 3 and Table 4). Seroto-

Table 1 5-HT and 5-HIAA levels and

in vivo TPH2 activity in some brain areas of

WT and STOP KO mice

Area Genotype 5-HT 5-HIAA 5-HTP

Brainstem WT (6) 0.65 ± 0.07 (6) 0.65 ± 0.06 (6) 374 ± 15

KO (6) 0.78 ± 0.06 (6) 0.80 ± 0.08 (6) 492 ± 29

+19% ns +23% ns +32%**

SN + VTA WT (6) 1.23 ± 0.09 (6) 0.82 ± 0.08 (12) 729 ± 67

KO (6) 1.31 ± 0.13 (6) 0.88 ± 0.07 (12) 838 ± 82

+6% ns +7% ns +15% ns

Hippocampus WT (6) 0.33 ± 0.03 (6) 0.25 ± 0.03 (12) 214 ± 13

KO (6) 0.17 ± 0.02 (6) 0.16 ± 0.02 (11) 115 ± 10

)48%** )36%* )46%***

Caudate putamen WT (6) 0.45 ± 0.06 (6) 0.30 ± 0.04 (11) 226 ± 14

KO (6) 0.28 ± 0.03 (6) 0.20 ± 0.02 (13) 175 ± 16

)38%* )33%* )22%*

Nucleus accumbens WT (6) 0.38 ± 0.03 (6) 0.26 ± 0.01 (12) 296 ± 30

KO (6) 0.20 ± 0.03 (6) 0.16 ± 0.02 (12) 262 ± 22

)48%*** )39%** )12% ns

Frontal cortex WT (6) 0.42 ± 0.03 (6) 0.18 ± 0.02 (12) 154 ± 9

KO (6) 0.20 ± 0.02 (6) 0.08 ± 0.01 (12) 100 ± 11

)51%*** )54%*** )35%***

5-HT and 5-HIAA levels are expressed as means ± SEM in lg/g fresh tissue. For the determination

of in vivo TPH2 activity, mice received 100 mg/kg NSD 1015 30 min before killing. Respective

basal 5-HTP levels were subtracted from 5-HTP accumulated after NSD 1015 administration. Data

are expressed as means ± SEM in ng/g/30 min. The number of total mice (equal number of

females and males) is indicated in parentheses. SN, substantia nigra; VTA, ventral tegmental area.

Fisher’s test: ns, non-significant; *p < 0.050; **p < 0.005; ***p < 0.001, comparison between

genotypes.
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nergic terminals were immunolabeled by a SERT antiserum
in two projection areas, the dentate gyrus in the dorsal
hippocampus and the cingulate cortex. Statistical analyses of
data in the raphe nuclei showed a significant effect of area
[F(1,32) = 500.41, p = < 0.0001], but no significant effect of
the genotype and antiserum. As cell bodies were numbered
without taking into account the intensity of the TPH2
immunostaining per soma, it is difficult to assess if the higher
in vivo synthesis rate in the brainstem of STOP KO mice
(Table 1) was because of an increased TPH2 availability and/
or to change in its kinetic properties.

In contrast, analyses of data in the two terminal areas
examined showed a significant effect of genotype and area on

the SERT immunolabeled serotonergic fiber density [geno-
type: F(1,16) = 103.81, p < 0.0001; area: F(1,16) = 16.58,
p = 0.0009; genotype · area: F(1,16) = 6.30, p = 0.0232]. A
profound decrease of SERT immunostained fibers was found
in both the dentate gyrus of the anterior hippocampus
()60%) and the cingulate cortex ()66%) of STOP KO mice,
in agreement with SERT autoradiographic labeling data.

Quantitative determination of neurogenesis
Neurogenesis was quantified in the adult hippocampus and
subventricular zone of male mice of both genotypes
(Figs 4 and S3). We first compared the progenitor cell
proliferation in the SGZ of the dentate gyrus of WT and

Fig. 1 Representative autoradiographic

labelings of serotonin transporter (SERT)

and 5-HT1A receptors in brain areas of WT

and STOP KO mice. Note that the labeling

of SERT and 5-HT1A receptors was per-

formed on consecutive slices and, conse-

quently, that the greatly diminished SERT

labeling in the STOP KO mouse cortical

areas was not because of a loss of cortical

tissues. Bottom: Schematic representa-

tion of the 5-HT brain pathways (http://

www.colorado.edu/intphys/Class/IPHY3730/

image/figure 6-6) and of the four coronal

levels studied: anterior raphe nuclei (Ra,

bregma = )4.20 to ) 4.60), substantia ni-

gra (SN, bregma = )2.92 to )3.88), dorsal

hippocampus (Hipp, bregma = )1.06 to

)1.80) and striatum (Str, bregma = 1.54 to

0.98), according to Franklin and Paxinos

(1997). Acc, nucleus accumbens; BLA, ba-

solateral amygdala; BMA, basomedial

amygdala; CA1-CA3, CA1,CA3 fields of

Ammon’s horn in the hippocampus; Cg Cx,

cingulate cortex; Core, core of the nucleus

accumbens; CPu, caudate-putamen; DG,

dentate gyrus of the hippocampus; DR,

dorsal raphe nucleus; Hipp, hippocampus;

LMol, lacunosum moleculare field of the

hippocampus; MEnt Cx, Medial entorhinal

cortex; MnR, median raphe nucleus; Mot

Cx, motor cortex; mSept, medial septum;

RS Cx, retrosplenial cortex; Sens Cx,

somatosensory cortex; Shell, shell of the

nucleus accumbens; SN, substantia nigra;

SVZ, subventricular zone; Vis Cx, visual

cortex; VTA, ventral tegmental area.
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STOP KO adult mice and found a significant 28%
decrease [F(1,13) = 8.47, p = 0.034] in the number of BrdU
positive cells in mutants (Fig. 4a). Furthermore, the
number of BrdU/NeuN positive cells was significantly
decreased by 53% [F(1,6) = 7.47, p = 0.0122] in the
granular layer of STOP KO mice (Fig. 4b). These results
indicated a deficit in the number of both proliferating cells
and integrated new neurons in mutants. In contrast, no
significant effect of genotype was found on the number of
BrdU positive cells in the subventricular zone (SVZ) and
of new neurons in the granular layer of the olfactory bulb
(Figure S3).

Hippocampal localization of the STOP protein
To assess the potential effect of STOP protein on neuro-
genesis, we characterized its expression profile in the two
adult germinal zones, SGZ and SVZ. In the hippocampus,
STOP immunolabeling was found mostly in dendrites and
axons, but not in the cell bodies (Andrieux et al. 2002;
Couegnas et al. 2007). Thus, a direct immunolabeling of
STOP protein does not allow a precise identification of
individual neurons expressing STOP protein. We took
advantage of the knockout mouse construction where the
lacZ gene was introduced under the control of the STOP
promoter to establish the profile of STOP transcription in

Table 2 Densities of SERT in brain areas

of WT and STOP KO mice
Coronal level Area WT KO KO/WT (%)

Raphe RS Cx (6) 7.3 ± 1.1 (6) 0.60 ± 0.15 )92***

DR (6) 103.3 ± 20.6 (6) 227.4 ± 17.9 +121**

MnR (6) 106.1 ± 14.8 (6) 201.2 ± 13.2 +90**

MEnt Cx (6) 10.2 ± 1.3 (6) 1.9 ± 0.4 )82***

SN RS Cx (7) 11.0 ± 0.8 (6) 0.92 ± 0.15 )92***

Vis Cx (7) 8.4 ± 0.7 (6) 1.4 ± 0.2 )84***

SN (7) 144.5 ± 11.0 (6) 206.1 ± 8.7 +43**

VTA (7) 114.1 ± 10.2 (6) 181.9 ± 13.4 +59**

Hipp (7) 26.1 ± 1.7 (6) 12.2 ± 0.7 )55***

DG (7) 22.7 ± 3.2 (6) 9.0 ± 0.8 )61**

LMol (7) 35.4 ± 2.8 (6) 17.1 ± 1.1 )52***

MEnt Cx (7) 38.4 ± 2.5 (6) 10.4 ± 2.2 )73***

Hippocampus RS Cx (6) 18.9 ± 1.9 (6) 4.6 ± 0.2 )75***

Mot Cx (6) 10.6 ± 1.5 (6) 2.7 ± 0.4 )75***

Sens Cx (6) 11.0 ± 1.3 (6) 3.5 ± 0.4 )68**

Hipp (6) 18.6 ± 2.2 (6) 12.5 ± 0.6 )33*

CA1 (6) 16.6 ± 1.8 (6) 9.9 ± 0.6 )40*

CA3 (6) 23.0 ± 2.9 (6) 12.6 ± 1.0 )45**

DG (6) 31.3 ± 3.0 (6) 24.4 ± 1.2 )22*

LMol (6) 25.5 ± 1.3 (6) 17.8 ± 1.3 )30*

BLA (6) 72.4 ± 6.3 (6) 45.8 ± 1.2 )37*

BMA (6) 59.1 ± 7.3 (6) 39.5 ± 1.5 )33*

Striatum Cg Cx (7) 33.7 ± 2.7 (7) 12.3 ± 1.7 )64***

Mot Cx (7) 19.5 ± 1.9 (7) 9.8 ± 1.1 )50**

Sens Cx (7) 21.6 ± 2.0 (7) 14.1 ± 0.9 )35*

CPu (7) 29.6 ± 2.2 (7) 17.1 ± 1.1 )42**

SVZ (5) 33.7 ± 3.4 (5) 20.2 ± 2.6 )40*

N Acc (7) 36.2 ± 2.4 (7) 25.2 ± 1.8 )30*

Densities are the means ± SEM of specific [3H]citalopram autoradiographic labelings in nCi/mg.

The total number of mice (quasi equal proportion of females and males) is indicated in paren-

theses. See Fig. 1 for the anteriority of the various coronal levels. BLA, basolateral amygdala;

BMA, basomedial amygdala; CA1–CA3, CA1,CA3 fields of Ammon’s horn in the hippocampus; Cg

Cx, cingulate cortex; CPu, caudate-putamen; DG, dentate gyrus of the hippocampus; DR, dorsal

raphe nucleus; Hipp, hippocampus; LMol, lacunosum moleculare field of the hippocampus; MEnt

Cx, Medial entorhinal cortex; MnR, median raphe nucleus; Mot Cx, motor cortex; N Acc, nucleus

accumbens; RS Cx, retrosplenial cortex; Sens Cx, somatosensory cortex; SN, substantia nigra;

SVZ, subventricular zone; Vis Cx, visual cortex; VTA, ventral tegmental area. Fisher’s test:

*p < 0.010, **p < 0.001, ***p < 0.0001, comparison between genotypes.
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Table 3 Density of 5-HT1A receptor in

brain of WT and STOP KO mice
Coronal level Area WT KO KO/WT (%)

Raphe RS Cx (6) 8.18 ± 0.31 (7) 8.18 ± 0.28 0

DR (6) 9.13 ± 1.07 (7) 15.53 ± 1.02 +70**

MnR (6) 8.77 ± 0.97 (7) 14.12 ± 1.19 +61*

MEnt Cx (6) 14.37 ± 0.93 (7) 15.16 ± 0.49 +6 ns

SN RS Cx (7) 6.18 ± 0.21 (6) 8.16 ± 0.18 +32**

Hipp (7) 20.57 ± 1.42 (6) 20.00 ± 0.55 )3 ns

CA1 (7) 29.25 ± 1.74 (6) 26.90 ± 1.59 )8 ns

DG (7) 12.65 ± 0.63 (6) 13.76 ± 0.76 +9 ns

LMol (7) 35.95 ± 3.59 (6) 30.05 ± 1.40 )15 ns

MEnt Cx (6) 9.04 ± 0.54 (6) 9.28 ± 0.34 +3 ns

Hippocampus RS Cx (6) 7.15 ± 0.35 (7) 7.00 ± 0.41 )2 ns

Hipp (7) 24.48 ± 0.82 (8) 23.14 ± 1.11 )5 ns

CA1 (6) 36.41 ± 0.79 (6) 36.07 ± 1.18 )1 ns

CA3 (6) 14.84 ± 0.69 (6) 12.64 ± 0.39 )15 ns

LMol (6) 36.54 ± 1.28 (6) 37.73 ± 0.59 +3 ns

BLA (6) 15.16 ± 0.83 (7) 15.34 ± 0.78 )1 ns

BMA (6) 14.42 ± 1.35 (7) 12.17 ± 1.44 )16 ns

Striatum Cg Cx (7) 10.00 ± 0.48 (8) 8.22 ± 0.24 )18*

lSept (7) 24.30 ± 1.30 (6) 24.36 ± 0.72 0

mSept (7) 28.44 ± 1.13 (6) 27.18 ± 0.0 )4 ns

Densities are the means ± SEM of specific autoradiographic [3H]WAY 100635 labelings in nCi/mg.

The total number of mice (quasi equal proportion of females and males) is indicated in paren-

theses. See Fig. 1 for the anteriority of the various coronal levels. BLA, basolateral amygdala;

BMA, basomedial amygdala; CA1–CA3, CA1, CA3 fields of Ammon’s horn in the hippocampus; Cg

Cx, cingulate cortex; DG, dentate gyrus of the hippocampus; DR, dorsal raphe nucleus; Hipp,

hippocampus; LMol, lacunosum moleculare field of the hippocampus; lSept, lateral septum; MEnt

Cx, Medial entorhinal cortex; MnR, median raphe nucleus; mSept, medial septum; RS Cx, retro-

splenial cortex. Fisher’s test: ns, non-significant, *p < 0.010, **p < 0.001, comparison between

genotypes.

Fig. 2 Electrophysiological effect of the 5-

HT1A autoreceptor agonist ipsapirone in

the dorsal raphe of WT and STOP KO male

mice. (a) Integrated firing rate histograms

(in spikes/10 s), with or without ipsapirone

at increasing concentrations. (b) Sponta-

neous firing rate in WT and STOP KO mice.

(c) Concentration-dependent inhibition by

ipsapirone of the firing of 5-HT neurons.

Inhibitions (means ± SEM of three WT and

four KO) are expressed as % of basal firing.

The dotted lines illustrate the determination

of the IC50 values. *p < 0.010 by the

Fisher’s test.
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the adult germinal zones, by b-galactosidase immuno-
staining present in the cytoplasmic/nuclear compartment
(Couegnas et al. 2007).

Expression of b-galactosidase in the granular layer of the
dentate gyrus of male heterozygous mice appeared mostly

in cells co-expressing the mature neuronal marker NeuN
(Fig. 4c-i,ii) and in cells positive for DCX located in the
molecular layer (probably corresponding to granule cells
starting integrating process). In contrast, neither immature
migrating neurons located in the SGZ (Fig. 4c-iii), nor

(a)

(b)

(c)

Fig. 3 Determination of the number of 5-

HT somas and of the density of 5-HT ter-

minals in WT vs. STOP KO male mice.

Serotonergic somas at the level of the dor-

sal and median raphe nuclei were immu-

nolabeled by antiserum against 5-HT or

TPH2. Terminals at the level of dentate

gyrus of the hippocampus and of cingulate

cortex were immunolabeled with an antise-

rum against SERT.

Table 4 5-HT soma number and terminal

density in brain areas of WT and STOP KO

mice

Area Antibody WT KO KO/WT (%)

Number of somas

Dorsal raphe Anti-5-HT (5) 372 ± 19 (5) 376 ± 21 +1 ns

Anti-TPH2 (5) 388 ± 24 (5) 375 ± 25 )3 ns

Median raphe Anti-5-HT (5) 119 ± 4 (5) 120 ± 3 +1 ns

Anti-TPH2 (5) 123 ± 7 (5) 132 ± 5 +7 ns

Fiber density (lm/lm2)

Dentate gyrus Anti-SERT (5) 0.068 ± 0.003 (5) 0.027 ± 0.004 )60*

Cingulate cortex Anti-SERT (5) 0.104 ± 0.006 (5) 0.035 ± 0.008 )66*

Data are the means ± SEM. The number of male mice is indicated in parentheses. Post hoc

Fisher’s test: ns, non-significant, *p < 0.001, comparison between genotypes.
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Mash1 positive cells, corresponding mainly to proliferating
cells (Parras et al. 2004), expressed b-galactosidase
(Fig. 4c-iv,v). These data showed that the STOP reporter
gene was absent in both progenitor and immature granule
cells and started to be expressed in mature granule cells
(Fig. 4c-vi).

Finally, we did not detect STOP expression in progenitors
or neuroblasts within the SVZ (not shown) and, surprisingly,
we did not detect STOP expression in granular and
periglomerular neurons within the olfactory bulb (Figure S3).

Anxiety- and depression-related behaviors of WT and STOP
KO mice
Using validated paradigms, we determined the anxiety- and
depression-like status of WT and STOP KO mice of both
genders in approximately equal proportion.

In the elevated plus-maze test (Fig. 5a), statistical analyses
showed no effect of gender and genotype on the total time
spent [F(1,45) = 0.53 and F(1,45) = 0.23, respectively] and the
number of entries [F(1,45) = 0.14 and F(1,45) = 3.33, respec-
tively] in the open + closed arms. However, significant

(a)

(b)

(c)
(i)

(iv) (v) (vi)

(ii) (iii) (iii′)

Fig. 4 Neurogenesis in the hippocampus of

adult WT and STOP KO male mice. (a) Left:

representative photograph of BrdU peroxi-

dase immunolabeled cells in the dentate

gyrus of WT and STOP KO mice. Inset

shows a cluster of BrdU positive cells.

Right: number (means ± SEM of nine WT

and six KO mice) of BrdU-positive cells in

the subgranular zone (SGZ) of the dentate

gyrus (coronal level: Bregma )1.22 to

)2.70). (b) Left: confocal imaging reveals

that BrdU positive (red) newborn cells in the

granular layer (GL) of dentate gyrus differ-

entiate into mature NeuN (green) neurons

(arrowhead). Right: number (means ± SEM

of four WT and four KO mice) of double

BrdU- and NeuN-positive cells in the gran-

ular layer (GL) of the dentate gyrus. (c)

Promoter STOP activity starts with granule

cells differentiation. A representative coro-

nal brain section from heterozygous STOP

mouse triple labeled for (i) b-galactosidase

(STOP promoter), (ii) NeuN (mature neu-

rons), (iii) doublecortin (DCX, immature

granule cells), or double immunolabeled for

(iv–v) b-galactosidase and Mash1 (progen-

itors). In (iii), the inset shows that only DCX

positive cells within the GL expressed b-

galactosidase. In (vi), schematic represen-

tation of markers expressed during the

granular cell development. Means ± SEM;

Fisher’s test: *p < 0.05.
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effects of gender and genotype (but not of gender · geno-
type) were seen on the percentage of time spent in the open
arms, on the percentage of entries into the open arms and on
the risk taking (see legend to Fig. 5a).

The time spent by STOP KO mice and their number of
entries in the open arms were significantly increased by 1.60-
(females: 1.43, males: 1.70) and 1.35-fold (females: 1.35,
males: 1.29) compared to WT mice, respectively. Further-
more, mutant mice displayed a 70% (females: 102%, males:
30%) increase in the risk-taking (number of head-dipping).

In the open field test (Fig. 5b), analyses of data showed no
significant effect of gender on all parameters tested
[F(1,41) = 0.10–3.06] and no effect of genotype on the total
length traveled [F(1,41) = 2.43] and on the rearing [F(1,41) =

2.39]. In contrast, the effect of genotype (but not of
gender · genotype) was significant on the time spent in the
center, on the number of visits in the central square and on
the number of boli (see legend to Fig. 5b).

The locomotor activity was 1.6-fold higher (although non-
significantly) in STOP KO than in WT mice, in agreement
with previous observations (Brun et al. 2005; Bouvrais-Veret
et al. 2007, 2008). In addition, the time spent and the number
of entries in the central square by mutant mice were 14-fold
and 9-fold higher than those of WT mice, respectively. In
contrast, the number of boli was significantly less ()37%) in
STOP KO mice.

The depression/helplessness-status of WT and STOP KO
mice was assessed in the tail suspension test. As

(a)

(b)

(c) (d)

Fig. 5 Anxiety- and depression-status of WT and STOP KO mice. (a)

Elevated plus maze test. Mice were tested for their time spent and

number of entries in the open and closed arms and for their numbers

of head-dipping (risk). Values are the means ± SEM for 11 females/15

males WT and 11 females/12 males STOP KO. Analyses showed

significant effects of gender and genotype on the percentage of time

spent in open arms [F(1,45) = 12.20, p = 0.0011, F(1,45) = 10.02,

p = 0.0028, respectively], on the percentage of entries into the open

arms [F(1,45) = 13.91, p = 0.0005, F(1,45) = 6.78, p = 0.0124, respec-

tively] and on the risk taking [F(1,45) = 8.31, p = 0.0060, F(1,45) = 11.03,

p = 0.0018, respectively]. (b) Open field test. Mice were tested for their

distance traveled, their time spent and number of visits in the central

square, as well as for their numbers of rearings and boli. Values are

the means ± SEM for 10 females/12 males WT and 12 females/11

males STOP KO. The effect of genotype was significant on the time

spent in the center [F(1,41) = 9.85, p = 0.0031], on the number of visits

in the central square [F(1,41) = 6.58, p = 0.014] and on the number of

boli [F(1,41) = 10.57, p = 0.0023]. (c) Tail suspension test. Thirty min-

utes after administration of saline or venlafaxine, mice were tested for

their immobility time. Means ± SEM for four to six mice per gender,

per genotype and per treatment. The effect of treatment and of the

interaction between treatment and genotype were significant [treat-

ment: F(2,50) = 11.16, p < 0.0001; treatment · genotype: F(2,50) = 3.85,

p = 0.0453]. (d) Comparison of locomotor performances of WT and

STOP mice in the running treadmill. Means ± SEM for six WT and six

STOP KO females. Post hoc Fisher’s test: *p < 0.05, **p < 0.010,

comparison between genotypes; ##p < 0.010; ###p < 0.001, com-

parison between treatment.
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preliminary data also showed decreased levels of norepi-
nephrine in forebrain areas of STOP KO mice (not shown),
venlafaxine, a mixed inhibitor of both 5-HT and norepi-
nephrine reuptake, was used in these experiments (Fig. 5c).
Analysis of data showed no significant effect of gender or
gender · genotype [F(1,50) = 3.23 and 0.07, respectively],
but a significant effect of treatment and of the interaction
between treatment and genotype were seen (see legend to
Fig. 5c).

The immobility time of saline-treated STOP KO mice
was significantly increased by 55% (p = 0.0151) as com-
pared to saline-treated WT mice. Moreover, venlafaxine
(5 mg/kg) significantly reduced ()54%, p = 0.0005), the
immobility time in mutant mice, but was ineffective in WT
mice.

The numerous falls of STOP KO mice from the open arms
in the elevated plus-maze and the involvement of serotonin
transmission in the locomotor function (Antri et al. 2003)
prompted us to evaluate the quality of locomotor movements
in these mutants compared to WT mice (Fig. 5d), using the
running treadmill locomotion test. Statistical analysis of
performance of WT and STOP KO females showed no
significant effect of genotype on the maximal speed and on
the motor performance, suggesting that STOP KO mice had
neither gross equilibrium deficit nor locomotor movement
impairment.

Discussion

Our data showed that the deletion of the STOP protein
triggered dramatic imbalance of the serotonin neurotrans-
mission in cell body vs. projection areas, with accumulation
of some key-proteins in the somas and decreased levels of
these proteins in terminals. The significant correlation
between SERT density decreases and 5-HT fiber length
suggested that the STOP deletion impaired either the axonal
transport of the SERT protein or the differentiation of 5-HT
fibers. These dysfunctions of the 5-HT system were probably
associated with altered performance of STOP KO mice in
tests assessing anxiety- and depression-like behaviors. In
addition, adult hippocampal neurogenesis was found to be
markedly less in STOP KO compared to WT mice,
potentially because of STOP deletion per se and 5-HT
neurotransmission peculiarities.

Accumulation of some markers at the level of the
serotonergic cell bodies
At the level of the serotonergic somas in STOP KO mice,
our data showed moderate increase in tissue 5-HT levels
and in vivo synthesis rate and sustained increases in the
serotonin transporter SERT and the 5-HT1A autoreceptor
densities. However, we did not detect significant differ-
ences in the number of 5-HT somas in anterior raphe
nuclei between mutant and WT mice. These results

suggest that the STOP deletion induced an accumulation
of 5-HT and serotonergic proteins in the cell bodies, rather
than a higher density of serotonergic somas. The increased
density of the 5-HT1A autoreceptors in STOP KO mice
was functional, as their agonist ipsapirone was more
efficacious to inhibit 5-HT neuron firing in the dorsal
raphe nucleus of mutant compared to WT mice. Such
increases in both the density and sensitivity of 5-HT1A
autoreceptors in mutant mice might be adaptive changes
compensating for a decreased in vivo concentration of
extracellular 5-HT. Indeed, SERT over-expression in the
raphe nuclei, which caused a marked increase in 5-HT
reuptake, should down-regulate extracellular 5-HT levels in
these mutants.

Decreased levels of some 5-HT proteins in the terminal
areas
In contrast to that observed at the 5-HT soma level, STOP
KO mice exhibited in all terminal regions, except in
dopaminergic cell body areas, marked decreases in tissue
5-HT levels and in vivo synthesis rate, associated with a 30–
90% decrease of SERT density, with no modification of post-
synaptic 5-HT1A receptor density. Such a decrease in
endogenous 5-HT level has been reported in brain of mice
lacking SERT (Bengel et al. 1998). The amplitude of SERT
decreases followed rostro-caudal and dorso-ventral gradients,
corresponding approximately to fiber lengths of 5-HT
widespread projections in forebrain areas (Azmitia and Segal
1978; Vertes 1991; Vertes et al. 1999). Interestingly, immu-
nostaining of 5-HT terminals revealed drastic decreases of
SERT positive fibers in both the anterior dentate gyrus and
the cingulate cortex of STOP KO mice. Whether these
decreases were because of a reduced SERT density per
terminal and/or a reduced number of 5-HTergic terminals
will be further explored. In the substantia nigra and the
ventral tegmental area, two dopaminergic cell body areas
highly innervated by 5-HT terminals, the imbalance of 5-HT
neurotransmission was intermediate between 5-HT somas
and terminals. Among the 5-HT parameters tested, only the
SERT density was significantly increased in mutant mice.
Whether this intermediate situation was selective for these
particular brain areas and/or was because of shorter 5-
HTergic afferences is a question to be addressed in further
investigations.

Why does deletion of the STOP protein affect more
selectively the 5-HT neurotransmission?
Most of the data obtained in our study support the idea that
the traffic of SERT (and perhaps of TPH2) was impaired in
the absence of the STOP protein. As both 5-HT1A auto- and
post-synaptic receptors are exclusively located in the
somatodendritic compartment (Verge et al. 1986; Carrel
et al. 2008), their increased density in the two raphe nuclei
could be because of increased synthesis and/or decreased
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degradation rather than to their accumulation via a defective
axonal transport. Moreover, the dramatic alterations of the 5-
HT markers in all the studied areas of STOP KO mice
contrasted with the restricted changes of the dopaminergic
(Brun et al. 2005; Bouvrais-Veret et al. 2008), glutamatergic
(Andrieux et al. 2002; Eastwood et al. 2007; Brenner et al.
2007 and our study in Appendix S1, Fig. S2) and nicotinic
(Bouvrais-Veret et al. 2007) neurotransmissions. One can
ask if the major impact of the STOP protein deletion on the
serotonergic transmission could be because of the trophic
role of serotonin and/or to its precocious appearance during
brain ontogenesis. Among cerebral monoamines, serotonin is
the neurotransmitter having the largest developmental impact
on cell division, neuronal migration, cell differentiation and
synaptogenesis. Furthermore, serotonergic neurons are
among the earliest neurons to be generated (at around E12,
Gaspar et al. 2003). In addition, SERT has been shown to be
transiently expressed in some brain areas (including cortex,
hippocampus and thalamus) during embryonic and early
postnatal development (Narboux-Neme et al. 2008). Further
investigations will have to be undertaken as, for example, the
quantification of SERT levels in STOP KO mice during
embryonic stages, before and after the STOP isoform
appearance (at around E16, Baratier et al. 2006). Finally,
the high variations of the density of SERT were probably in
line with its implication in neuropsychiatric phenotype
(Caspi et al. 2003; Ozaki et al. 2003).

The decreased hippocampal neurogenesis is rather
because of the STOP protein deletion
Altered performance of STOP KO mice in some cognitive
tests (Bouvrais-Veret et al. 2007; Powell et al. 2007; Begou
et al. 2008; Delotterie et al. 2009) and the relationships
between 5-HT neurotransmission, mechanisms of antide-
pressant action and hippocampal neurogenesis (David et al.
2009; Dranovsky and Hen 2006, but see Eisch et al. 2008)
led us to investigate cell proliferation and differentiation in
the hippocampus of these mutants. Our data showed that cell
proliferation and neurogenesis were altered in this brain area
but not in the SVZ of STOP KO mice. Because 5-HT-related
parameters were similarly altered in all forebrain areas, this
regional difference suggests that 5-HT dysfunction was most
probably not fully responsible for the neurogenesis deficit in
the hippocampus of STOP KO mice and/or that SERT may
not be a reliable marker of 5-HT terminals in mutant mice.
However, the strong correlation at the hippocampal level
between STOP protein expression in WT mice and the deficit
in neurogenesis in STOP KO mice suggested that STOP
could be a key protein for the differentiation and/or the
integration of newborn neurons in the pre-existing hippo-
campal network. Interestingly, such a direct effect on cell
differentiation and/or integration has already been demon-
strated for DISC1, another microtubule-related protein (Duan
et al. 2007).

The anxiety- and depression-related behaviors are
profoundly altered in STOP KO mice
Our behavioral studies showed that STOP KO mice were less
anxious and probably more depressed (to be confirmed by
other helplessness tests) than their WT littermates. Whether
these behavioral alterations were the consequence of an
imbalance of the serotonergic neurotransmission is an
interesting question to be addressed. Indeed, the precise role
of 5-HT tone in the control of emotional process is still a
matter of debate as 5-HT depletion in rodents produces
differential effects on their anxiety- and depression-like
status (Lucki 1998). It has been reported that serotonin
depletion or SERT surexpression is anxiolytic in mice
(Jennings et al. 2006; Bechtholt et al. 2007) and, conversely,
that the knockout of the 5-HT1A receptor increases the
anxiety-like status of mice (review of Leonardo and Hen
2006). On the other hand, mice lacking the SERT gene
exhibit increased anxiety and depression-like behaviors
(review of Murphy and Lesch 2008). In this study, we have
not characterized potential alterations of the GABAergic
neurotransmission and we cannot hypothetized if the
decreased anxiety of STOP KO mice was underlain by
GABAergic and/or serotonergic systems. Interestingly,
STOP KO mice were hypersensitive to the acute effect of
the antidepressant venlafaxine in the tail suspension test,
suggesting a lesser competition between venlafaxine and the
extracellular 5-HT level for binding to SERT and/or norepi-
nephrine binding onto its transporter. Finally, further in vivo
microdialysis studies will be undertaken to determine
whether such a serotonergic imbalance in mutant mice was
translated into hyper- or hyposerotonergia at the level of
somas and/or terminals.

Conclusion

Altogether, our data show that (i) the deletion of the
microtubule-associated protein STOP alters dramatically
the serotonergic network in agreement with previous data
on the interactions between MAPs and the serotonin
neurotransmission (Bianchi et al. 2005), (ii) STOP is a key
protein for the differentiation and/or the integration of
newborn neurons in mouse adult hippocampus and (iii)
STOP deletion triggers serotonergic disconnectivity, thereby
providing further etiological hypothesis for psychiatric
disorders such as depression and schizophrenia. Very inter-
estingly, the fact that the microtubule stabilizer, epothilone D,
can alleviate some deficits of STOP KO mice (Andrieux
et al. 2006) may support the idea that innovative treatments
of psychiatric diseases can target microtubules.
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