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2 Groupe Physiopathologie du Cytosquelette, Institut de Recherches en Technologies et Sciences pour le Vivant, Direction des Sciences du Vivant, Commissariat à
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Abstract

Ser172 of b tubulin is an important residue that is mutated in a human brain disease and phosphorylated by the cyclin-
dependent kinase Cdk1 in mammalian cells. To examine the role of this residue, we used the yeast S. cerevisiae as a model
and produced two different mutations (S172A and S172E) of the conserved Ser172 in the yeast b tubulin Tub2p. The two
mutants showed impaired cell growth on benomyl-containing medium and at cold temperatures, altered microtubule (MT)
dynamics, and altered nucleus positioning and segregation. When cytoplasmic MT effectors Dyn1p or Kar9p were deleted in
S172A and S172E mutants, cells were viable but presented increased ploidy. Furthermore, the two b tubulin mutations
exhibited synthetic lethal interactions with Bik1p, Bim1p or Kar3p, which are effectors of cytoplasmic and spindle MTs. In the
absence of Mad2p-dependent spindle checkpoint, both mutations are deleterious. These findings show the importance of
Ser172 for the correct function of both cytoplasmic and spindle MTs and for normal cell division.
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Introduction

In mammalian cells, as in the budding yeast Saccharomyces

cerevisiae, microtubules (MTs) form a dynamic network essential for

many cellular processes, including cell polarity, organelle posi-

tioning and cell division. During mitosis, the interphase MT

network rearranges to form a mitotic spindle responsible for

chromosome segregation between daughter cells. In mammalian

cells, during prophase and metaphase the nuclear envelope breaks

down while MTs contact kinetochores to form the spindle.

Budding yeast undergo a ‘closed mitosis’ during which the nuclear

envelope does not break down while MTs form an intranuclear

spindle [1]. Astral MTs, also called cytoplasmic MTs (cMTs), are

anchored by their minus ends on the cytoplasmic face of the

spindle pole bodies (SPBs) while their plus ends are oriented

towards the cell cortex.

Contacts between the cMTs and the cell cortex are primordial

for a correct positioning of the yeast mitotic nucleus at the neck

between mother and bud cells. This positioning of the nucleus will

eventually result in an accurate segregation of the genetic material

between the two cells [2,3,4]. In mammalian cells, astral MTs of

the mitotic spindle are also required to position the metaphase

plate where the cleavage furrow will take place [5,6,7].

Proper interactions between MTs and the cell cortex rely on

MT dynamic properties. MTs in all eukaryotic cells exhibit a

dynamic instability behavior, plus ends of MTs alternatively

undergoing phases of growth, shrinkage, and pause [8]. Transi-

tions from growth to shrinkage are called ‘catastrophes’, while

transitions from shrinkage to growth are called ‘rescues’. Intrinsic

dynamic properties of MTs are highly controlled in vivo by a

plethora of effectors [9,10,11,12]. Among these effectors, plus-end

tracking proteins (+TIPs) specifically accumulate at microtubule

plus ends and are conserved in all eukaryotes [7,12,13].

In the budding yeast, correct positioning of the nucleus during

mitosis depends on two independent genetic pathways involving

several +TIPs. One spindle positioning pathway, called the Kar9p

pathway, is active during metaphase and involves Kar9p, Bim1p

(which is related to EB1) and Myo2p (type V myosin) [2,14,15,16].

The other spindle positioning pathway, the dynein pathway, acts

at anaphase onset and involves Bik1p (homologous to CLIP170),

the kinesin-related Kip2p and the dynein heavy chain Dyn1p

[17,18]. One spindle positioning pathway can rescue the other,

but inactivation of both Kar9p and dynein pathways impairs

nuclear segregation and is lethal [14]. Likewise, in mammalian

cells, spindle positioning depends on +TIP-mediated interactions

of astral MTs with the cell cortex [5,6,7].

The building block of MTs, the tubulin dimer, is subjected to

post-translational modifications such as acetylation, detyrosination

or phosphorylation. While there is little evidence for a direct role

of these post-translational modifications in the regulation of MT
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dynamics, it seems now clear that these modifications mark

subpopulations of MTs and selectively affect downstream MT-

based functions [19]. In yeast for instance, we showed that

removal of the C-terminal aromatic residue of a tubulin disabled

the interaction of Bik1p with plus ends of MTs [20]. Failure of

Bik1p interaction with MT plus ends impaired spindle positioning

at bud neck and affected yeast mitosis. These experiments outlined

that the state of tubulin has profound consequences in vivo.

In this context, we found in mammalian cells that Cdk1, a key

enzyme for cell division, is able to directly phosphorylate b tubulin

on the Serine 172 residue [21]. Besides, this Ser172 residue has

been found mutated in a human neuronal pathology called

asymmetrical polymicrogyria, stressing the importance of this

amino acid in the normal function/conformation of b tubulin

[22].

Therefore, to get insights into the function of Ser172 in b
tubulin, we constructed S. cerevisiae yeast strains mutated on Ser172

in Tub2p. In mutant cells, mitosis was impaired and MT dynamics

were modified, with evidences for an abnormal function of +TIPs.

These results indicate that this site in b tubulin is crucial for

normal MT dynamics and cell division.

Results

Yeast as a cell model for the study of Ser172 in b tubulin
Ser172 of b tubulin is an important residue that is mutated in a

human brain disease and phosphorylated by the cyclin-dependent

kinase Cdk1 in mammalian cells. In order to detect whether yeast

b tubulin was phosphorylated on Ser172 as in mammals, we

purified yeast tubulin and analyzed it by HPLC-MS/MS. No

phospho-Ser172 peptide was detected using this technique (data

not shown). However, Ser172 phosphorylation in yeast is still

conceivable because even in mammals the phosphorylated tubulin

represents less than 1% of total b tubulin [21]. Thus, we have used

yeast and its unique TUB2 gene, as a model system to examine the

cellular consequences of Ser172 modification.

We constructed a tub2 mutant in which Ser172 was replaced by

a neutral Alanine, the tub2-S172A or SA mutant, and a mutant in

which Ser172 was replaced by a Glu residue to mimic

phosphorylation, the tub2-S172E or SE mutant. The strategy used

to obtain such mutants was as described in [23]. The aim of the

strategy was to insert a mutant tub2 gene copy (either SA or SE)

into its normal locus (see Materials and Methods, and Figure 1A

for partial amino-acid sequence of mutants). Wild type TUB2 cells

(WT cells) used in this study were constructed the same way, so

that mutant and WT cells share a common genotype except for

TUB2 sequences.

SA and SE strains are viable but exhibit benomyl
supersensitivity and growth defects

Both SA and SE mutant haploid cells were viable in normal

growth conditions (see Figure 1C, 30uC).

Supersensitivity to the microtubule depolymerizing drug benomyl

is often observed in tubulin mutants [23]. Sensitivity of WT, SA and

SE cells to benomyl was tested by spotting serial dilutions of cells

either on normal YPD plates (control) or on YPD plates containing

benomyl, and examining cell growth at 30uC (Figure 1B). Compared

to WT cells, growth of SA and SE mutant cells was impaired on

benomyl-containing medium, showing that both mutants were

benomyl-supersensitive, SE even more than the SA mutant.

The supersensitivity to benomyl could be concomitant with

cold-sensitivity [23]. Therefore, we examined cell growth of WT,

SA and SE cells at 30uC, 37uC or 10uC (Figure 1C). At 30uC and

37uC, the three strains exhibited similar growth. At 10uC however,

there were strong differences between strains: SA strain grew

better than WT strain while SE strain growth was dramatically

impaired (Figure 1C, 10uC). Thus, in SE strain, benomyl

supersensitivity was associated with cold sensitivity, but it was

not the case for SA strain. Such differences between SA and SE

strains at 10uC could reveal differences in microtubule properties

and in defects in the cell cycle (see below).

Defects in mitotic phase of the cell cycle
We then assayed which phase of the cell cycle was affected in the

growth defect at 10uC of mutant SE strain. Large-budded (mitotic

phase), small-budded (S/G2 phase) and unbudded (G1 phase) cells

were counted after 24 hour at 30uC or 10uC. At 10uC, SA and SE

strains exhibited an accumulation of cells with a large bud

(Figure 2A). Although SA strain was able to grow better than

WT cells at 10uC (Figure 1C), we observed a two-fold increase of

large-budded mitotic cells as compared to WT strain (32.1% vs.

16.2%, respectively, Figure 2A). Therefore, the accumulation of

mitotic cells for SA clones at 10uC did not impair growth capacities

of these clones. Accumulation of large-budded cells was much more

dramatic for SE strain (57.4%, Figure 2A), and was concomitant

with a strong impairment of growth at 10uC (Figure 1C). This result

suggested a mitotic block for SE cells at 10uC.

Defects in nuclear positioning and segregation during
mitotic phase

An accumulation of cells in mitotic phase could be correlated

with a default in nuclear positioning and/or a default in nuclear

division. Indeed, mitotic spindle must be correctly positioned at

the bud neck for anaphase onset to occur. Therefore, we counted,

for the different strains, nuclei number and position in large-

budded cells at 10uC (Figure 2B). An abnormal mitotic feature

with an undivided nucleus positioned far from the bud neck in the

mother cell was more frequent in SA and SE strains as compared

to WT strain (8% and 21% vs. 3%, respectively). This feature for

SA and SE cells could reflect a delay in anaphase onset due to

abnormal nucleus positioning. Furthermore, in 12% of SA large-

budded cells, two divided nuclei in the mother cell were observed.

Hence, in these cells, anaphase occurred, but in an incorrect

manner. This might reflect again a problem with the nucleus

positioning machinery.

Additionally, in large-budded SA and SE cells we observed a

general reduction in the number of cells with divided nuclei as

compared to WT cells (21+12 = 33% and 17+2 = 19% vs.

53+1 = 54%, respectively, Figure 2B), which may reflect defective

intra-nuclear spindle MT function.

Nuclear oscillations are impaired in pre-anaphase SA and
SE cells

The nucleus positioning machinery in pre-anaphase cells

depends on cytoplasmic MTs and involves nucleus oscillations

[18]. To observe these oscillations, WT, SA and SE cells were

transformed with a GFP-TUB1 construct, to label the pre-

anaphase intra-nuclear spindle in live cells (Figure 3A). Using

time-lapse microscopy, we could observe that the movement of

pre-anaphase spindle was reduced in SA (Figure 3A and

supplemental Video S1) and in SE strains (not shown). The travel

distance covered by the bud-directed SPB in pre-anaphase cells

was measured over a period of 15 to 30 min and results were

normalized in mm/min (Figure 3B). Results show a reduction of

approximately 50% in both mutant strains and clearly indicate a

defect in nuclear oscillations, most probably linked to defective

cMT functions.

Tubulin Ser172 Mutation
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Altered nucleation and/or elongation activities of cMTs in
preanaphase SA and SE cells

In order to visualize cMTs in living cells, the strains were

transformed with a BIK1-GFP construct. We observed an

overall reduction of the number of cMTs in pre-anaphase SA

cells as compared to WT cells or SE cells. To get a measure of

this phenotype, we scored the number of cMTs appearing

during a period of 15 min in SA, SE and WT cells (Figure 4 and

supplemental Video S2). This number was dramatically

reduced in SA cells whereas it was greatly enhanced in SE

cells as compared to WT cells (3.260.6 and 21.263.7 vs.

8.961.2 cMTs, respectively). These results indicate that both

mutants present altered nucleation and/or elongation of MT

seeds.

Figure 1. SA and SE cells are benomyl-supersensitive; SE cells are cold-sensitive. (A) Partial protein sequence of S. cerevisiae Tub2p (WT),
and Tub2p with S172A or S172E mutations (SA or SE mutants), aligned with human b1 tubulin sequence. (B) Growth at 30uC of sequential dilutions of
WT, SA and SE cells spotted on YPD media without benomyl (control) or containing 15 mg/ml of benomyl. (C) Measurement of optical density (OD) at
600 nm of cultures of 2 clones of WT, SA and SE cells in liquid YPD during several hours at 30uC or 37uC, or during several days at 10uC. Values are
mean 6 SEM.
doi:10.1371/journal.pone.0013553.g001

Tubulin Ser172 Mutation
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Cytoplasmic MTs in SA and SE mutants exhibit altered
dynamics

In order to measure bud-directed cMT dynamic parameters,

BIK1-3GFP and GFP-TUB1 were integrated in WT, SA and SE

strains and time-lapse microscopy was performed. Results are

presented in Table 1 and significant differences between strains in

Figure 5.

When comparing SA cells with WT cells, we observed

significant differences in event durations: growth and shrinkage

mean durations were lower in SA cells, but pause mean duration

was higher (Figure 5B). Consistently, SA cMTs spent a reduced

total time in growing or shrinking and an increased total time in

pausing as compared to WT cMTs (Figure 5D). As a consequence,

length changes during growth or shrinkage were reduced in SA

strain (Figure 5C), and cMT mean life time was augmented

(Figure 5E). Hence, cMTs in SA cells are less dynamic.

In SE cells, mean durations of growth, shrinkage and pause

were very similar to those observed in WT cells (Figure 5B).

However, total time spent pausing by cMTs was lower in SE cells

than in WT cells, while time spent shrinking was augmented in SE

cells (Figure 5D). Also, catastrophe and rescue frequencies were

enhanced in SE cells (Figure 5A). Hence, cMTs in pre-anaphase

SE cells are more dynamic than cMTs in WT cells.

In conclusion, results presented in Figures 4 and 5 show altered

properties of bud-directed cMTs in both SE and SA mutant

strains: SA mutation reduces the number and dynamics of cMTs

whereas the phospho-mimetic SE mutation increases both the

number and dynamics of cMTs. Altogether, these results indicate

that normal dynamics of cMTs in yeast cells rely on the b tubulin

Ser172 residue, which might be regulated by phosphorylation. As

cMT dynamics are tightly controlled by MT effectors, it is worth

testing the functionality of MT effectors in mutant strains.

Ser172 mutations impair normal function of microtubule
effectors

In order to test MT effectors, we chose to investigate synthetic

lethal interactions of WT, SA or SE strains with strains deleted in

DYN1, BIK1, BIM1, KAR9 or KAR3. Bim1p and Kar9p belong to

the Kar9p pathway for pre-anaphase spindle positioning at the

bud neck, while Dyn1p and Bik1p belong to the Dyn1p pathway.

Besides, Bik1p, Bim1p, and the minus-end directed motor Kar3p

have been shown to have important functions in the regulation of

spindle MTs [24,25,26,27].

One remarkable result of these synthetic lethal interactions is

that neither the SA nor the SE mutation is lethal when combined

with dyn1D or kar9D deletions (Table 2). Thus, the observed defects

of SA and SE strains in nuclear positioning and oscillations

(Figures 2 and 3) are probably based on a partial alteration of both

Dyn1p and Kar9p pathways. In this case, SA or SE mutation

should worsen KAR9 or DYN1 deletion phenotypes. We thus

analyzed mitotic features of SA, kar9D, dyn1D, SA/kar9D and SA/

dyn1D strains at 10uC (Figure 6). Mitotic SA, kar9D and dyn1D cells

exhibited abnormal features with either a nucleus improperly

located (20%, 41%, 13%, respectively) or two nuclei in the mother

cell (16%, 10% and 47%, respectively). Furthermore, the SA

mutation worsened the kar9D phenotype with the apparition of

polyploid cells (11%) in SA/kar9D double mutant strain. In double

mutants SA/dyn1D, mitotic polyploid cells (19%) were also

observed (Figure 6).

In conclusion, double mutants SA/dyn1D and SA/kar9D
exhibited many errors in nuclear positioning and nuclear

segregation, with the apparition of polyploid cells. Thus, Ser172

residue in b tubulin appears important for a normal function of

Dyn1p and Kar9p pathways at the mitotic stage in yeast cells.

Additionally and very interestingly, SA and SE mutations which

are not synthetic lethal with deletion of KAR9 or DYN1 are

synthetic lethal with deletions of other components of the two

pathways, namely BIK1 and BIM1 (Table 2). Thus, another

function of Bik1p and Bim1p than spindle positioning is

responsible for this lethality. Moreover, synthetic lethality is also

observed with Kar3D deletion. Because the three proteins, Bik1p,

Bim1p and Kar3p, are known to act on kinetochores and

interpolar MTs [24,25,26,27], the observed synthetic lethality

with SA and SE mutations indicate that b tubulin Ser172 may

have a vital function inside the spindle.

To check the integrity of the mitotic spindle in mutant strains,

SA, SE and WT cells were mated with MAD2 deleted cells. Mad2p

is a component of the spindle assembly checkpoint [28]. When it is

deleted, cells can bypass the spindle assembly checkpoint and enter

anaphase. If the spindle is normal, the bypass of the checkpoint has

no consequence on cell viability. But, if the spindle exhibit defaults,

the bypass of the checkpoint induces an accumulation of damages

at each cell cycle, impairing overall cell viability. We found that

SA and SE cells were synthetic sick with the deletion of MAD2

(Table 2). Therefore, the two mutations SA and SE affect the

spindle, and, in the absence of the checkpoint, give rise to small

colonies.

Figure 2. At the restrictive temperature of 10uC, SE cells
undergo a mitotic block, and nuclei are mis-located and mis-
segregated in mitotic SA and SE cells. (A, B) WT, SA, and SE diploid
cells grown overnight in liquid medium at 30uC were either counted or
shifted at 10uC for 24 h before counting. For each condition tested, 300
to 400 cells from 2 independent clones were scored. (A) Large-budded,
M, small-budded, S/G2, and unbudded, G1 cells were scored. Percent of
cells in M phase was significantly different in SA and SE strains as
compared to WT strain. *** p,0.001, x2 test comparisons. (B) Nuclei of
cells were stained with Hoechst. The percentages of four types of
nuclear morphology in large-budded mitotic cells are indicated: an
undivided nucleus in one cell body, an undivided nucleus at the bud
neck, divided nuclei properly segregated into each cell body, and
divided nuclei both located in one cell body. Distributions were
significantly different in SA and SE cells as compared to WT cells:
p,0.001 using x2 test comparisons.
doi:10.1371/journal.pone.0013553.g002

Tubulin Ser172 Mutation
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Discussion

We showed previously in mammalian cells that b tubulin Ser172 is

phosphorylated during mitosis by the cyclin-dependent kinase Cdk1

[21]. The aim of the present study was to challenge the importance

of the b tubulin Ser172 residue in cell physiology using the yeast S.

cerevisiae. Although Ser172 phosphorylation in yeast has not been

detected yet, we demonstrate that mutation of the Ser172 residue

(replaced either by an Alanine or a Glutamic Acid) has profound

effects on microtubule properties and on cell cycle parameters.

Figure 3. Nuclear movements are inhibited in SA and SE cells prior to anaphase. WT, SA and SE cells were transformed with a plasmid
expressing GFP-Tub1p, and were analyzed by time-lapse microscopy. (A) Representative WT and SA pre-anaphase cells for which the bud-directed
SPB was tracked at each time point of the time-lapse experiment. The track is overlaid in red on an image of the movie. Scale bar, 3 mm. Movies
available in supplementary Figure S1. (B) Measurement of the travel distance covered by the bud-directed SPB in pre-anaphase cells over a period of
15–30 min (results are normalized in mm/min). Comparing to WT strain, spindle movements were reduced in both mutant strains. Number of analyzed
cells: WT, n = 19; SA, n = 15; SE, n = 17. Error bars are SEM. ** p,0.01, *** p,0.001, t test comparisons of mutant cells vs. WT cells.
doi:10.1371/journal.pone.0013553.g003

Tubulin Ser172 Mutation

PLoS ONE | www.plosone.org 5 October 2010 | Volume 5 | Issue 10 | e13553



At 30uC, yeast mutant cells are viable and exhibit both

intranuclear and cytoplasmic MTs demonstrating their ability to

assemble mutant SA or SE b tubulin. Such result was surprising in

the case of the SE mutant, because mammalian cells expressing a

mutant S172D or S172E b tubulin were only poorly able to

incorporate this mutant tubulin in their MTs [21]. The major

difference between the two studies is that yeast mutant cells

express tub2-S172E as their unique source of b tubulin, while in

mammalian cells, the mutant S172E b tubulin was expressed

among normal b tubulin isoforms. The SE yeast strain was

supersensitive to benomyl and was cold-sensitive. Therefore in

yeast, MTs could incorporate tub2-S172E b tubulin but they most

probably present structural alterations.

Cytoplasmic MTs of SA and SE mutant cells, at 10uC, show

disturbed functions: SE strain has a large number of abnormal

mitotic cells with a nucleus improperly located away from the

Figure 4. Nucleation and/or elongation activities of cMTs are modified in SA and SE cells. WT, SA and SE cells were transformed with a
plasmid expressing Bik1p-GFP, and were analyzed by time-lapse microscopy. (A) Representative WT, SA and SE pre-anaphase cells for which the plus-
end of each cMT was tracked at each time point of the time-lapse experiment. Tracks are overlaid on an image of the movie. Scale bar, 3 mm. Movies
are available in supplementary Figure S2. (B) The number of cMTs that appeared in 15 min in pre-anaphase cells was counted. Comparing to WT cells,
this number was reduced in SA cells, but was greatly increased in SE cells. Number of analyzed cells: WT, n = 10; SA, n = 11; SE, n = 11; error bars are
SEM. ** p,0.01, *** p,0.001, t test comparisons of mutant cells vs. WT cells.
doi:10.1371/journal.pone.0013553.g004

Tubulin Ser172 Mutation
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mother-bud neck, and many SA mitotic cells show two nuclei in

the mother cell. Thus, in the two mutants, the nucleus positioning

machinery is impaired as also confirmed by the observed

inhibition of nuclear oscillations. Mechanistically, the nucleus

positioning machinery relies on two spindle positioning pathways

before anaphase: the Kar9p pathway (Kar9p/Bim1p/Myo2p) and

the dynein pathway (Dyn1p/Bik1p/Kip2p). Our synthetic inter-

action studies suggest that SA and SE mutations affect partially

both dynein and Kar9p pathways, maybe by affecting the

association of cMTs with specific effectors of each pathway.

Effectors of both pathways are targeted by the Cdk1/Cdc28p

kinase. In complex with the mitotic cyclins Clb4p and Clb5p,

Cdc28p phosphorylates Kar9p, conferring tight spatial control of

Kar9p to the bud-cell-bound SPB, and promoting asymmetric

Kar9p transport to cMT plus-ends in the bud [29,30,31,32]. Also,

the late mitotic cyclins Clb1p and Clb2p regulate the preferential

Dyn1p distribution to bud-directed SPB and cMTs [33]. Hence,

Cdk1/Cdc28p seems to play a very general role in the spatial

control of mitotic events. A putative phosphorylation of b tubulin

on Ser172 by Cdk1/Cdc28p might be part of this control.

Intranuclear spindle MTs are also affected in SA and SE

mutants. At 10uC, mutant strains exhibit a low proportion of

mitotic cells with divided nuclei, indicating that anaphase does not

readily occur. Furthermore, deletion of BIK1, BIM1 or KAR3 in

SA or SE cells is lethal. Bik1p, Bim1p and Kar3p have important

roles in regulating kinetochore MTs and interpolar MTs in the

spindle [24,25,26,27] and the Ser172 mutations appears to be

detrimental to this function. Corroborating the view that spindle

function is abnormal in mutant cells, SA and SE mutants become

synthetic sick when mated with cells deleted for Mad2p, an

effector of the spindle assembly checkpoint. It is known that

interference with MT dynamics activates the checkpoint [28]. In

SA and SE cells, MT dynamics are altered and, as expected, the

checkpoint appears to be active, as revealed by the deleterious

effect of MAD2 deletion.

In yeast cells, the effects of two other b tubulin mutations

surrounding the Ser172 residue have been studied. The first one,

tub2-429, is a double mutation tub2-K174A/D177A [23], where

K174A is located within the putative S172PK phosphorylation

consensus site. The tub2-429 mutant shares common traits with

S172 tubulin SA and SE mutants: i) it is viable at normal growth

temperature but exhibits benomyl-supersensitivity and cold-

sensitivity and ii) at 12uC, it is arrested in its cell cycle as large-

budded cells with undivided nuclei [23]. The second mutation

very close to Ser172 was on Val 169, which is supposed to interact

with GTP [34]. The tub2-V169A strain exhibits substantial

changes in both cytoplasmic and kinetochore MT dynamics.

Furthermore, this strain grows slowly, and pre-anaphase cells

contain a high proportion of monopolar chromosomes attached to

only one spindle pole [34]. In any case, it seems that the region

surrounding Ser172 is crucial for the MT functions via GTP

binding, tubulin conformation [22] or tubulin phosphorylation

[21].

In conclusion, our model mutants showed that the Ser172 site,

phosphorylated or not, is of primary importance for spindle

machinery and cell mitosis.

Materials and Methods

Yeast strains and plasmids
The S. cerevisiae strains and plasmids used in this study are listed

in Table 3. The S172A (SA) and S172E (SE) mutations were

obtained by directed mutagenesis on the TUB2 gene carried by the

pRR190 plasmid [23], using the QuickChange kit (Stratagene, La

Jolla, CA) and according to manufacturer’s instructions. Codon

replacement were TCT172GCT for SA mutation and

TCT172GAA for SE mutation. For WT control, intact pRR190

was used. WT, SA and SE haploid yeast strains were obtained as

described in [23]. Briefly, pRR190 plasmid or mutagenized

pRR190 plasmid was linearized and integrated in the CUY409

diploid strain at the tub2-D1::LEU2/TUB2 locus. Ura+Leu-

diploid transformants were then sporulated and dissected to

obtain WT, SA or SE haploid Ura+ cells. The sequence of

integrated TUB2 (WT) or tub2 (SA or SE) genes was checked after

PCR amplification of a 1.8 kb genomic DNA fragment containing

the TUB2 gene (primers used for PCR amplification were as in

[23]). Homozygous diploid strains were obtained by crossing

haploid strains of identical genotype.

WT, SA and SE cells with integrated BIK1-3GFP and GFP-

TUB1 were obtained as follow: TUB2-HIS3 haploid cells issued

Table 1. Dynamics of bud-directed cMTs in pre-anaphase cells.

WT SA SE

Growth rate (mm/min) 0.5660.02 (425) 0.6360.02 (307) 0.6160.02 (277)

Shrinkage rate (mm/min) 0.5760.03 (380) 0.6360.04 (284) 0.6560.05 (273)

Catastrophe frequency (events/sec) 0.047260.0031 (354) 0.04876 0.0039 (272) 0.059960.0065 (247)

Rescue frequency (events/sec) 0.050560.0040 (375) 0.051660.0040 (292) 0.068660.0072 (239)

Growth duration (min) 0.1660.006 (425) 0.1260.004 (307) 0.1560.006 (277)

Shrinkage duration (min) 0.1660.008 (380) 0.1260.005 (284) 0.1560.008 (273)

Pause duration (min) 0.2060.007 (328) 0.2660.012 (228) 0.2260.010 (178)

Length change during growth (mm) 0.07060.002 (425) 0.05960.001 (307) 0.07360.002 (277)

Length change during shrinkage (mm) 0.07760.003 (380) 0.06060.002 (284) 0.07860.003 (273)

Time spent in growth (%) 3561.7 (425) 2761.6 (307) 3662.1 (277)

Time spent in shrinkage (%) 3161.5 (380) 2661.6 (284) 3762.2 (273)

Time spent in pause (%) 3361.8 (328) 4662.4 (228) 2362.3 (178)

Life time (sec) 13168 (94) 184612 (43) 11269 (68)

Time lapse sequences lasting a total of 11,945 sec for WT cells; 7,763 sec for SA cells; and 7,375 sec for SE cells were analyzed. Results are average values 6 SEM. Values
in parentheses are the number of events, except for life time for which values in parentheses are the number of MTs.
doi:10.1371/journal.pone.0013553.t001
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from the sporulation of CUY409 diploid strain, were transformed

with integrating pAFS125 [35]. Ura+His+ transformants were then

crossed with WT, SA or SE haploid cells containing integrated

BIK1-3GFP (pFC1), and diploids were sporulated and dissected.

Non parental Ura+ ditypes were selected and checked by

fluorescence for Bik1p-3GFP and GFP-Tub1p expression. Se-

quence of TUB2, tub2-S172A and tub2-S172E in these clones was

verified by PCR as above.

Cell growth and cytological analyses
For growth tests on plates, fresh overnight cultures of WT, SA

and SE cells (2 different haploid clones for each strain) were tested

for their OD600 and serial dilutions were spotted on YPD plates

containing, or not, 15 mg/mL benomyl. Plates were incubated for

2 days at 30uC. For evaluation of cell growth in liquid medium,

fresh cultures were diluted to OD600 = 0.1, and cultured for

several hours at 30uC or 37uC, or several days at 10uC. Every

growth test was done with 2 independent clones. Cell morphol-

ogies were analyzed on diploid homozygous cells by counting

different types of cells (unbudded, small-budded, and large-

budded) under a light microscope. For small-budded cells, we

counted cells with a bud size smaller to L of mother size. For

large-budded cells, we counted cells with a bud size equal or larger

than L of mother size. The positions and the number of nuclei in

large-budded cells were determined by staining with Hoechst

33258 (Sigma) as described [36]. The same experiments were

performed with haploid cells issued from the dissections of spores

of the synthetic lethality studies (Figure 6).

Synthetic lethal interactions
Haploid WT, SA or SE cells were crossed with dyn1D, bik1D,

kar9D, bim1D, kar3D or mad2D deletion strains from Euroscarf

Figure 5. Bud-directed cMT dynamics in WT, SA and SE cells. Values are taken from Table 1 and only data for which significant differences
between a mutant strain and the WT strain were found were represented here. (A) Frequencies of catastrophes and rescues, (B) growth, shrinkage
and pause mean durations, (C) mean length change during growth and shrinkage, (D) total time spent while growing, shrinking and pausing, and (E)
mean life time. Comparing to WT cells, many parameters of cMT dynamics varied in mutant cells, with SA cMTs behaving very differently from SE
cMTs. Error bars are SEM. * p,0.05, ** p,0.01, *** p,0.001, t test comparisons of mutant cells vs. WT cells.
doi:10.1371/journal.pone.0013553.g005
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(Table 3). Diploid cells were sporulated and tetrads were dissected

with an Axiolab micromanipulator (Zeiss), using standard

procedures [36]. After germination, spores were replica-plated

on selective media to check for the growth of double-mutant

spores (Table 2).

Time-lapse microscopy, measurement of MT dynamics
and image analysis

Time-lapse sequences were collected on living yeast cells kept

at 30uC using a Zeiss Axiovert microscope equipped with a

Coolsnap ES CCD camera (Ropper Scientific) and controlled by

Metamorph software (Universal Imaging). Five focal planes

separated by 0.5 mm were taken at every time point using a

piezoelectric motor. To assess nuclear (spindle) movement,

images of yeast cells expressing GFP-Tub1p were taken at 30

sec intervals for a total of 60 min, with an exposure time of 500

msec at each focal plane. To examine nucleation and/or

elongation activity, images of yeast cells expressing Bik1p-GFP

were taken at 10 sec intervals for a total of 15 min, with an

exposure time of 500 msec at each focal plane. To measure

parameters of dynamic instability, images of yeast cells with

integrated GFP-TUB1 and BIK1-3GFP were taken at 3.5 sec

intervals for a total of 5–10 min, with an exposure time of 600

msec at each focal plane. Tracking of the nuclear position in the

cell and tracking of cMTs was performed using Metamorph

software. For MT dynamics measurements, MT length at each

time point was measured manually on maximal projections and

dynamics parameters were calculated as described in [37], using a

home-made Visual Basic macro embedded in a Microsoft Excel

datasheet (code available on request).

Statistics
All statistics presented were performed using Prism 4.0

(GraphPad, San Diego, USA).

Table 2. Synthetic lethal interactions.

WT SA SE

predicted obtained viable predicted obtained viable predicted obtained viable

kar9D 11 10 Yes 10 10 Yes 11 8 Yes

dyn1D 11 11 Yes 10 10 Yes 14 12 Yes

bik1D 15 14 Yes 13 0 No 7 0 No

bim1D 10 9 Yes 8 0 No 8 1 No

kar3D 9 7 Yes 11 1 No 10 0 No

mad2D 25 25 Yes 41 36 (31 small) Sick 45 44 (25 small) Sick

WT, SA or SE haploid cells were crossed with dyn1D, bik1D, kar9D, bim1D, kar3D and mad2D haploid cells. Crossed diploid cells were sporulated and dissected to assess
the viability of resulting haploid double-mutant spores. Double-mutant spores viable and forming a colony was counted as ‘‘obtained’’, and counts of ‘‘obtained’’ were
compared to ‘‘predicted’’ double-mutant spores. Results are: Viable (Yes) when ‘‘obtained’’ was equal or nearly equal to ‘‘predicted’’; Synthetic Lethal (No) when no
‘‘predicted’’ double-mutant colony was ‘‘obtained’’, and Synthetic Sick (Sick) when most obtained double-mutant colonies are of small size.
doi:10.1371/journal.pone.0013553.t002

Figure 6. SA mutation worsens kar9D or dyn1D deletion phenotypes, with a number of double-mutant mitotic cells exhibiting
polyploidy. SA, kar9D, dyn1D simple mutant cells or SA/kar9D and SA/dyn1D double mutant cells, were grown in liquid medium overnight at 30uC
and shifted for 24 h at 10uC. Cells were then fixed, nuclei stained with Hoechst and nuclear number and position in large-budded mitotic cells were
scored. Results are presented as percentages of a total of 400 mitotic cells from 2 independent clones, for each condition tested. Only abnormal
mitotic patterns are shown in the graph. Error bars are SEM.
doi:10.1371/journal.pone.0013553.g006
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Supporting Information

Video S1 Spindle movements are reduced in SA cells as

compared to WT cells. WT and SA cells were transformed with

a plasmid expressing GFP-Tub1p to label spindle MTs and were

analyzed by time-lapse microscopy for 60 min at 30 sec intervals.

Spindle movements through the bud neck were reduced in SA

cells (right). Bar, 3 mm.

Found at: doi:10.1371/journal.pone.0013553.s001 (1.58 MB

MOV)

Video S2 Nucleation and/or elongation activities are reduced in

SA cells and enhanced in SE cells. WT, SA and SE cells were

transformed with a plasmid expressing Bik1p-GFP to label both

spindle and cytoplasmic MTs, and were analyzed by time-lapse

microscopy for 15 min at 10 sec intervals. Compared to WT cells

(left), cytoplasmic MTs appearing in 15 min were less numerous in

SA cells (middle) and more numerous in SE cells (right). Bar,

3 mm.

Found at: doi:10.1371/journal.pone.0013553.s002 (2.06 MB

MOV)
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