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(1) The AMP-activated protein kinase (AMPK) is an evolutionary conserved serine/threonine 

protein kinase that functions as a major regulator of cellular and whole-body energy 

homeostasis coordinating multiple metabolic pathways to adapt cellular processes to the 

energy status. AMPK is an heterotrimeric complex composed of one catalytic () and 

two regulatory subunits ( and ). AMPK activation requires phosphorylation on Thr172 

within the activation loop of the catalytic -subunit by upstream kinase, identified as the 

liver kinase B1 (LKB1). 

 

(2) AMPK is activated in response to a variety of physiological processes and pathological 

stresses that typically change the cellular AMP/ATP ratio caused by increasing ATP 

consumption or reducing ATP production. Activated AMPK switches cells from an 

anabolic to a catabolic state, shutting down the ATP-consuming synthetic pathways and 

initiating ATP-producing pathway to restore energy balance. In addition, adipokines such 

as adiponectin and resistin, that regulates whole-body energy balance, may also affect 

hepatic AMPK activity and could contribute to the fed-to-fasted transition from 

anabolism to catabolism in the liver [1]. 

 

(3) As well as responding to metabolic stresses, AMPK is activated by various 

pharmacological and phytochemical products including the antidiabetic drug metformin, 

AICAR and resveratrol. Recent evidence confirms that these compounds behave as 

indirect AMPK activators by causing a mild impairment of ATP synthesis [2-4]. 

Intriguingly, AMPK is dispensable for the effects of metformin and AICAR on hepatic 

gluconeogenesis, acting directly by reducing energy charge through inhibition of the 

respiratory-chain complex I [2, 3]. 

 

(4) AMPK controls the fate of fatty acids by reducing intracellular malonyl-CoA content 

which is both a critical precursor for biosynthesis of fatty acids and a potent inhibitor of 

mitochondrial fatty acid oxidation via the allosteric regulation of carnitine 

palmitoyltransferase 1 (CPT1) which catalyzes the entry of long-chain fatty acyl-CoA 

into mitochondria. AMPK phosphorylates and inhibits acetyl-CoA carboxylase (ACC) 

and increases malonyl-CoA decarboxylase (MCD) activity resulting in lower malonyl-

CoA levels and therefore promoting mitochondrial -oxidation while simultaneously 

suppressing fatty acid synthesis. The activity of glycerol-3-phosphate acyltransferase 
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(GPAT), the first committed step in triacylglycerol synthesis, is also regulated by AMPK 

activation. The cholesterol biosynthesis is controlled by AMPK through direct 

phosphorylation and inhibition of the rate limiting enzyme 3-hydroxy-3-methylglutaryl-

coenzyme A (HMG-CoA) reductase [1]. 

 

(5) Although the action of AMPK is achieved by rapid and direct phosphorylation of key 

metabolic enzymes, long-term effects have been clearly demonstrated on the expression 

of a number of gene sets. AMPK promotes the induction of the transcriptional 

mitochondrial gene program and the inhibition of lipogenesis gene expression by direct 

phosphorylation of transcription factors and co-activators [1, 3, 5]. Interestingly, AMPK 

influences the NAD
+
-dependent SIRT1 deacetylase activity by modulation of NAD+ 

levels following induction of fatty acid oxidation and thus may indirectly modulate the 

acetylation and activity of certain trancriptional regulators in addition to direct 

phosphorylation events [6]. AMPK phosphorylates the transcriptional coactivator 

peroxisome proliferator-activated receptor- coactivator-1  (PGC-1 ), which controls 

the expression of multiple transcription factors to induce mitochondrial biogenesis, and 

results in greater mitochondrial oxidative capacity by increasing PGC1- expression and 

activation through PGC1- promoter autoregulation and SIRT1-mediated deacetylation, 

respectively [6, 7]. AMPK participates in the regulation of lipogenesis gene expression 

by phosphorylation of the carbohydrate response element binding protein (ChREBP), 

reducing its DNA binding capacity and nuclear translocation, and down-regulating sterol 

regulatory element-binding protein-1c (SREBP-1c) gene expression and stability 

probably through SIRT1-dependent deacetylation [1, 5]. Lastly, the phosphorylation of 

CREB-regulated transcription coactivator 2 (CRTC2) by AMPK promotes CRTC2 

binding to 14-3-3 proteins in the cytoplasm and prevents its translocation to the nucleus, 

thereby reducing CREB-dependent expression of the gluconeogenesis genes [1], although 

this effect was recently challenged [2]. 

 

(6) AMPK activation also inhibits other ATP-consuming anabolic pathways such as protein 

synthesis. This occurs by multiple mechanisms including inhibition of the mTOR/S6K1 

pathway, that stimulates translational initiation, through sequential phosphorylation of the 

TSC2 tumor suppressor by the kinases AMPK and GSK3 as well as AMPK-dependent 

phosphorylation of the critical mTOR-binding subunit raptor [8] and activation of eEF2 

kinase which inhibits the elongation step. 

 

(7) Under nutrient starvation, the liver initiates the process of autophagy (lysosomal 

breakdown of cellular proteins and organelles) to provide amino acids for 

gluconeogenesis. Recent evidence indicates that AMPK is required for autophagy in 

hepatocyte, revealing a direct connection between energy status and autophagy initiation 

[9]. 

 

(8) The mTOR/S6K1 pathway exerts a negative feedback loop on insulin signaling promoting 

insulin resistance via inhibitory serine phosphorylation of
 

IRS1. Pharmacologic 

enhancement of AMPK activity has been shown to improve insulin sensitivity and 

AMPK-induced inhibition of the mTORC1/S6K1
 
pathway may alleviate hepatic insulin 

resistance. Additionally, AMPK activation may also modulate insulin's metabolic action 

by increasing fatty acid oxidation, thereby reducing hepatic lipotoxicity and insulin 

resistance [5, 10]. Therefore, the efficacy of AMPK activation to reverse many metabolic 

disorders has provided the rationale for the development of new pharmacological but also 

nutritional AMPK activators. 
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