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Turning Tangent Empirical Mode Decomposition: a
framework for mono- and multivariate signals

Julien Fleureau, Jean-Claude Nunes, Amar Kachenoura, Laurent Albera,Member, IEEE,
and Lotfi Senhadji,Senior Member, IEEE

Abstract—A novel Empirical Mode Decomposition (EMD) al-
gorithm, called 2T-EMD, for both mono- and multivariate signals
is proposed in this paper. It differs from the other approaches
by its computational lightness and its algorithmic simplicity. The
method is essentially based on a redefinition of the signal mean
envelope, computed thanks to new characteristic points, which
offers the possibility to decompose multivariate signals without
any projection. The scope of application of the novel algorithm
is specified, and a comparison of the 2T-EMD technique with
classical methods is performed on various simulated mono- and
multivariate signals. The monovariate behaviour of the proposed
method on noisy signals is then validated by decomposing a
fractional Gaussian noise and an application to real life EEG
data is finally presented.

Index Terms—Mono- and Multivariate Empirical Mode De-
composition, Intrinsic Mode functions, Analysis of non-linear and
non-stationary signals, Hurst exponent estimation, Extrema and
barycenters of oscillation, Filter bank structure, EEG denoising,
Time varying representation.

I. I NTRODUCTION

EMpirical Mode Decomposition (EMD) was originally
introduced in the late 1990’s to study water surface wave

evolution [1]. The EMD can be considered as an emerging
technique in signal processing with a very important topic of
research and development in various fields such as biomedical
signal analysis [2], Hurst exponent estimation [3], speech pro-
cessing [4], texture analysis [5], etc. It decomposes adaptively
a given signal,s, into a sum ofN AM-FM components,
dn (referred to as the Intrinsic Mode Functions, IMFs), plus
a residueaN . An IMF is defined [1] as a locally centered
function where the number of extrema and the number of
zero-crossings must differ at most by one. More precisely,
for a given signals = a0, the EMD sequentially computes
the N IMFs dn, andN corresponding trendsan, such that
an−1=an+dn. The EMD key issue is then the extraction of the
N IMFs dn. In practice, such a signal is obtained by stopping
a so-calledsifting process, using a Cauchy-like criterion [6].
If k denotes the number of iteration in the sifting process, the
so-called sifting process can be summarized as follows:

1) Initialization with dn,0 = an−1.
.
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2) Computation of the mean envelopeM(dn,k).
3) Extraction of the detaildn,k+1 = dn,k −M(dn,k).
4) Incrementation ofk and return to step2 if dn,k+1 is not

designated as an IMF else stop of the procedure.
As proposed by Huang [1], the mean envelopeM(dn,k) is
generally given by the half sum of the upper and the lower
envelopes, which are obtained by interpolation between the
local maxima points and the local minima points ofdn,k,
respectively.

Simplicity and efficiency of the original EMD, named
Huang hereafter, [1] is seducing but, even if we ignore
the theoretical lacks of the classical EMD algorithm, one
important limitation lies in its strictly monovariate definition.
Indeed, even if the major part of the algorithm seems to be
quite general, extension to multivariate signals defined fromR to RD with D > 1 is difficult due to the definition of
the mean operatorM. Some recent work tried to overcome
this limitation. The bivariate approaches developed in [7],
[8] are extensions of Huang’s solution to specifically handle
complex-valued signals whereas the algorithm proposed in [9]
makes use of quaternion to perform trivariate decompositions.
Regarding the geometrical algorithms proposed in [10], they
allow us to process bivariate signals. Indeed in [10], Rilling’s
algorithm corresponding to the second scheme (called Rilling2
method in the sequel) especially computes a bivariate mean
envelope by projecting the signal on different angular planes
and by performing a monovariate EMD of each signal pro-
jection. Very recently, Rehman et al. [11] proposed a gener-
alization of Rilling’s approach, called Rehman in the sequel,
to any multivariate signal: the mean envelope is obtained by
averaging multiple signal projections on a regularly sampled
hypersphere.

This paper aims at proposing an alternative to Rehman’s
algorithm [11] and at unifying mono- and multivariate EMD
to process signals with values inRD (D ≥ 1) whatever
the dimensionD is. The proposed method, called 2T-EMD
(Turning Tangent EMD), differs by its computational lightness
and its algorithmic simplicity. This method is essentially based
on a redefinition of the signal mean envelope computed thanks
to new characteristic points, which are also defined forD > 1.
The scope of application of the novel algorithm is discussed,
and a comparison of the 2T-EMD technique with classical
methods is performed on various simulated mono- and mul-
tivariate signals. The monovariate behavior of the proposed
method on noisy signals is then validated by decomposing
fractional Gaussian noises [3] and an application to surface
EEG signal denoising is finally presented.
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II . THE 2T-EMD APPROACH FOR BOTH MONO- AND

MULTIVARIATE SIGNALS

In order to get a unified framework for mono- and multi-
variate EMD [12], the signal mean trend and consequently the
mean operatorM have to be redefined. In some words, the
signal mean trend is redefined as the signal which interpolates
the barycenters of particular oscillations, calledelementary
oscillationshereafter.

A. Elementary oscillations and barycenters

An elementary oscillation of a given functions with values
in RD (D≥1) can be viewed as a piece ofs defined between
two consecutive local extrema ofs. But, for functions with
values in aD-dimensional (D > 1) space, the notion of
extremum has to be defined.

Let s be a classC1 function, say differentiable with a
continuous first derivative. The function tangent vector tos,
denoted byTs, is defined fromR to RD+1 by:

Ts : t 7−→ [1,
ds

dt
(t)]T (1)

Now, let αs be the function given by:

αs : t 7−→ lim
h→0

〈Ts(t− h),Ts(t+ h)〉 (2)

For everyt in R, the valueαs(t) can be interpreted as the
Euclidean inner product ofRD+1, denoted by〈· , · 〉, between
the tangents tos just before and after pointt. In fact, αs is
maximum at pointt when both vectorsTs(t−h) andTs(t+h)
are collinear and it vanishes at pointt when both vectors are
orthogonal. In other words, functionαs is an indicator of the
local oscillation ofs at every point ofR. Moreover, due to
the continuity of the inner product, we have:

∀t ∈ R, αs(t) = 〈 lim
h→0

Ts(t− h), lim
h→0

Ts(t+ h)〉 (3)

Next, sinces is in C1, we get:

∀t ∈ R, αs(t) =‖ Ts(t) ‖
2= 1+ ‖

ds

dt
(t) ‖2 (4)

where‖ . ‖ abusively represents the Euclidean norm of bothRD+1 andRD. Thus, we define anoscillation extremumof
function s as a local minimum of functionαs. From (4), it
also corresponds to a local minimum of the following function:

βs : t 7−→ βs(t) =‖
ds

dt
(t) ‖2 (5)

Clearly, the definition of oscillation extremum does not depend
on the output space dimensionD, which makes it suitable in
multivariate EMD contexts. ForD=1, the reader can check
that the oscillation extrema computed from functionβs (5)
include the classical scalar extrema used in Huang’s solution
[1], but also the saddle points (stationary points which are not
local extrema) ofs and the inflexion points corresponding to
positive and negative maxima of the derivative ofs. It is note-
worthy that oscillation extrema are different of inflexion [13]
and curvature [14] extrema. In addition, curvature extrema may
require the computation of the second and third derivatives
of s, respectively, which may be more sensitive to sampling

frequency. Moreover, neither inflexion points nor curvature
extrema are defined for multivariate signals, say signals fromR to RD with D>1, hence our preference goes to oscillation
extrema.

So an elementary oscillation of a given functions with
values inRD (D≥1) is considered in this paper as a piece of
s defined between two consecutive oscillation extrema ofs.
Let P1 = [t1, s(t1)]

T andP2 = [t2, s(t2)]
T be two consecutive

oscillation extrema. The barycenter,MP1→P2
, of the associated

elementary oscillation is given by:

MP1→P2
=

[

t1 + t2
2

,
1

t2 − t1

∫ t2

t1

s(t) dt

]T

(6)

The mean trendM(s) could then be redefined as the func-
tion which interpolates between oscillation barycenters ofs.
Nevertheless, a straightforward interpolation of all oscillation
barycenters ofs appears in practice to significantly emphasize
the phenomena of over-decomposition of AM-FM signals. A
robust computation of the mean trend is preferably obtained
for 2T-EMD by averaging two envelopes: a first envelope
interpolates the even indexed barycenters which include signal
borders, and a second envelope interpolates the odd indexed
barycenters which also include signal borders. This operation
lightly increases the algorithm computational complexity (see
subsection II-D for more details) but makes its behavior
considerably more robust.

Indeed, this robustness may be roughly justified in a
monodimensional context. The spline interpolation typically
behaves as a linear filter (up to some border effects) whose
frequency responseI(f), for unit spaced knots, slowly de-
creases in the intervalf ∈ [0, 1] and approximately vanishes
when f > 1 [15]. Let’s consider now a narrowband AM-
FM signal whose carrier frequency isfc. If the modulation
is not too strong, the typical spacing between oscillation
barycenters for such a signal is1/(2fc). In the case of a
direct interpolation between oscillation barycenters, the spline
interpolation could then have a non-negligible content for
f ∈ [0, 2fc], which includesfc and therefore allows the
interpolation to oscillate at the same frequency as the AM-FM
signal. On the other hand, the use of two interleaved spline
interpolations leads to a frequency content typically limited
to f < fc, which approximately guarantees that the resulting
mean trend oscillates more slowly than the initial AM-FM
signal. Therefore, the use of two envelopes prevents from
over-decomposition phenomena and also has the advantage to
bring the frequency resolution of the proposed method on a par
with the traditional EMD approaches (for signals with simple
waveforms). It finally approximately guarantees that the local
frequency of successive IMFs decreases. Those remarks seem
to be also empirically verified (see section 2) in a multivariate
context.

Consequently, the resulting mean operatorM enjoys a
frequency property similar to that of the classical one but can
be applied to both mono- and multivariate signals without any
dimension restriction.
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B. Implementation of the 2T-EMD technique

Several important points have to be considered to achieve a
robust and efficient implementation of the 2T-EMD algorithm.
First, the derivative necessary to the computation ofM(s) is
calculated by means of a centered finite difference scheme.
However, in practice the resulting numerical derivative may
have more local minima than the theoretical one. Minima are
thus detected using anε precision equal to10−15 in our code.
More precisely, thei-th time indexti will be a minimum ofβs

if βs(ti) + ε≤βs(ti−1) andβs(ti) + ε≤βs(ti+1). Therefore,
this ε precision limits the influence of numerical artifacts for
the extrema detection but one should be careful and adjust the
ε value in the case of very high sampling frequency to avoid
the miss of legitimate extrema. The integral involved in the
computation of barycenters is then calculated using a simple
rectangle method. Second, the interpolation is performed using
cubic splines with classical boundary conditions as for the
classical EMD, where the signal borders are directly added to
the list of estimated oscillation barycenters. In other words,
there is no complex management of boundary conditions.
Third, the sifting process is stopped using a modified Cauchy-
like criterion. More especially, the following normalized Eu-
clidean norm||dn,k+1(t) − dn,k(t)||/||dn,k(t)|| is computed
at each pointt. If a given percentage of the latter norms, for
instance90%, is below a certain threshold fixed to10−2 in
our code, then the sifting process is stopped. The normalized
Euclidean norm could be obviously not defined fordn,k(t) = 0
but the set of points where this zero value is reached is likely
to have a zero Lebesgue measure which justifies in practice
the use of such a criterion.

C. Scope of application

Let’s now specify in more details the set of signals that 2T-
EMD can decompose successfully. As previously mentioned,
the considered signals have to be in classC1 or at least,
in the case of irregular signals (especially real and/or noisy
signals), an appropriate numerical estimation of the derivative
has then to be proposed (see section II-B). Note that some
existing methods based on inflexion [13] or curvature [14]
extrema require more regularity. In addition, if{dn}1≤n≤N

represents the theoretical set of IMFs composing the signal to
analyze, it is obvious that anydn with a piecewise constant
function βdn

(5) is not visible by 2T-EMD (assuming that
the definition of derivative is extended to irregular signal as
mentioned before). Indeed a piecewise constant function has
no ε-local minimum. Thus, any signal in classC1 having
one IMF with a piecewise constant derivative norm cannot
be properly decomposed by 2T-EMD. It mainly concerns
monovariate signals with piecewise linear IMFs, and bivariate
signals with purely circular rotating IMFs. Nevertheless, any
bivariate rotating signal with a sufficient eccentricity can be
decomposed by 2T-EMD.

D. Note on computational complexity

The computational complexity of the 2T-EMD algorithm
can be precisely evaluated and compared with the one of

Method D Numerical complexityF (dn,k+1)

Huang [1] 1 18L + 15MH(n, k)

Rilling2 [10] 2 L(11P + 2) + 15
∑P/2

p=1
MR(n, k, p)

Rehman [11] 2 LP (2D + 18) + 15
∑P

p=1
MRM(n, k, p)

2T-EMD N∗ D(19L + 16M2T(n, k)) +M2T(n, k)

TABLE I
COMPUTATIONAL COMPLEXITY FOR ONE SIFTING ITERATION OF2T-EMD

AND THREE CLASSICAL METHODS.

classical methods. For a given EMD algorithm, letN , Kn,
dn,k be the number of extracted IMFs, the number of sifting
iterations performed to extract then-th IMF and then-th IMF
computed at thek-th iteration of the sifting process, respec-
tively. In addition,MH(n, k), MR(n, k, p), MRM(n, k, p), and
M2T(dn,k) will denote the number of extrema detected in
dn,k by Huang [1], the number of extrema detected in the
p-th projection ofdn,k by Rilling2 [10] whenP projection
planes are used, the number of extrema detected in thep-
th projection of dn,k by Rehman [11] whenP projection
directions are used, and the number of barycenters detected
in dn,k by 2T-EMD. Then the numberF (dn,k+1) of multi-
plications and divisions (usually called number of flops) of
one sifting iteration necessary to obtaindn,k+1 from dn,k
is given in table I for the four methods. These results were
obtained by considering a standard tridiagonal implementation
of the spline interpolation and a signal fromR to RD of
L samples. The total computational cost,C(s), of the four
methods can be obtained straightforwardly by summing the
elementary complexities,F (dn,k), given in table I over both
the number of iterations and the number of IMFs.

III. S IMULATION RESULTS

The aim of this section is to analyze the performance of 2T-
EMD on several classes of simulated mono- and multivariate
signals satisfying the conditions given in subsection II-C. First
the stability and the convergence speed of 2T-EMD sifting
process are studied and compared with three classical methods:
i) Huang [1] for monovariate signals (D = 1), ii) Rilling2
[10] using P = 8 projection planes for bivariate signals
(D = 2) and iii) Rehman [11] for trivariate and quadrivariate
signals usingP = 2D projection directions on the associated
hypersphere. From an implementation point of view, the sifting
process termination criterion and the border management of
those classical techniques are identical to the ones used in
2T-EMD (see subsection II-B for more details). Secondly,
a benchmark involving those classical EMD algorithms is
presented to evaluate and compare the 2T-EMD performance
in the context of a full decomposition. Finally, an example
of quadrivariate decomposition illustrates the ability of 2T-
EMD to work for a signal dimension greater than3. First,
let’s introduce the signal selection and the performance criteria
used in this section.

A. Signals selection

The test signals are mono-, bi-, tri- and quadrivariate signals
with various AM-FM behaviors, defined on the time interval
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T = [−1, 2] and sampled atfs = 10 kHz.

Monovariate signals. Four monovariate signals of the form
s1i =

∑

n d
(1i)
n are used in this study whered(1i)n is then-th

IMF of s1i. The first signals11 = d
(11)
1 + d

(11)
2 is defined by:

d
(11)
1 (t) = 2 sin(20πt+ 1.5) d

(11)
2 (t) = sin(10πt)

The second signals12 = d
(12)
1 + d

(12)
2 is given by:

d
(12)
1 (t) = 0.3 exp(0.23(1 + t)) sin(100πt)

d
(12)
2 (t) = exp(0.23(1 + t)) sin(50πt)

The third signals13 = d
(13)
1 + d

(13)
2 + a(13) (a(13) represents

a residue) is defined by:

d
(13)
1 (t) = sin(200π(1+t)2)/2

d
(13)
2 (t) = 2(1 + t) sin(100πt+ 1.5) a(13)(t) = 5t2

Eventually, the fourth signals14 = d
(14)
1 + d

(14)
2 + d

(14)
3 with

a residuea(14) is given by:

d
(14)
1 (t) = 2 sin(250πt) d

(14)
2 (t) = 3 cos(π(1.7t+ 7.3)2)

d
(14)
3 (t) = exp(0.23(1 + t)) cos(π(2.58t+ 21.95)2)

a(14)(t) = 3t

More particularly, signals11 is the sum of two sinusoidal
components. Nexts12 is the sum of two sinusoidal components
modulated in amplitude (from1 to 2 on interval T ) with
extrema of oscillation that do not match with classical extrema.
As far ass13 is concerned, it is the sum of one FM component
(from 200 to 400 Hz on interval [0, 1]), one linear AM
component and a quadratic residue. Eventuallys14 is the sum
of one sinusoidal component, one FM component (from10 to
20 Hz on intervalT ), one AM (from 1 to 2 on intervalT ) -
FM (from 50 to 70 Hz on intervalT ) component and a linear
residue.

Bivariate signals. Four bivariate signals of the forms2i =
∑

n d
(2i)
n are used in this analysis whered(2i)n is then-th IMF

of s2i. The first signals21 = d
(21)
1 + d

(21)
2 is given by:

d
(21)
1 (t) = [0.9 cos(200πt), 1.3 sin(200πt)]T

d
(21)
2 (t) = [1.4 cos(40πt), 1.7 sin(40πt)]T

The second signals22 = d
(22)
1 + d

(22)
2 is defined by:

d
(22)
1 (t) = [exp(t) cos(π/4) sin(80πt+ 1.5),

exp(t) sin(π/4) sin(80πt+ 1.5)]T

d
(22)
2 (t) = [cos(π/4) sin(2π(2.5(1 + t))2),

sin(π/4) sin(2π(2.5(1 + t))2)]T

The third signals23 = d
(23)
1 + d

(23)
2 is given by:

d
(23)
1 (t) = [exp(0.23t− 0.46)(0.3 cos(π(2.58t+ 14.2)2),

0.9 sin(π(2.58t+ 14.2)2))]T

d
(23)
2 (t) = [0.4 sin(20πt), 0.7 cos(24πt)]T

The fourth signals24 = d
(24)
1 + d

(24)
2 + d

(24)
3 is given by:

d
(24)
1 (t) = [0.3 cos(400πt), 0.8 sin(500πt)]T

d
(24)
2 (t) = [4 cos(100πt), 7 sin(100πt)]T

d
(24)
3 (t) = [5 exp(0.23t− 0.46) cos(π(2.24t+ 4.47)2),

2 exp(0.23t− 0.46) sin(π(2.24t+ 4.47)2)]T

In fact, signalss21, s23 and s24 are globally rotating signals
with various AM and FM modulations. Regarding the con-
ditions addressed in subsection II-C the latter signals have a
large enough eccentricity to be processed by2T-EMD. As far
as signals22 is concerned, it is the result of planar components
after a rotation around the temporal axis.

Trivariate signal. One trivariate signals31 = d
(31)
1 + d

(31)
2 +

d
(31)
3 is used for comparison and is defined by:

d
(31)
1 (t) = [sin(540πt), 2 sin(560πt), 1.5 sin(540πt)] T

d
(31)
2 (t) = [exp (0.14(1 + t)) cos(200πt), 2 cos(200πt),

2 sin(200πt+ 1.2)] T

d
(31)
3 (t) =

[

3 exp (0.16t+ 1.07) cos(π(1.83t+ 7.30)2),

2 cos(π(1.83t+ 7.30)2),

4 exp (0.16t+ 1.07) sin(π(1.83t+ 7.30)2)
]

T

whered(31)1 , d(31)2 and d
(31)
3 denote the three AM-FM IMFs

of signals31.

Quadrivariate signal. The quadrivariate signals41 = d
(41)
1 +

d
(41)
2 + d

(41)
3 used to show the efficiency of the approach in

higher dimensions is given by:

d
(41)
1 (t) = [3 sin(500πt+ 2), 3.5 sin(500πt), 2 cos(500πt),

exp(0.23t− 0.46) sin(500πt)] T

d
(41)
2 (t) = [0.5 cos(120πt+ 1.2),

5 exp (0.23(1 + t)) cos(π(3.16t+ 25.3)2),

2 exp(0.23(1 + t)) sin(π(3.16t+ 25.3)2),

0.5 sin(130πt+ 1.2)] T

d
(41)
3 (t) = [7 cos(64πt), 4 sin(60πt), 2 cos(500πt),

6 sin(64πt+ 1.5)] T

whered(41)1 , d(41)2 and d
(41)
3 denote the three AM-FM IMFs

of signals41.

B. Performance criteria

The different EMD algorithms analyzed in this section have
been evaluated and compared in terms of performance and
numerical complexity. GivenI a subinterval ofT = [−1, 2],
let’s define the following quadratic errors:

eI(dn) =

∫

I
||dn(t)− d̂n(t)||

2dt
∫

I
||dn(t)||2dt

, eI(s) =

N
∑

n=1

eI(dn) (7)

whered̂n denotes the estimate of then-th IMF dn of signals.
The latter errors allow us to evaluate the ability of the EMD
algorithms to accurately extract one or all expected IMFs. By
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consideringI = [0, 1] where border effects should be low, both
errors allow us to compute a performance independent of any
border effects. On the contrary, withI = [−1, 0]∪ [1, 2], both
errors permit to evaluate the ability of a given algorithm to
minimize border effects (all algorithms have the same border
management in our study). Indeed, such effects are often crit-
ical especially in real life data and their minimization should
facilitate the practical exploitation of the IMFs. Eventually, the
numerical complexity of an EMD method is evaluated using
the criterionC(s) presented in section II-D.

C. Sifting process analysis

In this first experiment, 2T-EMD’s sifting process is studied
and compared to that of Huang, Rilling2 and Rehman in terms
of convergence. To do so, the sifting process is launched
for 100 iterations to extract the first IMF of all monovariate
and multivariate signals presented in section III-A. Figure 1
displays criterione[0,1](d1) at the output of 2T-EMD, Huang,
Rilling2 and Rehman as a function of the number of iterations
of the sifting process. On each curve, a circular-shaped marker
indicates the iteration for which the Cauchy-like sifting stop
criterion would have in practice interrupted the sifting process.
First, one can observe that the sifting process of 2T-EMD
converges for almost all monovariate and bivariate test signals
with precision and speed very similar to those obtained by
the considered classical algorithms. The proposed algorithm
even succeeds in extracting the first component of signal
s12 whereas the standard Huang algorithm failed in such a
decomposition. Except for the multivariate signalss24 and
s41, this simulation tends to show the stability of the proposed
algorithm during a sifting process. The signals24 with four
IMFs including especially two FM components seems to suffer
from over-decomposition. It is noteworthy that this sensitivity
is also observed in Rilling2 and may especially suggest that
the first componentd(24)1 is not considered as an IMF by
both algorithms. Regarding the signals41, Rehman seems to
be less sensitive to over-decomposition phenomenon than 2T-
EMD. However, for all proposed signals, including signalss24
and s41, the sifting stop criterion prevents from any over-
decomposition phenomenon by stopping the sifting process
at an appropriate optimal iteration. In addition, note that the
quadratic errore[0,1](d1) at marker points is satisfactory for
all studied signals (the maximum error encountered in this
simulation is equal to0.02) and is, globally, comparable to
the one obtained by the classical algorithms.

D. Performance study of the full process

This subsection aims at comparing the full process of 2T-
EMD for D ∈ {1, 2, 3, 4} with Huang, Rilling2 and Rehman
using criteriae[0,1](s) and e[−1,0]∪[1,2](s) andC(s). Results
are depicted in figure 2: the left, middle and right columns deal
with the monovariate, bivariate and multivariate (D∈ {3, 4})
cases, respectively. It appears that for no border effects both
performance and computational complexity of 2T-EMD are
globally equivalent to those of the reference methods. More
finely and as specified previously, in the monovariate case,
signal s12 with extrema of oscillation which differ from the
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Fig. 1. 2T-EMD quadratic error on first IMF as a function of the number of
iterations during the sifting process.

standard extrema, is better decomposed by our approach.
On the contrary, the signals13 with a first fast FM IMF
seems to be better processed by Huang. In the bivariate case,
Rilling2 seems to offer a better performance on the nearly pure
rotating signals21 but 2T-EMD is more efficient on signal
s22 made of rotated planar components. For signalss31 and
s41, the behaviors of 2T-EMD and Rehman are quasi-similar.
Regarding border effects on performance, 2T-EMD generally
offers slightly more efficient results and seems to provide a
more accurate management of border effects than reference
approaches. When focusing on the computational complexity,
figure 2 clearly shows that forD = 1 the computational com-
plexities of 2T-EMD and Huang are quasi-equivalent. On the
contrary, forD = 2, 2T-EMD generally requires less sifting
iterations and less computational operations than Rilling2. For
D > 2, the results clearly show the computational efficiency
of 2T-EMD, which is about three times cheaper than Rehman.
From a more illustrative point of view, figure 3 (a) represents
the quadrivariate signals41 (dark line) and the associated
local mean (gray line) on the restricted[0.50; 0.52] time
interval projected on the three frames(W,X, Y ), (X,Y, Z)
and(Y, Z,W ). The local mean seems to nicely go through the
original signal on the three frames. Figure 3 (b) presents the
expected and computed decompositions of signals41 projected
on the four main axis (from left to right), namely W, X, Y
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Fig. 2. Comparative study of 2T-EMD versus Huang (1D), Rilling2 (2D)
and Rehman (3D, 4D) reference methods.

and Z. The three IMFs and the corresponding residue are
displayed from the top to the bottom of the figure. Note that
only a central zoom of the IMFs on the temporal axis has been
represented for the sake of clarity. A good behavior of the
algorithm can be observed and the low residue highlights the
efficiency of the proposed method. This result shows clearly
that, for signals41, the sifting stop criterion prevents from any
over-decomposition phenomenon.

In conclusion, all these results exhibit the ability of 2T-
EMD to process signals with values inRD for any dimension
D≥1. They also show the advantage of the use of oscillation
barycenters in a general multivariate context.

IV. D ECOMPOSITION OF FRACTIONALGAUSSIAN NOISE

One important property, enjoyed by the classical Huang
algorithm, is the filter bank property observed when decom-
posing a fractional Gaussian noise (fGn). This section aims
at demonstrating how the 2T-EMD algorithm also enjoys this
filter bank property by reproducing simulations and results
already obtained in previous works with the standard Huang’s
algorithm [16], [3]. Note that computing 2T-EMD on such a
noisy signal may be feasible using an adapted definition of
the derivative (see II-B). As in [3], extensive simulations are
carried out on fGn’s, with Hurst coefficientH varying from
0.1 to 0.9. The data length is typically set to512 and for
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Fig. 4. 2T-EMD applied to fGn decompositions. At the left, IMFzero-
crossings: the (base 2) logarithm of the average number of zero-crossings
is plotted as a function of the IMF number, for 3 different values of the
Hurst exponent (H: 0.2 (circles), 0.5 (crosses), and 0.8 (stars)). At the right,
IMF variance and estimation of the Hurst exponent H: the IMF log-variance
slope plotted as a function of the Hurst exponent H and the associated linear
regression over0.5 ≤ H ≤ 0.9.

each value ofH , 1000 independent sample paths of fGn are
generated via the algorithm described in [17] and decomposed
using 2T-EMD on a limited number of7 IMFs (it should
be mentioned that the sifting process is stopped when90%
of values ||dn,k+1(t) − dn,k(t)||/||dn,k(t)|| are lower than
10−2, see section II-B). For each value ofH , the number
of zero-crossingszH [n] in the n-th mode (1 ≤ n ≤ 7) is
firstly evaluated. A linear regression of the mean log number
of zero-crossingslog(zH [n]) on the mode numbern is then
computed. The good fitness of such a regression, represented
in the left column of figure 4 for each value ofH , strongly
suggests that the number of zero-crossingszH [n], which is
a rough indication of the mean frequency of each moden,
is a decreasing exponential function of the mode number,
i.e., zH [n] ∝ ρ−n

H with ρH close to 2 . These results are
very similar to those obtained in [3, figure 2] and suggest the
hierarchical structure of an equivalent filter bank as shown in
[3] and [16] for the classical EMD. For all IMFsdn (with
n > 1), a self-similarity in this filter-bank could also be
further checked showing that 2T-EMD approximately acts on
fGn as a dyadic filter bank of constant-Q bandpass filters
for high values ofH (H ≥ 0.5). Assuming this filter bank
structure, and as shown in [3] for the classical EMD, it
becomes possible to get access to the Hurst exponent via the
variance progression across IMFs byvar(dn) ∝ ρ

(α−1)n
H with

the specific choiceα = 2H−1. When plotted as a function of
the Hurst exponentH , the IMF log-variance slope is almost
linear whenH ≥ 0.5, in accordance with the simplified model
p(H) = 2log(ρH)(H − 1) as depicted in the right column of
figure 4. Those results consequently highlight the very similar
properties shared by 2T-EMD and Huang ([3, figure 4]), and
may validate the use of the proposed algorithm on irregular
signals.

V. A PPLICATION TO SURFACEEEGDENOISING

Surface ElectroEncephaloGraphy (EEG) is a popular neu-
roimaging technique used for exploring human brain activity.
While this technique is simple and low cost, the obtained
signals suffer from noise and artifacts, such as broken wire
contacts, ocular movements (ElectroOculoGram, EOG), mus-
cular activity, etc. Thus, one of the challenging tasks in signal
processing is to detect and extract very weak non-stationary
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brain source signals corrupted by noise and artifacts from EEG
data. Such issues are of great interest when EEG features are
used for diagnosis and assistance [18]. Some recent studies
show that the use of classical EMD [1] in order to denoise
EEG data [19], [20] and/or to detect some EEG patterns
[21], give interesting results. In this section, we propose to
remove EOG artifacts from contaminated EEG data by using
the proposed 2T-EMD algorithm. Note that, the goal here is
not to propose a new method in order to denoise the surface
EEG data, but to show the behavior of 2T-EMD, in comparison
to that of the existing EMD method, in the case of real
world signals. The used EEG signals are issued from our
polysomnographic database [22]. More precisely, EEG signals
(figure 5, line 1) are acquired from two temporal electrodes,
in front of the higher part of the ears, denoted by F7m
and F8m (where ”m” stands for modified, see [22] for more
details). Additionally, EOG reference recordings (figure 5, line
6) are taken from two temporal sensors located near each eye
(EOGL and EOGR), slightly moved toward the median plan
in order to simultaneously observe horizontal and vertical eye
movements.

Rilling2 and the bivariate 2T-EMD method are then applied
with a limited number of10 IMFs, for each bivariate ob-
servation [F7m,F8m] and [EOGL,EOGR], respectively. The
obtained bivariate results are then projected on two main axis
(left head side and right head side), namely F7p and F8p for

EEG data and EOGLp and EOGRp in the case of EOG data
(”p” stands for projected). In order to identify the projected
IMFs related to the EOG artifacts in the bivariate EEG
observation [F7m,F8m], we firstly compute the Fourier trans-
form of all projected IMFs extracted from the two bivariate
observations ([F7m,F8m] and [EOGR,EOGL]) [19]. Then, for
each bivariate method and each brain hemisphere (F7p/EOGLp
on the left side and F8p/EOGRp on the right side), i) one-
minus-correlation distance is computed for between projected
IMFs in order to evaluate any spectral similarity between the
IMFs issued from EEG signals [F7m,F8m] and EOG reference
signals [EOGR,EOGL], and ii) the distances are hierarchi-
cally clustered using the single linkage algorithm [21]. It is
noteworthy that, the clustering procedure first treats the power
spectrum vector of each projected IMF as a singleton cluster
and then successively aggregates both most similar clusters,
until all clusters merge into a single cluster that contains
the power spectrum vectors of all projected IMFs. For each
method and for each projected plan, the set of IMFs for which
the distances (one-minus-correlation) below0.2 are considered
as similar and originate from EOG artifacts. The sum of those
IMFs [F7pEOG

2T−EMD,F8p
EOG
2T−EMD,F7p

EOG
Rilling2,F8p

EOG
Rilling2] are

then compared in figure 5 to the EOG reference recordings
[EOGL,EOGR]. The channels of the EOG signal estimated
by 2T-EMD (line3) and Rilling2 (line 5) are quasi-identical
and they are strongly correlated to EOGL and EOGR (corre-
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Fig. 5. Comparison between the bivariate 2T-EMD approach andRilling2
in the context of EOG artifacts removing from EEG.

lation coefficients greater than 0.92). This high correlation is
also observed between the residual high-frequency channels
(associated to EEG activity in our case) obtained by 2T-EMD
method,[F7pEEG

2T−EMD,F8p
EEG
2T−EMD], and those recovered by

Rilling2 namely, [F7pEEG
Rilling2,F8p

EEG
Rilling2]. All these results

tend to show that 2T-EMD has similar behavior in comparison
to classical EMD algorithms [3] in the case of real world
data. In addition, they demonstrate that the 2T-EMD technique
which takes advantage of the mutual-information contained in
the two signals, preserves the frequency information of each
channel.

VI. CONCLUSION AND PERSPECTIVES

A novel approach for EMD computation is proposed in
this paper. The algorithm called 2T-EMD is mainly based on
a new geometric definition of the mean envelope operator.
Under certain assumptions on signals, this novel definition
enables both mono- and multivariate decompositions without
any modification in the 2T-EMD algorithm, without any signal
projection and with light computational cost. These two last
points are the key benefits regarding the existing approaches of
the literature. Details to obtain a robust implementation of 2T-
EMD have been listed and justified. In addition, simulations
and comparisons performed in this work suggest that 2T-EMD
seems to offer a satisfactory convergence during the sifting
step and a good robustness to over-decomposition. Competitive
performance and computational complexities plus a good
border management also characterize 2T-EMD. Simulations
on noisy signals and an application to real data show that the
proposed algorithm has quasi-identical behavior in comparison

with classical EMD algorithms and demonstrate the interest of
2T-EMD in practical situations. Conditions that signals should
verify to be successfully decomposed by 2T-EMD have been
precisely enumerated in order to help the user. It would be
now more particularly interesting to evaluate the performance
of 2T-EMD in other real life contexts for which classical EMD
approaches have already demonstrated interesting properties
and to compare it with that of other techniques [18].
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