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Abstract. Radiotherapy planning requires accurate delineations of the
critical structures. To avoid manual contouring, atlas-based segmenta-
tion can be used to get automatic delineations. However, the results
strongly depend on the chosen atlas, especially for the head and neck
region where the anatomical variability is high. To address this problem,
atlases adapted to the patient’s anatomy may allow for a better regis-
tration, and already showed an improvement in segmentation accuracy.
However, building such atlases requires the definition of a criterion to
select among a database the images that are the most similar to the pa-
tient. Moreover, the inter-expert variability of manual contouring may be
high, and therefore bias the segmentation if selecting only one image for
each region. To tackle these issues, we present an original method to de-
sign a piecewise most similar atlas. Given a query image, we propose an
efficient criterion to select for each anatomical region the K most similar
images among a database by considering local volume variations possibly
induced by the tumor. Then, we present a new approach to combine the
K images selected for each region into a piecewise most similar template.
Our results obtained with 105 CT images of the head and neck show
that our method reduces the over-segmentation seen with an average
atlas while being robust to inter-expert manual segmentation variability.

1 Introduction

The purpose of radiotherapy planning is to optimize the dose received by the
tumor while controlling the dose on the surrounding Organs At Risk (OARs).
This requires the accurate delineation of the Clinical Target Volume (CTV)
and the OARs. In clinical routine, this task is often performed manually, which
is tedious and prone to inter-expert variability. To ease this task, atlas-based
segmentation may be used to get automatic delineations, and showed satisfying
results for the brain [1] and promising results for the head and neck region [2].

In the head and neck, the anatomical variability among patients is high,
mainly due to corpulence and neck flexion. Previous studies showed that an
average atlas has difficulties to cope with this high variability, and may result in
over-segmentation for some structures [2]. Utilizing an atlas that is specifically
adapted to the anatomy of the patient to delineate may help to improve the
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registration quality, and therefore the accuracy of the segmentation. To this end,
one solution is to compute population-specific atlases, for example by clustering
the database into homogeneous sub-groups [3] and computing an average atlas
for each sub-group. To be even more specific to the patient (and not only to
a given population), other approaches [4, 5] have been developed to consider
each manually delineated image of a database as a potential atlas, and to select
the most appropriate one for each new query image to segment. By extension,
and to enhance robustness, it has been proposed to select several of the most
appropriate images, register them independently to the patient and combine the
segmentation results [6]. All these approaches bring up two questions: how to
select the most appropriate images for a given patient and how to fuse them.

The selection criterion must be able to account for the anatomical variabil-
ity in the database (various corpulence, neck flexion, various tumor size and
grade), and it must be fast enough to be used in clinical routine. Selection cri-
teria based on meta-information (e.g. age [6]) have been used, but they are not
suitable when dealing with anatomical variability independent of simple meta-
information. Therefore, criteria based on intensities [6, 4] have been proposed.
However, our database is composed of pathological images, which may corrupt
intensity based criteria. Commowik et al. proposed to estimate the amount of de-
formation needed to warp each image onto the patient image, using the average
atlas to reduce computation time [5]. This criterion is computationally interest-
ing but it still requires inverting and composing many deformation fields. Our
first contribution is to propose an efficient selection criterion based on the degree
of contraction and dilation of the structures. This criterion is well-suited for our
case as it may account for the local volume variations caused by the tumor.

Regardless of the nature of the selection criterion, it may be applied globally
on the images [6, 5], or locally in order to cope with the local changes of each
region [7–10, 4]. Because of the high anatomical variability and as our database
is composed of pathological images, a local selection seems more appropriate to
consider the local impact of the tumor on the surrounding anatomical structures.

Once the most appropriate images have been selected for each region of
interest, the fusion step has to be performed. In [9], a framework was proposed
to build a piecewise most similar atlas from a set of images selected on predefined
regions. This showed an improvement in segmentation accuracy with respect to
an average atlas. However, it was restricted to the selection of a single image for
each region, which makes it more sensitive to the selection step (e.g. outliers may
exist in the selection process). Moreover, it may also be sensitive to the relatively
high inter-expert variability in the head and neck region. Our second contribution
is then to provide a framework to combine Kl selected images for each region
Rl into one template for segmentation, taking into account the relative values of
the selection criterion to weight each selected image accordingly.

We illustrate the capacities of our framework with 105 CT images of the head
and neck region, showing its ability to reduce the over-segmentation seen with an
average atlas while being less sensitive to inter-expert segmentation variability
than a piecewise atlas computed using only one image per region.
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2 Method

We present a new method to design an atlas locally adapted to the patient P
to delineate on predefined regions. We assume that a database of N manually
delineated images {Ij}j∈[1...N ] is available. Moreover, we suppose that an aver-
age atlas M has been built from this database. The average atlas construction
provides for each image Ij a transformation warping it on M . We denote by
TIj←M the non-linear part of the transformation allowing to resample Ij on M ,
and JIj←M the corresponding image of the Jacobian determinant values.

2.1 Efficient Local Selection of the Most Similar Images through

Volume Variation Estimation

We wish to select among the images {Ij}j∈[1...N ] the ones that are the most
similar to the query patient P on predefined regions {Rl}l∈[1...L]. The regions
Rl are defined once and for all on the average atlas M . Typically, one may
define them as a dilation of the anatomical structures of interest. For a given
region Rl in M , we define our criterion as a comparison of the average degree
of contraction/dilation when deforming Ij on M and when deforming P on M .
To do this, we first average on Rl the logarithms of the determinants of the
Jacobian matrices for each non-linear deformation TIj←M , as described below:

J̄Rl
(Ij ←M) =

1

card(Rl)

∑

x∈Rl

log(JIj←M (x)) (1)

In the same way, after registering M and P , we can estimate J̄Rl
(P ←M) from

TP←M . Then, the images {Ij}j∈[1...N ] can be ranked from the most similar to
the least similar to the patient P on Rl according to the distance dRl

(Ij , P ) =
‖J̄Rl

(P ←M)−J̄Rl
(Ij ←M)‖. This criterion is well-suited for the local selection

of the most similar images. Our images indeed present tumors of various sizes and
grades that can induce local volume variations of the CTV and of the surrounding
OARs. Moreover, it is very efficient as the J̄Rl

(Ij ← M) are pre-computed.
It only requires performing one non-linear registration between P and M and
computing J̄Rl

(P ←M). By comparison, other methods either require multiple
registrations [3, 4] or many inversions and compositions of deformation fields [5].

2.2 Construction of a Piecewise Most Similar Atlas Incorporating

Selection Weights

For each region Rl, the Kl images of the database having the lowest distances
dRl

(Ij , P ) are selected to build the piecewise most similar atlas and are denoted

{Ĩl,n}n∈[1...Kl]. Further, we associate each image Ĩl,n with a selection weight αl,n,

based on dRl
(Ĩl,n, P ), that reflects its relative degree of similarity to P on Rl.

To compute αl,n, we used the Gaussian kernel, i.e. αl,n = Gµ,σ(dRl
(Ĩl,n, P )),

as it allows us to discriminate distances that are very large. The Gaussian can
be centered either on zero, or on the minimum distance found for the region
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Rl (we chose the second solution). As to the standard deviation σ, it controls
the rejection of images with a large distance and was computed from the whole
distribution of distances on Rl. The weights are then normalized for each region,
so that for each l,

∑Kl

n=1 ᾱl,n = 1. In addition, we also consider spatial weights
to allow a smooth transition when interpolating between the regions Rl in the
construction of the piecewise atlas. The spatial weight of the regionRl at location
x is defined as wl(x) = 1/(1+βdist(x,Rl)) where dist(x,Rl) refers to the minimal

distance to Rl at location x. It is then normalized so that
∑L

l=1 w̄l(x) = 1.

Construction of the Piecewise Most Similar Image The construction
process may be seen as a classical atlas construction [11] where the images have
varying weights depending on the spatial location of each voxel (w̄l(x)) and on
the selection distances (ᾱl,n). We iterate over the following steps (M̃0 = M):

1. Register the images Ĩl,n on the current reference M̃k. This step provides
affine transformations AĨl,n←M̃k

and non-linear transformations TĨl,n←M̃k

2. Compute the new average image Mk+1 by interpolating the intensities of the
warped Ĩl,n using the two sets of weights w̄l,k(x) and ᾱl,n

3. Compute an average diffeomorphism T̄k from the TĨl,n←M̃k
and the weights

4. Apply T̄−1k to Mk+1 to get the new reference M̃k+1 = Mk+1 ◦ T̄
−1
k

5. Update the regions of interest by applying T̄−1k to Rl,k: Rl,k+1 = Rl,k ◦ T̄
−1
k ,

and update the spatial weights w̄l,k+1(x) accordingly

This process is similar to [9]. However, it is much more general as it allows
the combination of several images for each region Rl. This is achieved by the
following equations for steps 2 and 3. First, the intensities are interpolated by:

Mk+1(x) =

L
∑

l=1

[

w̄l,k(x)

(

Kl
∑

n=1

ᾱl,n

(

Ĩl,n ◦AĨl,n←M̃k
◦ TĨl,n←M̃k

)

(x)

)]

(2)

The inner term (sum over n) computes a weighted average of the selected im-
ages for a region Rl, while the outer term uses the spatial weights to combine
the contributions from each region Rl. Similarly, in step 3, we compute an av-
erage polydiffeomorphism T̄k using the Log-Euclidean framework [12] 1. This
framework ensures to remain on the manifold of diffeomorphisms and leads to
an autonomous Ordinary Differential Equation that can be easily integrated:

ẋ =
∑L

l=1

[

w̄l,k(x)
(

∑Kl

n=1 ᾱl,n log
(

TĨl,n←M̃k

)

(x)
)]

.

Construction of the Associated Segmentation After building the piece-
wise most similar template, we need to compute its associated segmentation
from the delineations of the selected images. The images of our database have
been delineated for a clinical purpose, and some contours are missing for some

1 The deformations in the head and neck region are close enough to the identity,
ensuring that the computed logarithms are correct, as specified by Arsigny et al.
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structures. To deal with this difficulty, we chose to define one region Rl for each
anatomical structure in the construction of the template image.

The construction of the associated segmentation is then achieved in two steps.
First, we compute a probability map for each structure independently using the
selected manual segmentations and the selection weights ᾱl,n. Then, we assign
each voxel of the template image to the structure that has the highest probability.

3 Evaluation

We evaluated the proposed framework with N = 105 CT images of the head and
neck region. On these images, the CTVs and OARs were manually delineated
following the guidelines in [13]. The structures involved are the lymph node levels
II, III and IV (CTVs), the parotids, the spinal cord, and the brainstem (OARs).
We performed a Leave-One-Out analysis, each patient being successively ex-
cluded from the database and delineated with each of the three following atlases
built from the N − 1 remaining images: (1) AVE: average atlas built as in [2],
(2) PW 1: piecewise most similar atlas built with Kl = 1 image for each region,
and (3) PW 10: piecewise most similar atlas built with Kl = 10 images for each
region. As registration algorithm, we used the framework described in [2].

3.1 Qualitative Results

Fig. 1 shows the three different atlases (b,c,d) computed for a given patient (a)
whose neck flexion is above average. The spinal cord contours show that the
average atlas (b) and the piecewise atlas PW 1 (c) both have a relatively low
neck flexion, whereas the neck flexion of PW 10 (d) looks much more similar to
the patient’s one (see arrows).When registering head and neck images, a different
neck flexion between the atlas and the patient is a common issue, often leading
to registration errors and low segmentation accuracy. Therefore, our method’s
ability to provide a correct neck flexion may increase segmentation quality.

Fig. 2 illustrates some qualitative segmentation results on the parotids and
on the lymph nodes levels III-IV using the three atlases. Compared to the man-
ual contours (a), the automatic contours provided by the average atlas (AVE)

(a) (b) (c) (d)

Fig. 1. Illustration of the atlases used for a given patient. For the given patient
(a), comparison between the average atlas (AVE) (b), the piecewise most similar atlases
PW 1 (c) and PW 10 (d). The atlases shown were affinely registered on the patient.
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(a) (b)

(c) (d)

Fig. 2. Qualitative segmentation results of each method. (a) Manual contours.
Automatic contours with AVE (b), with PW 1 (c) and with PW 10 (d). Black land-
marks attached to the manual contours are also shown to draw the comparison.

(b) are too large, which was already observed in [2]. As mentioned in [9], PW 1
(image (c)) allows to reduce the over-segmentation. However, it was built from
only one image for each region, and it is therefore likely to be biased by the inter-
expert variability of delineation. The two small arrows on image (c) show the
influence of local specificities of the selected segmentations on each region. More-
over, by construction, PW 1 segmentations can present some discontinuities. For
instance, the large arrow on image (c) shows some non-connected lymph node
levels III and IV, which is anatomically inconsistent. The automatic contours
obtained with PW 10 (image (d)) are much less dependent on the inter-expert
variability as 10 segmentations were fused for each structure. Moreover, the ob-
tained contours are closer to the manual contours than both contours from AVE
(b) and PW 1 (c), which results in shorter correction time for the clinician.

3.2 Quantitative Results

We now compare the performance of the three atlases AVE, PW 1 and PW 10
in terms of segmentation accuracy. To this end, sensitivity and specificity were
averaged for each structure over all the Leave-One-Out tests. The results are
presented in Fig. 3. First, as observed in [9], PW 1 shows an improvement of
the specificity with respect to AVE, which is related to the reduction of the
over-segmentation. However, this improvement is achieved at the expense of
the sensitivity. With PW 10, the specificity is even higher than with PW 1
and the decrease in sensitivity is lower. For all structures, we also performed



Construction of Patient Specific Atlases 7

Sensitivity

Specificity

Fig. 3. Quantitative segmentation results. Average sensitivities and specificities
for atlas-based segmentation using the atlases AVE, PW 1, and PW 10.

paired t-tests on the Dice values for each pair of methods. Whereas PW 1 has
significantly lower Dice than AVE and PW 10 (P < 0.05), the differences be-
tween AVE and PW 10 are statistically not significant (P > 0.05), illustrating
that the overall overlap is similar while PW 10 significantly reduces the over-
segmentation. Therefore PW 10 combines the advantages of both PW 1 (avoid-
ing over-segmentation) and AVE (avoiding errors due to inter-expert variability).

4 Conclusion

We presented a new approach to build a piecewise most similar atlas to the
patient. We first introduced an efficient criterion to select among a database the
images that are the most similar to the patient for each region. This criterion
is well adapted to model the impact of the tumor on the CTVs and the OARs
as it is based on the local degree of contraction/dilation. Then, we presented
a novel approach to build from the selected images a piecewise atlas and its
associated segmentation. We applied our algorithm with 105 CT images of the
head and neck region. The proposed approach was compared to other atlas-based
approaches (single average atlas and piecewise most similar atlas built from a
single image per region). We showed that our approach combines the advantages
of both techniques. It indeed enables reducing the over-segmentation observed
with the average atlas, and it is less dependent on the inter-expert segmentation
variability than the piecewise atlas built from a single image per region.

The number Kl of images selected for each region plays an important role, as
well as the standard deviation σ of the Gaussian in the selection weights. Here
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we used arbitrarily Kl = 10 mainly for computational reasons, but we will study
the influence of these two parameters to find out the optimal solution between
the average atlas (Kl = N , infinite σ) and the method proposed in [9] (Kl = 1).
Future work will also include a separate evaluation of the selection criterion and
the piecewise atlas construction method. Finally, we will assess our framework
on different groups of patients, e.g. on corpulent patients or patients with high
neck flexion for which the average atlas provides low segmentation accuracy.
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2. Commowick, O., Grégoire, V., Malandain, G.: Atlas-based delineation of lymph
node levels in head and neck computed tomography images. Rad Oncol 87(2)
(2008) 281–289

3. Blezek, D.J., Miller, J.V.: Atlas stratification. MedIA 11(5) (2007) 443–57
4. Wu, M., Rosano, C., Lopez-Garcia, P., et al.: Optimum template selection for

atlas-based segmentation. Neuroimage 34(4) (2007) 1612–8
5. Commowick, O., Malandain, G.: Efficient selection of the most similar image in

a database for critical structures segmentation. In: Proc. MICCAI’07, Part II.
Volume 4792 of LNCS. (2007) 203–210

6. Aljabar, P., Heckemann, R.A., et al.: Multi-atlas based segmentation of brain
images: atlas selection and its effect on accuracy. Neuroimage 46(3) (2009) 726–38

7. Isgum, I., Staring, M., Rutten, A., et al.: Multi-atlas-based segmentation with
local decision fusion–application to cardiac and aortic segmentation in CT scans.
IEEE TMI 28(7) (2009) 1000–10

8. van Rikxoort, E.M., Isgum, I., et al.: Adaptive local multi-atlas segmentation:
application to heart segmentation in chest CT scans. MedIA 14(1) (2010) 39–49

9. Commowick, O., Warfield, S.K., Malandain, G.: Using Frankenstein’s creature
paradigm to build a patient specific atlas. In: Proc. MICCAI’09, Part II. Volume
5762 of LNCS. (2009) 993–1000

10. Shi, F., Yap, P.T., Fan, Y., et al.: Construction of multi-region-multi-reference
atlases for neonatal brain MRI segmentation. Neuroimage 51(2) (2010) 684–93

11. Guimond, A., Meunier, J., Thirion, J.P.: Average brain models: A convergence
study. CVIU 77(2) (2000) 192–210

12. Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-euclidean framework
for statistics on diffeomorphisms. In: Proc. MICCAI’06. Volume 4190 of LNCS.
(2006) 924–931
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