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Analysis of surgical intervention populations using

generic surgical process models.

Introduction

Surgical Process Models (SPMs) are models of surgical patient treatments. In a previous work, we have drawn attention to the fact that there exists no explicit methodology that can be used to objectively model surgical strategies at a detailed level .

[1 ]

SPMs make the knowledge about Surgical Processes explicit that was previously inaccessible. It facilitates, for example, evaluation studies or requirements studies, and may encourage discussions among clinicians and technicians.

Recently, the work on SPMs has resulted in a new layer of interest: since the previous generation of SPMs was able to represent only a single individual surgical intervention course, what new or additional possibilities would a generic SPM provide? A more comprehensive model could include and combine multiple individual courses into a statistically mean model that exhibits a more generic character. Such Specific application cases could include a comparison of two generic Surgical Process Models to elucidate differences in surgical strategies or to clarify the use of certain instruments or devices. The approach may be useful to assess skill levels, or it could serve as the basis of a detailed extrapolation of intervention costs. Further application cases, e.g. the comparison of patient individual Surgical Process Models (iSPMs) with generic Surgical Process Models (gSPMs), may include an investigation of the reasons why a single surgical intervention course may have deviated from the mean procedure course.

Currently, very few approaches have been proposed to evaluate individual patient or generic models of surgical processes. Recently, the use of SPMs in Medical Engineering and Medical Informatics has been discussed by several authors.

Jannin et al. , introduced a method for acquiring patient-individual SPMs using an ontological approach. They applied data [2 3 ] mining-based methods to a database of 159 iSPMs, describing surgical procedures on the brain in order to predict certain features of these procedures (called ) from characteristics of the patient and the associated pathology (called ). They predicted variables predictive variables used the same methods to classify the data into main families based on the predictive variables and they manually allocated the values of the predicted variables to each family. Although computing gSPMs was one objective of their work, they failed to compute such models.

Other authors have modeled surgical processes in the context of medical engineering for several purposes, such as the automatic identification of interventional phases , , control of surgical robots , and instrument assessments . Clinical work has also

[4 5 ] [6 ] [7 ]
focused on surgical processes for reengineering , assessing human reliability , comparing substitutive surgical strategies , and

[8 ] [9 ] [10 ]
analyzing requirements for Surgical Assist Systems . [START_REF] Strau ß | Workflow Analysis to assess the Efficiency of intraoperative Technology using the example of Functional Endoscopic Sinus Surgery[END_REF] However, all of these approaches either do not deal with the generation of a generic SPM or provide information only at the level of interventional phases rather than at the level of stepwise work elements.

Some authors have presented approaches for computing gSPMs , , . These methods, however, do not consider variations of [12 13 14 ] several relevant procedures , they were applied only at the conceptual level of intervention modeling without quantification of [START_REF] Mackenzie | Hierarchical Decomposition of laparoscopic Surgery: a human Factors approach to Investigating the Operating Room Environment[END_REF] measurement parameters , or they featured a less detailed level of granularity , .

[

[

The notion of in business informatics is closely related to our presented approach. In 1995, Cook et al. Workflow Mining [START_REF] Cook | Automating Process Discovery Through Event-Data Analysis[END_REF] published the first algorithms to determine process models from software event logs. The preparatory work, namely the use of process mining to explore business process models, was initiated by Agrawal et al.

. The process mining community has been actively [START_REF] Agrawal | Mining Process Models from Workflow Logs[END_REF] working over the past five years to formalize the discovery of process models based on event logs, e.g. , . For a survey of this area, [18 19 ] see van der Aalst et al.

. Methods described herein are not applicable to the computation of gSPMs and comparisons between [START_REF] Van Der Aalst | Workflow mining: A Survey of Issues and Approaches[END_REF] intervention populations, because they do not include multiple perspectives or concurrencies, such as parallel left-and right-handed surgical work steps.

Furthermore, existing sources of information related to surgical procedures, such as clinical guidelines , or surgical textbooks, [21 22 ] describe surgeries at a very general level; their goals are not to describe interventions in detail, but rather to give treatment recommendations. However, this general level cannot be used for quantification. With the methods utilized in the present work, it becomes possible to base such measurement parameters, such as most probable intervention courses, on real clinical data.

In this paper, we introduce methods for computing . It is shown, that it is feasible to use generic Surgical Process Models (gSPMs) gSPMs to quantify differences in surgical workflows of two intervention populations retrospectively. Clinical-use case data from 102 cataract interventions were divided into two populations, according to the application of different treatment strategies. gSPMs were then calculated as mean treatments for each of the populations and the results were subsequently compared across the entire data set.

' '

The research questions addressed in this article include: How can generic Surgical Process Models be generated from a population of and individual Surgical Process Models?

How can two gSPMs be utilized to compare two different intervention populations?

Methods

This section introduces methods for generating generic Surgical Process Models (gSPMs) from a population of individual Surgical Process Models (iSPMs). Pertinent terms will be introduced, and an overview of the model development process will be given.

To compute a generic SPM, several stages must be processed (cf.

). Mandatory stages include: data acquisition for iSPMs, Figure 1 Inter-iSPM registration, and computation of the gSPM. Optionally, additional stages involving feature selection, segmentation, and filtering can be employed to decrease the visual complexity of the resulting models.

Terms

Essential in this context is the definitions of terms and concepts related to this approach (cf.

): the surgical treatment performed on [START_REF] Neumuth | Validation of Knowledge Acquisition for Surgical Process Models[END_REF] one specific patient is denoted a (SP), and a model of the Surgical Process, e.g. in populations of iSPMs.

Data Acquisition for iSPMs

Data acquisition deals with the mapping of the surgical procedure from a Surgical Process (SP) to a Surgical Process Model (SPM).

To store and process iSPMs, an appropriate data model is required. This data model describes, how entities of the Surgical Process are structured and presented within a given information system.

In this study, surgical work steps during the SP are represented as . Each iSPM consisted of a number of activities that activities corresponds to the surgical work steps performed on the patient. Each activity is comprised of information about the work steps, termed symbolize status information and define the context in which activities were performed. Examples of states might be the States different intervention phases of a procedure. A system of states acquired concurrently to activities implicitly relates activities to the interventional phases. An example that associates activities A, B, and C with intervention phase 1 is shown in .

#

Figure 2

Before gathering iSPM data, we had to define our terminology, especially for interventional phases or work steps. The former is crucial to segment the intervention into parts and thereby reduce the complexity of the resulting gSPM. The latter ensures a consistent naming of information entities across all relevant surgical cases. and show examples of the interventional phases, Table III Table IV surgical instruments, actions, and treated structures as used for the clinical case example in the next section.

During the live observation sessions, iSPMs were recorded by trained medical observers, who were physically present in the operating room and recorded the performed surgical work steps of the intervention in the iSPM protocol. Data acquisition relied on a specially developed observation support software package, the Surgical Workflow Editor (cf. , ). The software, running on a Figure 3 [START_REF] Neumuth | Structured Recording of Intraoperative Surgical Workflows[END_REF] conventional tablet PC, presented terminology lists to the observer and asked for a description of the current surgical work step. Temporal information was added automatically. After each observation, the observer saved the protocol in eXtensible Markup Language (XML) format. The protocols that represented the iSPMs were then transferred to a database where further calculations were performed.

Feature Selection

Data structures in iSPMs are comprised of various perspectives : organization, function, operation, and space. Each of these [START_REF] Neumuth | Validation of Knowledge Acquisition for Surgical Process Models[END_REF] perspectives can be used to generate a gSPM with a different focus. The choice of perspective is termed . As features, feature selection perspectives can be chosen either exclusively or concurrently. An exclusive perspective choice results in a gSPM that is dedicated to the perspective in question, e.g. performed surgical actions, while a combination of perspectives results in a gSPM that has relevance for all chosen perspectives, e.g. the combination of actions performed and surgical instruments used. The more features that are included in building a gSPM, the more complex the resulting gSPM will be.

Segmentation

Splitting the iSPM into interventional phases is referred to as segmentation. The segmentation step was performed automatically according to the time stamps of the activities and the interventional phases. Consequently, all activities allocated to one interventional phase were selected across all iSPMs within a population.

Inter-iSPM Registration

The objective of the registration step was to associate reference points between iSPMs. In preparation of the generation of the gSPM, the iSPMs of the selected population were registered to each other automatically, based on selected features from subsequent activities (cf.

). This registration step was performed for each interventional phase. Sequential activities represented transitions, expressed as Figure 4 predecessor-successor relationships. To include defined start and end nodes, artificial and features were added to each iSPM. START END and were included before the first predecessor and after the last iSPM successor respectively. START END

Computation of gSPMs

Computation of the gSPM structure

The transitions identified in the registration step were of relevance to the structural representation of the gSPM. For each interventional phase, all acquired transitions were registered based on the literals and were merged into one transition based on equal predecessor and successor activities. The result of this merging step was the gSPM structure.

Computation of the gSPM

The gSPM was subsequently annotated with global transition probabilities. The calculation was performed for all outgoing activity transitions in the iSPMs. The basis for the calculation was the number of sequential activities that each had the same predecessor.

Subsequently, the local transition probability was calculated by normalizing the means of the global transition probabilities. The results quantify the transitions in the structural gSPM in terms of percentages (cf.

).

shows how to compute the gSPMs. Figure 4 Table I

Filtering for Visual Representation of gSPM

The resulting statistical gSPM can result in complex models that are not amenable to visual representation. For this reason, the optional step of filtering was included for the example data sets to improve visual accessibility. The filtering consisted of masking all transitions whose values were lower than a threshold defined by the user. Filtering did not affect the gSPM, but rather aimed to increase the clarity of the visual representation.

Results of the application example

Objective of the Example Study

Cataract surgeries were chosen as a clinical example for the application of our methods. Based on clinical necessity, two treatment strategies are available for treating patients suffering from cataracts: ambulatory or inpatient treatments. The objective of the example study was the retrospective assessment of the ambulatory and inpatient treatment strategies our goal was to investigate differences in the gSPMs of both approaches. In addition to the assessment of more trivial measures, such as total

' '
intervention times or durations of surgical phases, the example study showed how two gSPMs can be utilized to compare intervention populations.

iSPM-Populations

All cataract interventions were performed between March and September 2006 at the Eye Clinic of the University Hospital in Leipzig (Germany). The assignment of the patients to their respective treatment strategy was performed according to clinical necessity and expected complications.

The ambulatory, as well as the inpatient interventions, were conducted by three different, experienced surgeons: one surgeon performed inpatient treatments and two performed the ambulatory treatments.

Only patients with a cataract diagnosis were included in the study. The beginning of the first paracentesis and the end of the Healon removal were chosen as unique criteria for defining the start and end of the interventional record (cf.

). Table III In total, 102 iSPMs of cataract surgery treatments were analyzed, 49 of which were performed as ambulatory and 53 as inpatient surgeries. The patient characteristics are presented in . Table II Cut-suture times were recorded from the Hospital Information System (HIS). One trained medical student was present in the operating room during the surgical procedures and acquired the data for the iSPMs through live observation with the aid of the Surgical Workflow

Editor

. The validation of the accuracy of iSPM data acquisition has been published in a previous in-depth study . In the latter

[23 ] [1 ]
publication, observers were shown to acquire iSPMs accurately, robustly, and repeatable in both live and video observations, with a content accuracy of 92 and a temporal accuracy of <2 s. Examples of the terminologies used for the interventional phases and for % describing perspective content are shown in to . Table III Table V For statistical analyses, Student s t-test was used with a significance level of 0.05. Segmentation, registration, and gSPM calculation

' α=
were performed in a PostgreSQL 8.3 database, and statistics were computed using SPSS.

Analysis and Visualization of gSPMs

This section will compare the ambulatory and the inpatient gSPMs, focusing on the durations of interventional phases and quantifying one interventional phase as an example with regard to the surgical workflow.

Cut-suture times measure the overall duration of the surgical interventions. The general assessment of the cut-suture times showed a significant difference (p<0.001) between ambulatory and inpatient cataract procedures. Mean cut-suture times were 00:16:01 00:04:39 for ± ambulatory interventions and 00:25:16 00:15:34 for inpatient interventions (cf.

).

±

Table VI

The interventional phases of , , , and constitute the surgical core of Capsulorhexis Lens removal Lens implantation Removal of Healon the intervention. In a second step, the total duration of these core phases was examined for both populations. The total duration for the interventional core phases was significantly different (p<0.001) and was 00:09:50 00:03:22 for ambulatory and 00:17:32 00:16:09 for The surgeons left hand used several different instruments. The micro spatula was not used at all in inpatient interventions.

'

Assessing the gSPMs for activity sequences revealed the most frequent transitions consistent with the surgical work sequences. The generic SPMs computed for the phase, using the example data, are shown for both populations in . Both gSPMs Capsulorhexis Figure 5 were filtered with a threshold of 5 , and all transitions with a global probability of less than this threshold were deleted from the gSPM % visualizations. Furthermore, the most probable paths were highlighted in each of the gSPMs (grey shaded activities). Due to the concurrent behavior of the surgeons left and right hands, there are two main paths for each population. As a simple criterion, all transitions connected ' to the main path that appeared in more than 50 of the respective iSPM population were highlighted using bold lines. Solid lines % symbolize the work flow of the surgeons right hand, while dotted lines symbolize the work flow of the surgeon s left hand.

' '

In , the significance of transitions between activities during the interventional phase is shown. Sample Table VIII Capsulorhexis results are presented for all highlighted transitions along the main path of each hand. Both strategies were significantly different for the path of the surgeon s right hand for the transition. This results from the existence of the alternative 

Discussion

To the best of our knowledge, this is the first approach that presents the computation of a generic Surgical Process Model a statistical mean surgical treatment based on large populations of real clinical data. As this work has shown, it is possible to create realistic gSPMs ' '

from real clinical data. The method presented in this paper showed the essential steps for building gSPMs and using them to assess the surgical work flow of intervention populations.

The example use case compared real clinical data from ambulatory and inpatient cataract interventions and demonstrated that differences between two mean treatments can be assessed and analyzed in detail. For the clinical example data, reasons for differences in

' '
procedure times of both surgical treatment strategies could be traced back to individual work steps in both populations.

Our calculated gSPMs for the clinical use case data demonstrated several differences in treatment strategies, which could be expressed in terms of temporal information, as well as by workflow transition disparities. Our example use case showed, that these transitional disparities can be clearly identified, quantified, and analyzed with the help of gSPMs. However, the presented methods work for other intervention types as well, provided they have been recorded using the same methods as described here.

We have considered the application of the overall method from the technical point of view and neglected possible biases from the clinical point of view, such as the complexity of the surgical cases and therefore the allocation of the patients to the impatient group, to show the feasibility of the approach. Furthermore, the cataract interventions in this article have not yet been interpreted from a clinical viewpoint. The differences between ambulatory and inpatient cataract interventions have been used only to provide a clinical example use case to present the idea of gSPMs and to illustrate the application of our methods.

It was possible to recover gSPMs that corresponded to recommended surgical treatments for both strategies. The output of the gSPMs can be adapted to meet a given user s needs. Perspectives and activities can be chosen freely, resulting in models of higher or lower ' complexity. The more perspectives are concurrently selected, the greater the complexity of the resulting gSPM, and vice versa.

Furthermore, a decrease in complexity, resulting in improved lucidity and a higher granularity, can be achieved by segmenting the iSPMs into local parts, e.g. based on interventional phases.

Calculating the transitions between activities also had a side effect: the bottom-up identification of a mean procedure course from the ' ' data. By following the transitions with the highest probabilities from the artificial START to the END, a statistical mean procedure course ' '

was identified. Clinical experts checked the resulting mean intervention courses to ensure they corresponded with the recommended cataract treatments.

The registration step between iSPMs in this study was based on the literal similarity of the features. This was appropriate in the context of gSPM calculations from the technical point of view, but it does not consider semantic similarities between work step descriptions. Computing the structural gSPM generated a purely logic-oriented model that only presents sequences of work steps.

To assess the transition probabilities between activities, only binary relations based on predecessor-successor relations were considered. Here, several other approaches could also be considered, such as data mining strategies , , . Examining the sequence [14 19 20 ] of transitions before the current predecessor might lead to a shift of probabilities. However, binary relations were chosen so that the models could be calculated with less complexity.

The objective of this work was to present a method to calculate gSPMs. However, further research is needed to investigate appropriate models from the clinical point of view, with a focus on the clinically relevant granularity of the gSPMs, the inclusion of several perspectives as features, and consideration of the history. The models can also be improved by explicit indication of concurrent activities, ' '

a step that was neglected in our example use cases so as not to overload the visual representations.

Several clinical application cases emerge from the new methods. Besides comparing surgical strategies, we could also quantify the use of different surgical technologies to achieve the same surgical goal. This makes an assessment of the influence of Surgical Assist Systems possible. Using gSPMs to train residents allows for an assessment of their progress. Furthermore, intervention costs may be calculated in more detail to improve the hospital s billing efficiency or other financial issues. For instance, operating rooms in hospitals command a vast ' amount of human resources, device resources, and materials. For this reason, they represent one of the most cost-intensive sectors in hospitals , . The use of these resources for individual patient treatments is usually estimated by measurement parameters such as [24 25 ] cut-suture times or by derived parameters such as turnover rates . However, cut-suture times do not provide the level of detail of [START_REF] Schuster | Utilization Rates and Turnover Times as Indicators of OR Workflow Efficiency[END_REF] information about the statistical mean treatment of an intervention population as generic Surgical Process Models. This can be put to a individual Surgical Process Models (iSPMs) and generic Surgical Process Models (gSPMs) that could be advantageous to investigate the reasons why a single surgical intervention course deviates from the mean procedure course.

In the future, detailed and rigorous analysis of gSPMs may serve as a powerful tool for surgeons to improve their work, for medical engineers to design support systems, for both to have a common, validated and standardized discussion base, and even for managing personnel to design better corporate structures, as illustrated in this article. Preclinical requirements analysis, retrospective analyses, or post-development evaluations of surgical strategies, surgical skill levels, or the use of new surgical instruments or devices are all use cases that could rely on models obtained from valid gSPMs. From the technical point of view, gSPMs can be also used as a pre-stage in developing workflow management support for the digital operating room of the future. 

'→

  path that did not occur in ambulatory interventions. Additionally, the paracentesis Vision blue injection irrigation healon injection→ → →use of a different surgical instrument for left-handed is reflected in the gSPMs. holding

  uses such as the estimation of resource needs for surgical interventions or an examination of differences in surgical work flow, which may ultimately support administrative billing.Consequently, the bottom-up identification of the mean intervention course allows for a further application case: the comparison of an ' '
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Table VIII

 VIII Differences in Capsulorhexis activity transitions (for activities on the mean path)

				'	'					
							global transition probability in	global transition probability in
	Start activity			Stop activity		ambulatory interventions		inpatient interventions	significance
	start		surgeon right hand paracentesis paracentesis knife	1.00 0.00 ±		0.64 0.48 ±	t(52) 5.39, =	p<0.001
					cornea					
	surgeon right hand paracentesis paracentesis knife	surgeon right hand inject healon chamber ant	0.94 0.24 ±		0.49 0.50 ±	t(76) 5.78, =	p<0.001
	cornea									
	surgeon right hand inject healon chamber ant	surgeon right hand capsulorhexis rhexis cannula	0.81 0.38 ±		0.83 0.35 ±	p>0.05
				capsula lentis					
	surgeon right hand capsulorhexis rhexis cannula	surgeon right hand cut lancet clear cut cornea	0.92 0.26 ±		0.84 0.33 ±	p>0.05
	capsula lentis									
	surgeon right hand cut lancet clear cut cornea	surgeon right hand excision material utrata s '	0.94 0.22 ±		0.99 0.07 ±	p>0.05
				tweezers capsula lentis					
	surgeon right hand excision material utrata s '			end		0.86 0.27 ±		0.94 0.16 ±	p>0.05
	tweezers capsula lentis								
	start		surgeon left hand hold colibri tweezers bulbus	0.24 0.43 ±		0.58 0.50 ±	t(99.689) 3.68, =-
					oculi						p<0.001
	surgeon left hand hold colibri tweezers bulbus			end		0.23 0.42 ±		0.80 0.28 ±	t(81.514) 7.944, =-
	oculi										p<0.001
	start		surgeon left hand hold micro spatula bulbus oculi	0.65 0.48 ±		0.00 0.00 ±	t(48) 9.51, =	p<0.001
	surgeon left hand hold micro spatula bulbus oculi			end		0.69 0.43 ±		0.00 0.00
						1.00 0.00 ±	-		6.06 1.92 ±	14.56 23.47 ±	t(33) 2.11, =-	p 0.04 =
	surgeon right hand inject	47	52	1.09 0.28 ±	1.27 0.6 ±	p>0.05		4.38 1.24 ±	6.15 1.26 ±	t(97) 7.03, =-
	healon chamber ant										p<0.001
	surgeon right hand	48	51		1.04 0.2 ±	1.18 0.56 ±	p>0.05		33.94 8.96 ±	64.37 23.43 ±	t(65.09) 8.63, =-
	capsulorhexis rhexis										p<0.001
	cannula capsula lentis									
	surgeon right hand cut	48	53		1.04 0.2 ±	1.02 0.14 ±	p>0.05		3.54 0.99 ±	4.75 1.25 ±	t(97.20) 5.42, =-
	lancet clear cut cornea										p<0.001
	surgeon right hand	48	53	1.21 0.41 ±	1.11 0.32 ±	p>0.05		4.38 1.92 ±	6.02 3.07 ±	t(88.43) 3.26, =-	p=
	excision material utrata s '										0.002
	tweezers capsula lentis									
	surgeon left hand hold	13	53	1.08 0.28 ±	1.49 0.75 ±	t(53.75) 3.22, =-	p=	33.92 14.73 ±	78.02 27.74 ±	t(35.73) 7.89, =-
	colibri tweezers bulbus						0.002				p<0.001
	oculi									
	surgeon left hand hold	38	0	1.16 0.37 ±	-	-		44.5 16.56	
	micro spatula bulbus									
	oculi									

± --± t(48) 11.28, = p<0.001
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Table I Computational algorithm for gSPM

Calculation of activity values

Grouping of all activities according to iSPM population, interventional phase, and selected perspectives For the duration of each combination, the mean and the standard deviation is calculated

Calculation of activity transitions

Grouping of all activities according to protocol-ID, interventional phases, and selected perspectives Computing the global transition probability for each selected transition in each protocol from the predecessor transition Calculating mean and standard deviations across all protocols of one iSPM population Joining activity durations with global transition probabilities, calculation of local transition probabilities, and creating the visualization