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Abstract—Our objective is to analyze EEG signals recorded 
with depth electrodes during seizures in patients with drug-
resistant epilepsy. Usually, different phases are observed 
during the seizure process, including a fast onset activity 
(FOA). We aim to determine how cerebral structures get 
involved during this FOA, in particular whether some 
structure can “drive” some other structures. This paper focuses 
on a linear Granger causality based measure to detect causal 
relation of interdependence in multivariate signals generated 
by a physiology-based model of coupled neuronal populations. 
When coupling between signals exists, statistical analysis 
supports the relevance of this index for characterizing the 
information flow and its direction among neuronal populations. 

I. INTRODUCTION 
PILEPSY is a neurological disorder characterized by 
repetitive seizures. In 30% of the cases, seizures remain 

drug-resistant and considerably affect all aspects of the 
patient’s life [1]. Drug-resistant epilepsies are often partial, 
with an epileptogenic zone (EZ) located in a relatively 
circumscribed brain area. For these partial epilepsies, 
surgical treatment can be considered. The difficulty that 
arises is then to determine the organization of the EZ and, 
thus, the areas that should be removed in order to suppress 
seizures. In some patients, the pre-surgical evaluation may 
include recording of intracerebral electroencephalographic 
(iEEG) signals using depth electrodes. The analysis of such 
signals remains a difficult task aimed at determining which 
sites of the brain belong to the EZ, prior to surgery. In this 
context, signal processing techniques can provide some 
quantitative information that cannot be easily obtained by 
visual analysis. This is typically the case for correlation 
(wide-sense) measures that proved useful for assessment of 
functional couplings between distant brain sites [2]. In this 
paper, we present some evaluation results about a method 
allowing for determination of causality relationships among 
neuronal ensembles from signals produced by these 
ensembles (typically local field potentials or iEEG signals). 
The concept of causality between time series was first 
introduced by Wiener [3] in 1956, then formulated by 
Granger [4] and known as Granger Causality Index (GCI). 
Granger causality is a statistical concept of causality that is 
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based on prediction and has been widely used in economics 
since the 1960s. According to Granger causality, if a signal 

1x  "causes" a signal 2x , then past values of 1x  should 
contain information that helps predict 2x  above and beyond 
the information contained in past values of 2x  alone. If GCI 
is an effective tool to describe causal interactions between 
signals, it is only within the last few years that applications 
in neuroscience have become popular [5]-[7]. In this paper, 
the method is evaluated on signals simulated from 
physiology-based model of coupled neuronal populations in 
which causality relationships can be controlled. The key 
features of this model are two-fold. First, it generates signals 
for which properties are similar to those of real signals 
observed at the onset of epileptic seizures. Second, it 
provides a “ground truth” about the degree and direction of 
couplings between populations of neurons, which is hardly 
accessible on real data. 

II. MATERIAL AND METHODS 

A. Linear Granger Causality Index (LGCI) 
Granger causality is normally tested in the context of 

linear regression models. Let 1x ,…, Qx  be Q  zero-mean 

signals whose discrete-time observations are noted 
1 2( ),  ( ),...,  ( )Qx t x t x t , 1,2,...,t T= , where T  is the signal 

length. If we model the observations by a multivariate 
autoregressive (AR) model of order m , we write 
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where each signal depends not only on its own past but also 
on the past of the other signals. ( )iw t , 1,  2,...,  i Q= , are 
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The coefficient ( ).i j kα  evaluates the linear interaction of 

( )jx t k−  on ( )ix t , whatever ,i j . These coefficients are 

estimated by solving Yule–Walker equations. 
Let us begin with the case of two signals by studying the 

causality 1 2x x→ . From an univariate model, the quality of 
the representation of 2x  may be evaluated from the variance 

of the prediction error 
2 2| −Γx x , where 2x−  symbolizes 2x  

past. Using a bivariate model, the variance of the prediction 
error becomes 

2 2 1| ,− −Γx x x . If 1x  causes 2x  in the Granger 

sense, then 
2 2 1| ,− −Γx x x  is smaller than 

2 2| −Γx x . Considering 

pairwise analysis, the level of LGCI from 1x  to 2x  is then 
evaluated by 
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Reciprocally, the LGCI from 2x  to 1x  can be evaluated. 
In the case of multiple signals, we can analyze 

independently each pair of signals as previously. However, 
pairwise analysis in this multivariate case cannot distinguish 
between direct and indirect coupling. In the multivariate 
case, to disambiguate such cases, direct causality from ix  to 

jx  conditionally to other signals is noted LGCI -Mij  and 

defined by (4) where the numerator is the variance of the 
prediction error of jx  by taking all signals into account 

except ix  
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B. Model of iEEG Signals Generation 
We used a physiology-based model to simulate the field 

activity of distant - and possibly coupled - neuronal 
populations. Each population generates a local activity that 
can be considered as an iEEG signal if one does not consider 
the source-electrode quasi-static transfer function. Readers 
may refer to [8], [9] for more information. In the model, 
each population contains three subpopulations of neurons 
that mutually interact via excitatory or inhibitory feedback: 
main pyramidal cells and two types of local interneurons. 
Since pyramidal cells are excitatory neurons that project 
their axons to other areas of the brain, the model accounts 
for this organization by using the average pulse density of 
action potentials from the main cells of one population i  as 
an excitatory input to another population j . In addition, this 
connection from population i  to j  is characterized by 

parameter ijK  which represents the degree of coupling 
associated with this connection. Appropriate setting of 
parameters ijK  allows for building systems where the 

neuronal populations are unidirectionally or bidirectionally 
coupled. Other parameters include excitatory and inhibitory 
gains in feedback loops as well as average number of 
synaptic contacts between subpopulations. These parameters 
are adjusted to control the intrinsic activity of each 
population (normal background versus epileptic activity). 

C. Simulated Signals 
The model described above was used to simulate long 

duration signals (400 s) for a fixed connectivity pattern 
among neuronal populations, as illustrated in Fig. 1A and 
Fig. 1B. Sampling rate was equal to 256 Hz. Model 
parameters were such that: (i) a fast quasi-sinusoidal (25 Hz, 
Fig. 1C) activity (similar to that observed at seizure onset) 
was generated by the three populations when they were uni-
directionally coupled (1 2 3) and (ii) this fast onset 
activity was only generated by population 1 when they were 
uncoupled. In this second situation, populations 2 and 3 
generated normal background activity (not shown). 

This scenario ensured that the epileptic activity present in 
populations 2 and 3 was caused by that of population 1. 
Another key aspect is that the spectral features of output 
signals are very close under the “coupled” condition. In 
addition, some jitter might be observed between simulated 
time series (Fig. 1B) as also observed in real situations, at 
seizure onset. 

III. RESULTS 
In this section, we present results on (i) LGCI in presence 

or absence of coupling, (ii) the influence of coupling 
strength. For the experiments, when there is a coupling 
between observations, the coupling coefficients are chosen 
identical, i.e. 12 23K K K= = . Model order m  is estimated 
by minimizing the Akaike's information criterion (AIC) on 
each frame. 
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Fig. 1. Simulated signals. A. Considered scenario for connectivity among 
neuronal populations. Epileptic activity in population 2 (resp. 3) is caused 
by excitatory drive from population 1 (resp. 2). B. An example of output 
signals when populations are coupled. Time delays are not constant over
time. C. Power spectral densities (PSD) of the signals are similar and match 
those observed in depth-EEG signals at the onset of seizures. 



  

A. Detection of Information Flow 
Firstly, we estimate LGCI considering pairwise analysis 

of signals (LGCI-P) and multivariate analysis (LGCI-M). 
The indices depend on the coupling and on the signals under 
study. LGCI is performed on 1024-point adjacent frames 
corresponding to sequences of 4s time duration, which is 
suitable for real signals (estimating changes below this value 
appears more difficult). For our simulated signals, we obtain 
100 values of indices. Table I reports the averaged indices 
for 0K =  and 1500K = . For 0K = , on the one hand, the 
averaged LGCI-P are similar (about 0.005) and, on the other 
hand, the averaged LGCI-M are also similar (about 0.003). 
Now, let us consider a coupling between signals using 

1500K = . As expected, LGCI  from 1x  to 2x  and from 2x  
to 3x  increase, both in pairwise and multivariate analysis. 
For each index, the variation (without coupling vs with 
coupling) is comparable using LGCI-P or LGCI-M (around 
0.015 for 12LGCI , and around 0.005 for 23LGCI ). This 
finding means that detecting the flow 2 3x x→  is more 
difficult than detecting the flow 1 2x x→ . As for the relation 

1 3x x→ , it is indirect and completely mediated by signal 

2x . Consequently, when 1500K = , 13LGCI -M  remains at 
a low value (0.0039 vs 0.0031) since it is based on a 
multivariate analysis. Fitting a two-dimensional AR model, 
the 13LGCI -P  index, which should have risen, does not 
sufficiently increase to reveal an influence from 1x  to 3x . 
Let us note that all other indices, corresponding to the 
opposite directions 2 1x x→ , 3 2x x→  and 3 1x x→ , remain 
low and quite constant in both conditions and present a 
lower variation using multivariate analysis. According to 
these remarks, we displayed on Fig. 2 the time evolution of 

12LGCI -M  and 21LGCI -M , for 1500K = , showing that 

12LGCI -M  is generally greater than 21LGCI -M . To 
confirm these results, statistical significance has to be 
addressed. 

Statistical analysis on LGCI-P and LGCI-M is 
summarized in Tables II and III. In these tables, the last 
column gives the value of the hypothesis test (a value of 1 
indicates that the null-hypothesis is rejected) and the 
expected value according to our scenario is given into 
brackets. In Table II, we test whether LGCI computed from 
signal i  to signal j  is significantly different from LGCI 
computed from signal j  to signal i  using the Wilcoxon 
signed-rank test. The unidirectional information flow from 
signal 1 to signal 2 is obvious with a very low p-value for 
pairwise or multivariate analysis (lower than 1e-16). In the 
same way, we can conclude on the information flow from 
signal 2 to signal 3 with a p-value at least lower than 1e-3. 

TABLE I 
RESULTS ON LGCI-P AND LGCI-M 

LGCI-P 

i jx x→  i = 1 i = 2 i = 3 
j = 1 - 0.0054 0.0048 
j = 2 0.0055 - 0.0046 

 
 

0K =  

j = 3 0.0052 0.0047 - 

i jx x→  i = 1 i = 2 i = 3 
j = 1 - 0.0064 0.0058 
j = 2 0.0209 - 0.0062 

 
 
1500K =  

j = 3 0.0059 0.0107 - 
LGCI-M 

i jx x→  i = 1 i = 2 i = 3 
j = 1 - 0.0034 0.0031 
j = 2 0.0032 - 0.0029 

 
 

0K =  

j = 3 0.0031 0.0031 - 

i jx x→  i = 1 i = 2 i = 3 
j = 1 - 0.0034 0.0036 
j = 2 0.0183 - 0.0046 

 
 
1500K =  

j = 3 0.0039 0.0071 - 

TABLE II 
WILCOXON TEST ON LGCI-P AND LGCI-M 

LGCI-P (K = 1500) 
 p h, [expected value] 

1 2x x→  vs 2 1x x→  6.7292e-017 1, [1] 

1 3x x→  vs 3 1x x→  0.8635 0, [1] 

2 3x x→  vs 3 2x x→  5.3566e-007 1, [1] 

LGCI-M (K = 1500) 
 p h, [expected value] 

1 2x x→  vs 2 1x x→  3.6417e-017 1, [1] 

1 3x x→  vs 3 1x x→  0.7859 0, [0] 

2 3x x→  vs 3 2x x→  2.6778e-004 1, [1] 

TABLE III 
MANN-WHITNEY TEST ON LGCI-P AND LGCI-M 

LGCI-P (K = 1500 vs K = 0) 
 p h, [expected value] 

1 2x x→  4.8567e-026 1, [1] 

1 3x x→  0.6451 0, [1] 

2 3x x→  7.2285e-010 1, [1] 

LGCI-M (K = 1500 vs K = 0) 
 p h, [expected value] 

1 2x x→  3.7870e-027 1, [1] 

1 3x x→  0.7222 0, [0] 

2 3x x→  4.5928e-006 1, [1] 
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Fig. 2. LGCI12-M ( 1500K = ) (solid line) versus LGCI21-M ( 1500K = )
(dotted line). 



  

For both indices, the only difference relies on the 
information flow from signal 1 to signal 3. For LGCI-M, the 
result is coherent: there is no direct relation between the two 
signals. As for LGCI-P, since signals are studied by pairs, 
we must find information flow from signal 1 to 3 but we can 
notice that the index fails in this case ( 0h = ). 

The second test, presented in Table III, consists in 
pointing out the effective coupling between signals when the 
parameter K  turns from 0 to 1500. Estimators are tested 
only for the real causal relations (either direct or indirect). It 
comes out that, in each case, using either LGCI-P or LGCI-
M, the Mann-Whitney test reveals a coupling from signal 1 
to signal 2, and from signal 2 to signal 3. As previously, the 
interaction from signal 1 to signal 3 cannot be put forward 
using LGCI-P, whereas it should be the case. On the other 
hand, LGCI-M does not reject the null-hypothesis since 
there is no direct relation between populations 1 and 3. 

B. Variable Coupling 
In this section, we study the significant influence of the 

coupling parameter K  on LGCI in the vectorial case. Fig. 3 
shows the evolution of 12LGCI -M , 23LGCI -M  and 

13LGCI -M , when K  varies from 100 to 1500 by step of 
100. 12LGCI -M  and 23LGCI -M  vary linearly with K  
(with a steeper slope for 12LGCI -M ) while 13LGCI -M is 
quite stable. So, the directions 1 2x x→  and 2 3x x→  are 
easier to detect when K  increases. 

We first tested the significance of LGCI-M between 
populations 1 and 2 for a value of K  different from 0. The 
value of h  using the Wilcoxon test is plotted in Fig. 4. For a 

p-value of 0.05, the test indicates a flow direction from 
population 1 to population 2 as soon as K  reaches 500. 
When we test 12LGCI -M  without and with coupling ( K  
varying from 100 to 1500), the Mann-Whitney test indicates 
a significant difference at a p-value of 0.05, whatever the 
value of K , except K  = 100 and K  = 400. In the same 
way, significant causality has been tested between 
populations 2 and 3. Testing 23LGCI -M  versus 

32LGCI -M  can be sometimes not significant at a level of 
5%, even for K  greater than 500. Now, testing 23LGCI -M  
with and without coupling yields a significant difference 
above 700K = . 

IV. CONCLUSION 
This paper was aimed at better understanding how seizure 

activity arises from a model of three neuronal populations. 
The a priori knowledge of effective coupling allows us to 
evaluate the relevance of Granger causality indices. The 
results reported in this paper show that the method can 
reveal the underlying network organization in a difficult 
situation where time shifts between signals strongly vary in 
time, as in the real case. Based on multivariate or pairwise 
analysis, direct causal relations are well detected for a 
sufficiently strong coupling whereas pairwise analysis may 
fail in detecting indirect relations. In a future work, 
according to the narrow-band characteristics of the signals, 
we plan to conduct statistical analysis in the frequency 
domain. 
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