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Abstract

Our objective is to analyze EEG signals recorded with depth electrodes during seizures in patients with drug-resistant epilepsy.

Usually, different phases are observed during the seizure process, including a fast onset activity (FOA). We aim to determine how

cerebral structures get involved during this FOA, in particular whether some structure can drive  some other structures. This paper“ ”
focuses on a linear Granger causality based measure to detect causal relation of interdependence in multivariate signals generated by

a physiology-based model of coupled neuronal populations. When coupling between signals exists, statistical analysis supports the

relevance of this index for characterizing the information flow and its direction among neuronal populations.

Introduction

Epilepsy is a neurological disorder characterized by repetitive seizures. In 30  of the cases, seizures remain drug-resistant and%
considerably affect all aspects of the patient s life . Drug-resistant epilepsies are often partial, with an epileptogenic zone (EZ) located’ [1 ]
in a relatively circumscribed brain area. For these partial epilepsies, surgical treatment can be considered. The difficulty that arises is then

to determine the organization of the EZ and, thus, the areas that should be removed in order to suppress seizures. In some patients, the

pre-surgical evaluation may include recording of intracerebral electroencephalographic (iEEG) signals using depth electrodes. The analysis

of such signals remains a difficult task aimed at determining which sites of the brain belong to the EZ, prior to surgery. In this context,

signal processing techniques can provide some quantitative information that cannot be easily obtained by visual analysis. This is typically

the case for correlation (wide-sense) measures that proved useful for assessment of functional couplings between distant brain sites . In[2 ]
this paper, we present some evaluation results about a method allowing for determination of causality relationships among neuronal

ensembles from signals produced by these ensembles (typically local field potentials or iEEG signals). The concept of causality between

time series was first introduced by Wiener  in 1956, then formulated by Granger  and known as Granger Causality Index (GCI).[3 ] [4 ]
Granger causality is a statistical concept of causality that is based on prediction and has been widely used in economics since the 1960s.

According to Granger causality, if a signal causes  a signal , then past values of should contain information that helps predict x 1 “ ” x 2 x 1 x 2 

above and beyond the information contained in past values of alone. If GCI is an effective tool to describe causal interactions betweenx 2 

signals, it is only within the last few years that applications in neuroscience have become popular . In this paper, the method is[5 ]–[7 ]
evaluated on signals simulated from physiology-based model of coupled neuronal populations in which causality relationships can be

controlled. The key features of this model are two-fold. First, it generates signals for which properties are similar to those of real signals

observed at the onset of epileptic seizures. Second, it provides a ground truth  about the degree and direction of couplings between“ ”
populations of neurons, which is hardly accessible on real data.

Material and Methods
Linear Granger Causality Index (LGCI)

Granger causality is normally tested in the context of linear regression models. Let , , be zero-mean signals whosex 1 … xQ Q 

discrete-time observations are noted ( ), ( ), , ( ),  1,2, , , where is the signal length. If we model the observations by ax 1 t x 2 t … xQ t t = … T T 

multivariate autoregressive (AR) model of order , we writem 

where each signal depends not only on its own past but also on the past of the other signals. ( ),  1, 2, , , are white Gaussianwi t i = … Q 

noises, and
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The coefficient ( ) evaluates the linear interaction of ( ) on ( ), whatever , . These coefficients are estimated by solvingαi. j k xj t −k xi t i j 

Yule Walker equations.–

Let us begin with the case of two signals by studying the causality  . From an univariate model, the quality of thex 1 → x 2 

representation of may be evaluated from the variance of the prediction error , where  symbolizes past. Using a bivariatex 2 x 2 

model, the variance of the prediction error becomes . If causes in the Granger sense, then  is smaller than .x 1 x 2 

Considering pairwise analysis, the level of LGCI from to is then evaluated byx 1 x 2 

Reciprocally, the LGCI from to can be evaluated.x 2 x 1 

In the case of multiple signals, we can analyze independently each pair of signals as previously. However, pairwise analysis in this

multivariate case cannot distinguish between direct and indirect coupling. In the multivariate case, to disambiguate such cases, direct

causality from to conditionally to other signals is noted LGCI -M and defined by ( ) where the numerator is the variance of thexi xj  ij 4 

prediction error of by taking all signals into account except xj xi

Model of iEEG Signals Generation

We used a physiology-based model to simulate the field activity of distant - and possibly coupled - neuronal populations. Each

population generates a local activity that can be considered as an iEEG signal if one does not consider the source-electrode quasi-static

transfer function. Readers may refer to ,  for more information. In the model, each population contains three subpopulations of[8 ] [9 ]
neurons that mutually interact via excitatory or inhibitory feedback: main pyramidal cells and two types of local interneurons. Since

pyramidal cells are excitatory neurons that project their axons to other areas of the brain, the model accounts for this organization by using

the average pulse density of action potentials from the main cells of one population as an excitatory input to another population . Ini j 

addition, this connection from population to is characterized by parameter which represents the degree of coupling associated withi j Kij 

this connection. Appropriate setting of parameters allows for building systems where the neuronal populations are unidirectionally orKij 

bidirectionally coupled. Other parameters include excitatory and inhibitory gains in feedback loops as well as average number of synaptic

contacts between subpopulations. These parameters are adjusted to control the intrinsic activity of each population (normal background

versus epileptic activity).

Simulated Signals

The model described above was used to simulate long duration signals (400 s) for a fixed connectivity pattern among neuronal

populations, as illustrated in and . Sampling rate was equal to 256 Hz. Model parameters were such that: (i) a fastFig. 1A Fig. 1B 

quasi-sinusoidal (25 Hz, ) activity (similar to that observed at seizure onset) was generated by the three populations when theyFig. 1C 

were unidirectionally coupled (1 2 3) and (ii) this fast onset activity was only generated by population 1 when they were uncoupled. In→ →
this second situation, populations 2 and 3 generated normal background activity (not shown).

This scenario ensured that the epileptic activity present in populations 2 and 3 was caused by that of population 1. Another key aspect

is that the spectral features of output signals are very close under the coupled  condition. In addition, some jitter might be observed“ ”
between simulated time series ( ) as also observed in real situations, at seizure onset.Fig. 1B 

Results
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In this section, we present results on (i) LGCI in presence or absence of coupling, (ii) the influence of coupling strength. For the

experiments, when there is a coupling between observations, the coupling coefficients are chosen identical, . Modeli.e. K 12 =K 23 =K 

order is estimated by minimizing the Akaike s information criterion (AIC) on each frame.m ’

Detection of Information Flow

Firstly, we estimate LGCI considering pairwise analysis of signals (LGCI-P) and multivariate analysis (LGCI-M). The indices depend

on the coupling and on the signals under study. LGCI is performed on 1024-point adjacent frames corresponding to sequences of 4s time

duration, which is suitable for real signals (estimating changes below this value appears more difficult). For our simulated signals, we

obtain 100 values of indices. reports the averaged indices for  0 and  1500. For  0, on the one hand, the averagedTable I K = K = K =
LGCI-P are similar (about 0.005) and, on the other hand, the averaged LGCI-M are also similar (about 0.003). Now, let us consider a

coupling between signals using  1500. As expected, LGCI from to and from to increase, both in pairwise and multivariateK = x 1 x 2 x 2 x 3 

analysis. For each index, the variation (without coupling vs with coupling) is comparable using LGCI-P or LGCI-M (around 0.015 for

LGCI , and around 0.005 for LGCI ). This finding means that detecting the flow  is more difficult than detecting the flow  12 23 x 2 → x 3 x 1 →

. As for the relation  , it is indirect and completely mediated by signal . Consequently, when  1500, LGCI -M remains atx 2 x 1 → x 3 x 2 K = 13 

a low value (0.0039 vs 0.0031) since it is based on a multivariate analysis. Fitting a two-dimensional AR model, the LGCI -P index,13 

which should have risen, does not sufficiently increase to reveal an influence from to . Let us note that all other indices,x 1 x 3 

corresponding to the opposite directions  ,  and  , remain low and quite constant in both conditions and present ax 2 → x 1 x 3 → x 2 x 3 → x 1 

lower variation using multivariate analysis. According to these remarks, we displayed on the time evolution of LGCI -M and LGCIFig. 2 12 

-M, for  1500, showing that LGCI -M is generally greater than LGCI -M. To confirm these results, statistical significance has to21 K = 12 21 

be addressed.

Statistical analysis on LGCI-P and LGCI-M is summarized in and . In these tables, the last column gives the value of theTables II III 

hypothesis test (a value of 1 indicates that the null-hypothesis is rejected) and the expected value according to our scenario is given into

brackets. In , we test whether LGCI computed from signal to signal is significantly different from LGCI computed from signal Table II i j j

to signal using the Wilcoxon signed-rank test. The unidirectional information flow from signal 1 to signal 2 is obvious with a very low i p 

-value for pairwise or multivariate analysis (lower than 1e-16). In the same way, we can conclude on the information flow from signal 2 to

signal 3 with a -value at least lower than 1e-3. For both indices, the only difference relies on the information flow from signal 1 to signalp 

3. For LGCI-M, the result is coherent: there is no direct relation between the two signals. As for LGCI-P, since signals are studied by pairs,

we must find information flow from signal 1 to 3 but we can notice that the index fails in this case (  0).h =

The second test, presented in , consists in pointing out the effective coupling between signals when the parameter turnsTable III K 

from 0 to 1500. Estimators are tested only for the real causal relations (either direct or indirect). It comes out that, in each case, using either

LGCI-P or LGCI-M, the Mann-Whitney test reveals a coupling from signal 1 to signal 2, and from signal 2 to signal 3. As previously, the

interaction from signal 1 to signal 3 cannot be put forward using LGCI-P, whereas it should be the case. On the other hand, LGCI-M does

not reject the null-hypothesis since there is no direct relation between populations 1 and 3.

Variable Coupling

In this section, we study the significant influence of the coupling parameter on LGCI in the vectorial case. shows theK Fig. 3 

evolution of LGCI -M, LGCI -M and LGCI -M, when varies from 100 to 1500 by step of 100. LGCI -M and LGCI -M vary12 23 13 K 12 23 

linearly with (with a steeper slope for LGCI -M) while LGCI -M is quite stable. So, the directions  and  are easier toK 12 13 x 1 → x 2 x 2 → x 3 

detect when increases.K 

We first tested the significance of LGCI-M between populations 1 and 2 for a value of different from 0. The value of using theK h 

Wilcoxon test is plotted in . For a -value of 0.05, the test indicates a flow direction from population 1 to population 2 as soon as Fig. 4 p K 

reaches 500. When we test LGCI -M without and with coupling ( varying from 100 to 1500), the Mann-Whitney test indicates a12 K 

significant difference at a -value of 0.05, whatever the value of , except  100 and  400. In the same way, significant causalityp K K = K =
has been tested between populations 2 and 3. Testing LGCI -M versus LGCI -M can be sometimes not significant at a level of 5 , even23 32 %

for greater than 500. Now, testing LGCI -M with and without coupling yields a significant difference above  700.K 23 K =

Conclusion

This paper was aimed at better understanding how seizure activity arises from a model of three neuronal populations. The a priori 

knowledge of effective coupling allows us to evaluate the relevance of Granger causality indices. The results reported in this paper show

that the method can reveal the underlying network organization in a difficult situation where time shifts between signals strongly vary in
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time, as in the real case. Based on multivariate or pairwise analysis, direct causal relations are well detected for a sufficiently strong

coupling whereas pairwise analysis may fail in detecting indirect relations. In a future work, according to the narrow-band characteristics

of the signals, we plan to conduct statistical analysis in the frequency domain.
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Fig. 1
Simulated signals. A. Considered scenario for connectivity among neuronal populations. Epileptic activity in population 2 (resp. 3) is caused

by excitatory drive from population 1 (resp. 2). B. An example of output signals when populations are coupled. Time delays are not constant

over time. C. Power spectral densities (PSD) of the signals are similar and match those observed in depth-EEG signals at the onset of seizures.
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Fig. 2
LGCI -M (  1500) (solid line) versus LGCI -M (  1500) (dotted line).12 K = 21 K =

Fig. 3
LGCI-M with varying from 100 to 1500.K 

Fig. 4
LGCI -M ( 0) versus LGCI -M ( 0) (solid line) and LGCI -M ( 0) versus LGCI -M (  0) (dotted line) with varying from12 K ≠ 21 K ≠ 12 K ≠ 12 K = K 

100 to 1500.
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TABLE I
Results on LGCI-P and LGCI-M

LGCI-P

0K =

 xi → xj  1i =  2i =  3i =

 1j = - 0.0054 0.0048

 2j = 0.0055 - 0.0046

 3j = 0.0052 0.0047 -

1500K =

 xi → xj  1i =  2i =  3i =

 1j = - 0.0064 0.0058

 2j = 0.0209 - 0.0062

 3j = 0.0059 0.0107 -

LGCI-M

0K =

 xi → xj  1i =  2i =  3i =

 1j = - 0.0034 0.0031

 2j = 0.0032 - 0.0029

 3j = 0.0031 0.0031 -

1500K =

 xi → xj  1i =  2i =  3i =

 1j = - 0.0034 0.0036

 2j = 0.0183 - 0.0046

 3j = 0.0039 0.0071 -

TABLE II
Wilcoxon Test on LGCI-P and LGCI-M

LGCI-P (  1500)K =

p , expected valueh [ ]

 vs  x 1 → x 2 x 2 → x 1 6.7292e-017 1, 1[ ]

 vs  x 1 → x 3 x 3 → x 1 0.8635 0, 1[ ]

 vs  x 2 → x 3 x 3 → x 2 5.3566e-007 1, 1[ ]

LGCI-M (  1500)K =

p , expected valueh [ ]

 vs  x 1 → x 2 x 2 → x 1 3.6417e-017 1, 1[ ]

 vs  x 1 → x 3 x 3 → x 1 0.7859 0, 0[ ]

 vs  x 2 → x 3 x 3 → x 2 2.6778e-004 1, 1[ ]



Conf Proc IEEE Eng Med Biol Soc . Author manuscript

Page /7 7

TABLE III
Mann-Whitney Test on LGCI-P and LGCI-M

LGCI-P (  1500 vs  0)K = K =

p , expected valueh [ ]

 x 1 → x 2 4.8567e-026 1, 1[ ]

 x 1 → x 3 0.6451 0, 1[ ]

 x 2 → x 3 7.2285e-010 1, 1[ ]

LGCI-M (  1500 vs  0)K = K =

p , expected valueh [ ]

 x 1 → x 2 3.7870e-027 1, 1[ ]

 x 1 → x 3 0.7222 0, 0[ ]

 x 2 → x 3 4.5928e-006 1, 1[ ]


