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I. INTRODUCTION

PILEPSY is a neurological disorder characterized by repetitive seizures. In 30% of the cases, seizures remain drug-resistant and considerably affect all aspects of the patient's life [START_REF] Engel | Outcome with respect to epileptic seizures[END_REF]. Drug-resistant epilepsies are often partial, with an epileptogenic zone (EZ) located in a relatively circumscribed brain area. For these partial epilepsies, surgical treatment can be considered. The difficulty that arises is then to determine the organization of the EZ and, thus, the areas that should be removed in order to suppress seizures. In some patients, the pre-surgical evaluation may include recording of intracerebral electroencephalographic (iEEG) signals using depth electrodes. The analysis of such signals remains a difficult task aimed at determining which sites of the brain belong to the EZ, prior to surgery. In this context, signal processing techniques can provide some quantitative information that cannot be easily obtained by visual analysis. This is typically the case for correlation (wide-sense) measures that proved useful for assessment of functional couplings between distant brain sites [START_REF] Ansari-Asl | Quantitative evaluation of linear and nonlinear methods characterizing interdependencies between brain signals[END_REF]. In this paper, we present some evaluation results about a method allowing for determination of causality relationships among neuronal ensembles from signals produced by these ensembles (typically local field potentials or iEEG signals). The concept of causality between time series was first introduced by Wiener [START_REF] Wiener | The theory of prediction[END_REF] in 1956, then formulated by Granger [START_REF] Granger | Investigating causal relations by econometric models and cross-spectral methods[END_REF] and known as Granger Causality Index (GCI). Granger causality is a statistical concept of causality that is x "causes" a signal 2

x , then past values of 1 x should contain information that helps predict 2

x above and beyond the information contained in past values of 2 x alone. If GCI is an effective tool to describe causal interactions between signals, it is only within the last few years that applications in neuroscience have become popular [START_REF] Wang | Granger causality between multiple interdependent neurobiological time series: Blockwise versus pairwise methods[END_REF]- [START_REF] Dauwels | A comparative study of synchrony measures for the early diagnosis of Alzheimer's disease based on EEG[END_REF]. In this paper, the method is evaluated on signals simulated from physiology-based model of coupled neuronal populations in which causality relationships can be controlled. The key features of this model are two-fold. First, it generates signals for which properties are similar to those of real signals observed at the onset of epileptic seizures. Second, it provides a "ground truth" about the degree and direction of couplings between populations of neurons, which is hardly accessible on real data. 

II. MATERIAL AND METHODS

A. Linear Granger Causality Index (LGCI)
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where each signal depends not only on its own past but also on the past of the other signals.
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past. Using a bivariate model, the variance of the prediction error becomes
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Reciprocally, the LGCI from 2

x to 1

x can be evaluated. In the case of multiple signals, we can analyze independently each pair of signals as previously. However, pairwise analysis in this multivariate case cannot distinguish between direct and indirect coupling. In the multivariate case, to disambiguate such cases, direct causality from i x to LGC I -M ln

- -- - -+ - - Γ = Γ j i i Q j Q x x x x x ij x x x . ( 4 
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B. Model of iEEG Signals Generation

We used a physiology-based model to simulate the field activity of distant -and possibly coupled -neuronal populations. Each population generates a local activity that can be considered as an iEEG signal if one does not consider the source-electrode quasi-static transfer function. Readers may refer to [START_REF] Wendling | Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals[END_REF], [START_REF] Wendling | Interictal to ictal transition in human temporal lobe epilepsy: insights from a computational model of intracerebral EEG[END_REF] for more information. In the model, each population contains three subpopulations of neurons that mutually interact via excitatory or inhibitory feedback: main pyramidal cells and two types of local interneurons. Since pyramidal cells are excitatory neurons that project their axons to other areas of the brain, the model accounts for this organization by using the average pulse density of action potentials from the main cells of one population i as an excitatory input to another population j . In addition, this connection from population i to j is characterized by parameter ij K which represents the degree of coupling associated with this connection. Appropriate setting of parameters ij K allows for building systems where the neuronal populations are unidirectionally or bidirectionally coupled. Other parameters include excitatory and inhibitory gains in feedback loops as well as average number of synaptic contacts between subpopulations. These parameters are adjusted to control the intrinsic activity of each population (normal background versus epileptic activity).

C. Simulated Signals

The model described above was used to simulate long duration signals (400 s) for a fixed connectivity pattern among neuronal populations, as illustrated in Fig. 1A and Fig. 1B. Sampling rate was equal to 256 Hz. Model parameters were such that: (i) a fast quasi-sinusoidal (25 Hz, Fig. 1C) activity (similar to that observed at seizure onset) was generated by the three populations when they were unidirectionally coupled (1 2 3) and (ii) this fast onset activity was only generated by population 1 when they were uncoupled. In this second situation, populations 2 and 3 generated normal background activity (not shown).

This scenario ensured that the epileptic activity present in populations 2 and 3 was caused by that of population 1.

Another key aspect is that the spectral features of output signals are very close under the "coupled" condition. In addition, some jitter might be observed between simulated time series (Fig. 1B) as also observed in real situations, at seizure onset.

III. RESULTS

In this section, we present results on (i) LGCI in presence or absence of coupling, (ii) the influence of coupling strength. For the experiments, when there is a coupling between observations, the coupling coefficients are chosen identical, i.e. 12 23

K K K = = .
Model order m is estimated by minimizing the Akaike's information criterion (AIC) on each frame. 

A. Detection of Information Flow Firstly, we estimate LGCI considering pairwise analysis of signals (LGCI-P) and multivariate analysis (LGCI-M). The indices depend on the coupling and on the signals under study.

LGCI is performed on 1024-point adjacent frames corresponding to sequences of 4s time duration, which is suitable for real signals (estimating changes below this value appears more difficult). For our simulated signals, we obtain 100 values of indices. Table I reports the averaged indices for 0 K = and 1500 K =

. For 0 K = , on the one hand, the averaged LGCI-P are similar (about 0.005) and, on the other hand, the averaged LGCI-M are also similar (about 0.003). Now, let us consider a coupling between signals using 1500 K =

. As expected, LGCI from 1 x to 2 x and from 2 x to 3

x increase, both in pairwise and multivariate analysis. For each index, the variation (without coupling vs with coupling) is comparable using LGCI-P or LGCI-M (around 0.015 for LGCI -M remains at a low value (0.0039 vs 0.0031) since it is based on a multivariate analysis. Fitting a two-dimensional AR model, the 13 LGCI -P index, which should risen, does not sufficiently increase to reveal an influence from 1

x to 3

x . Let us note that all other indices, corresponding to the opposite directions 2 LGCI -M is generally greater than 21

LGCI -M . To confirm these results, statistical significance has to be addressed.

Statistical analysis on LGCI-P and LGCI-M is summarized in Tables II andIII. In these tables, the last column gives the value of the hypothesis test (a value of 1 indicates that the null-hypothesis is rejected) and the expected value according to our scenario is given into brackets. In Table II, we test whether LGCI computed from signal i to signal j is significantly different from LGCI computed from signal j to signal i using the Wilcoxon signed-rank test. The unidirectional information flow from signal 1 to signal 2 is obvious with a very low p-value for pairwise or multivariate analysis (lower than 1e-16). In the same way, we can conclude on the information flow from signal 2 to signal 3 with a p-value at least lower than 1e-3.

TABLE I RESULTS ON LGCI-P AND LGCI-M

LGCI-P

i j x x → i = 1 i = 2 i = 3 j = 1 - 0.0054 0.0048 j = 2 0.0055 - 0.0046 0 K = j = 3 0.0052 0.0047 - i j x x → i = 1 i = 2 i = 3 j = 1 - 0.0064 0.0058 j = 2 0.0209 - 0.0062 1500 K = j = 3 0.0059 0.0107 - LGCI-M i j x x → i = 1 i = 2 i = 3 j = 1 - 0.0034 0.0031 j = 2 0.0032 - 0.0029 0 K = j = 3 0.0031 0.0031 - i j x x → i = 1 i = 2 i = 3 j = 1 - 0.0034 0.0036 j = 2 0.0183 - 0.0046 1500 K = j = 3 0.0039 0.0071 -

TABLE II WILCOXON TEST ON LGCI-P AND LGCI-M

LGCI-P (K = 1500) p h, [expected value]

1 2 x x → vs 2 1 x x → 6.7292e-017 1, [1] 1 3 x x → vs 3 1 x x → 0.8635 0, [1] 2 3 x x → vs 3 2 x x → 5.3566e-007 1, [1] LGCI-M (K = 1500) p h, [expected value] 1 2 x x → vs 2 1 x x → 3.6417e-017 1, [1] 1 3 x x → vs 3 1 x x → 0.7859 0, [0] 2 3 x x → vs 3 2 x x → 2.6778e-004 1, [1]

TABLE III MANN-WHITNEY TEST ON LGCI-P AND LGCI-M

LGCI-P (K = 1500 vs K = 0) p h, [expected value]

1 2 x x → 4.8567e-026 1, [1] 1 3 x x → 0.6451 0, [1] 2 3 x x → 7.2285e-010 1, [1]
LGCI-M (K = 1500 vs K = 0) p h, [expected value] For both indices, the only difference relies on the information flow from signal 1 to signal 3. For LGCI-M, the result is coherent: there is no direct relation between the two signals. As for LGCI-P, since signals are studied by pairs, we must find information flow from signal 1 to 3 but we can notice that the index fails in this case ( 0 h = ). The second test, presented in Table III, consists in pointing out the effective coupling between signals when the parameter K turns from 0 to 1500. Estimators are tested only for the real causal relations (either direct or indirect). It comes out that, in each case, using either LGCI-P or LGCI-M, the Mann-Whitney test reveals a coupling from signal 1 to signal 2, and from signal 2 to signal 3. As previously, the interaction from signal 1 to signal 3 cannot be put forward using LGCI-P, whereas it should be the case. On the other hand, LGCI-M does not reject the null-hypothesis since there is no direct relation between populations 1 and 3.

B. Variable Coupling

In this section, we study the significant influence of the coupling parameter K on LGCI in the vectorial case. Fig. 3 shows the evolution of We first tested the significance of LGCI-M between populations 1 and 2 for a value of K different from 0. The value of h using the Wilcoxon test is plotted in Fig. 4. For a p-value of 0.05, the test indicates a flow direction from population 1 to population 2 as soon as K reaches 500. When we test 12

LGCI -M without and with coupling ( K varying from 100 to 1500), the Mann-Whitney test indicates a significant difference at a p-value of 0.05, whatever the value of K , except K = 100 and K = 400. In the same way, significant causality has been tested between populations 2 and 3. Testing LGCI -M can be sometimes not significant at a level of 5%, even for K greater than 500. Now, testing
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LGCI -M with and without coupling yields a significant difference above 700 K = .

IV. CONCLUSION This paper was aimed at better understanding how seizure activity arises from a model of three neuronal populations. The a priori knowledge of effective coupling allows us to evaluate the relevance of Granger causality indices. The results reported in this paper show that the method can reveal the underlying network organization in a difficult situation where time shifts between signals strongly vary in time, as in the real case. Based on multivariate or pairwise analysis, direct causal relations are well detected for a sufficiently strong coupling whereas pairwise analysis may fail in detecting indirect relations. In a future work, according to the narrow-band characteristics of the signals, we plan to conduct statistical analysis in the frequency domain. 
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  conditionally to other signals is noted LGCI -M ij and defined by (4) where the numerator is the variance of the prediction error of j x by taking all signals into account except

Fig. 1 .

 1 Fig. 1. Simulated signals. A. Considered scenario for connectivity among neuronal populations. Epileptic activity in population 2 (resp. 3) is caused by excitatory drive from population 1 (resp. 2). B. An example of output signals when populations are coupled. Time delays are not constant over time. C. Power spectral densities (PSD) of the signals are similar and match those observed in depth-EEG signals at the onset of seizures.

LGCI

  low and quite constant in both conditions and present a lower variation using multivariate analysis. According to these remarks, we displayed on Fig.2the time evolution of 12

  Fig. 2. LGCI 12 -M ( 1500 K = ) (solid line) versus LGCI 21 -M ( 1500 K = ) (dotted line).

  , when K varies from 100 to 1500 by step of 100when K increases.

Fig. 3 .Fig. 4 .

 34 Fig.3. LGCI-M with K varying from 100 to 1500.
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