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ECG Gated Tomographic reconstruction for 3-D Rotational Coronary

Angiography

Yining HU, Lizhe XIE, Jean Claude NUNES, Jean Jacques BELLANGER, Marc BEDOSSA, Christine TOUMOULIN

Abstract— A method is proposed for 3-D reconstruction of
coronary from a limited number of projections in rotational
angiography. A Bayesian maximum a posteriori (MAP)
estimation is applied with a Poisson distributed projection to
reconstruct the 3D coronary tree at a given instant of the
cardiac cycle. Several regularizers are investigated L0-norm, L1
and L2 -norm in order to take into account the sparsity of the
data. Evaluations are reported on simulated data obtained from
a 3D dynamic sequence acquired on a 64-slice GE LightSpeed
CT scan. A performance study is conducted to evaluate the
quality of the reconstruction of the structures.

I. INTRODUCTION

Cardiologists, who are under tremendous time constraints,

ask for new advances in angiography imaging techniques

to improve both the safety and the efficacy of coronary

angiography interventions. Today, the rotational angiography

allows to obtain up to 180 projections of the left or right

coronary tree during a single injection of contrast under

different angles (caudal, cranial, axial). It provides thus a

complete range of projections, giving a pseudo 3-D view of

the coronary tree with all the structures moving all together

but a challenge remains the 3D coronary reconstruction

that will provide the ground for a platform dedicated to

the planning and execution of percutaneous coronary inter-

ventions. Indeed rapid, online 3D coronary reconstruction

remains an open problem due to the cardiac motion which

is unknown, non-linear and not always regular. Mainly two

different approaches have been applied to the reconstruction

of coronary in rotational angiography imaging [1]. The first

one considers the reconstruction as an inverse problem.

Two kinds of methods have been used respectively based

on filtered back projection [2] and iterative reconstruction

techniques [3-4]. Nevertheless, the presence of the motion

leads to consider an ECG gated reconstruction with a very
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limited number of projections (i.e. associated with the same

motion stage). Filtered backprojection methods generally

yield unsatisfactory results with many artifacts while iterative

reconstruction techniques try to overcome these limitations

by using regularization function to incorporate prior infor-

mation. An alternative consists to first estimate the motion

of the coronary arteries throughout the cardiac cycle and

performed then a motion compensated reconstruction of the

structure at a given phase of the cardiac cycle, using the set

of overall projections. This reconstruction is then performed

either with iterative [5-6] or filtered back projection [7-8]

methods. This kind of method involves applying, as modeling

techniques, computer vision methods to extract the coronary

tree on all the images of the sequence and determine the 4D

motion vector field (3D+T).

We present a modified version of an ECG gated statistic

based iterative reconstruction method [3]. We first inves-

tigated a technique for accelerating the computation of

conebeam forward and backward projections (section II.A)

and evaluated then three regularization functions (respec-

tively L0,L1 and L2 norm) to take into account the sparsity of

the data(section II.B). The optimization process relies on a

separable paraboloidal surrogates (SPS) algorithm (Section

II.C). Preliminary results are given on simulated data in

section III.

II. METHOD

A. Projection Matrix

The computation of forward and backward projec-

tions represents the basic stages of tomographic recon-

struction algorithms. Several interpolation methods have

been proposed (that are pixel, ray or distance driven),

which provide some compromise between computational

complexity and accuracy [9]. They nevertheless remain

highly time consuming. One way to reduce this computation

time consists in pre-storing the projection matrix. This is

often used in conventional 2D tomography reconstructions.

However in the case of the 3D reconstructions, the size of

the matrix becomes too large. Thus, if we consider a volume

of size 256×256×256 voxels, 80 image projections of size

256 × 256 pixels corresponding to a rotational acquisition

with an angular coverage of RAO60o to LAO60o and a

fan angle of 2π/3, then the size of the matrix amounts to

7864320 × 16777216 The fact to deal with sparse objects

does not simplify its computation. Nevertheless, numerical

simplification can be considered if the matrix is symmetric.



We can thus separate it into a product of 2 matrices to make

possible its storage.

Let consider f the 3D object, b the noisy background

image and θ = {θ1, θ2, · · · , θM} the device positions

(angles), M being the number of considered rotation

angles. Then the corresponding projection planes g =
{g1, g2, · · · , gM} can be computed using the following

relation:

gm = bm exp{−Amf} (1)

with A representing the forward projection operator. The

X-ray source and the detector are mounted on a motorized

computer-controlled arc. The entire assembly can be rotated

along the arc, thereby allowing multiple acquisitions from

different angles. We assume this rotation uniform and for

each angular increment, the assembly rotates from ∆θ

θm − θm−1 = ∆θ (2)

Since the X-ray source is fixed with respect to the centre-of-

rotation, the computation of each image projection for each

rotation angle can be written under the following form:

gm = bm exp{−A0Qθf} (3)

with Qθ representing the rotation matrix. This latter one

being block-diagonal, we can rewrite it in the following way:

Qθ = diag{qθ, qθ, · · · , qθ} (4)

With qθ the 2D rotation matrix associated with the projection

to be computed for each θ rotation angle. This decomposition

allows storing A0 and qθ, providing thus an easy way to

compute the projection matrix for both projection and back

projection operations. Its size can thus be reduced by a ratio

of 99.2%. Now if we consider only the symmetry property

of A0, its storage will be limited to 25%.

TABLE I

CPU time costs (unit in second) of one Forward and Backward projection
for a single angle = 0o on a 2.5 GHz CPU and 4 GB memory storage. The
interpolation method is distance driven[9], The mean gain achievable on the
projection and back projection operations are approximately 25% and 10%

respectively

Time cost for Forward Projection Backward Projection

volume(2563)

Without matrix 1.23s 3.13s
pre-computation

With matrix 0.32s 0.32s
pre-computation

B. ECG gating reconstruction

The image acquisition is performed in a short time period

(maximum four cardiac cycles). Because of the motion,

the number of projections, we can consider for the recon-

struction, is small, equal to four. The images are known a

priori to be sparse in the space domain. We thus investigated

three regularized statistical iterative algorithms for the image

reconstruction considering a Poisson model for data. We can

thus define a MAP reconstruction for which we looked for

minimizing the function:

Φ(f) = −L(g|f) + βR(f) (5)

With g representing the observed image, L(g|f) the Poisson

log-likelihood function and R(f) the image prior function

known as a regularizer or a penalty.

L(g|f) =
∑

i

(−ḡi + gi log(ḡi) − log(gi)) (6)

with

ḡi
∼= Poisson(gm)i + ri (7)

We investigated three regularizer which are respectively L2,

L1 and L0 norm prior in the EM algorithm as a sparsity

measure. For L2 norm prior, the potential function is:

ϕ(t) = t2 (8)

and for L1 norm prior:

ϕ(t) = |t| (9)

Unlike the L2 and L1 norm, the L0-norm is non convex and

not continuous and uniform almost everywhere except zero.

This brings difficulty for the optimization. We use a set of

surrogate potential functions and gradually approximates the

reconstructions by a set of outer iterations which was defined

in this paper:

ϕ(t, ρ) =
2

π
arctan

(
|t|/ρ

)
(10)

By successively reducing ρ, the potential function approxi-

mates the definition of L0-norm:

lim
ρ→0

ϕ(t, ρ) = |sgn(t)| (11)

The use of (10) prevent the algorithm from falling into local

minimal.

C. Optimization

The computation cost depends on two elements: the time

cost per iteration and the convergence speed. The use of

pre-computation matrix reduces the time cost per iteration.

Besides this, we have to find an algorithm that provides a

fast convergence. We choose the SPS algorithm introduced

by Fessler for PET image reconstruction [10-11]. The key of

the SPS method is to find a decomposition of the objective

function (5) into quadratic surrogate functions to allow its

minimization by a simple simultaneous update.

From (6), we can set the surrogate functions qi under the

following quadratic form:

qi(g; gn
i ) = Li(g

n
i ) + L̇i(g

n
i )(g − gn

i ) +
1

2
ci(g

n
i )(g − gn

i )2

(12)

gn
i denotes the estimate of the ith projection of the

estimated image at the nth iteration. If L̇ denotes the first

derivative of L , we can set : qi(g
n
i ; gn

i ) = L(gn
i ) and

q̇i(g
n
i ; gn

i ) = L̇(gn
i ). ci(g

n
i ) characterizes the curvature of

the parabola qi satisfying:

Li(g) ≤ qi(g; gn
i ), whileg ≥ 0 (13)



The convergence speed depends on the curvature ci(g
n
i ),

whose definition was given by:

ci(g
n
i ) = max

{
2

Li(0)−Li(g
n

i
)+gn

i
L̇i(g

n

i
)

(gn

i
)
2 if gn

i > 0

L̈i(0) if gn
i = 0

, 0

}
(14)

The surrogate function can be set as follows:

Q(f ;fn) =
∑

i

qi(gi; g
n
i ) (15)

A quadratic function applied at each pixel, is then given by:

⌢

Q
n

j (fj) = Q(fn
j ;f)+(fj−fn

j )Q̇n
j (fn

j ;f)+
1

2
dn

j (fj − fn
j )2

(16)

Where fn
j is the current estimate of voxel fj

Q̇n
j (fn

j ;f) =
∑

i

aij q̇i(g
n
i ) (17)

and

dn
j =

∑

i

a2
ijci(g

n
i ) (18)

To simplify the calculation, a pre-computation of dn
j can be

done as in [11]:

dn
j =

∑

i

aij

(ḡi − ri)
2

ḡi




∑

j

aij


 (19)

Since the potential function of L0-norm prior is not convex,

it is difficult to generate a quadratic surrogate function. We

separate thus the update into 2 parts:

f̃n+1
j = max(0, fn

j −
Q̇n

j (fn
j )

dj
n

) (20)

fn+1
j = max(0, f̃n+1

j − βṘ(fn
j ;fn, ρ)) (21)

Finally, the algorithm is the following:

• Estimate background

• Initialize f, ρ0, β0,σ and ε
• For k = 1, · · · ,K, set ρ = ρ0δ(k−1), β = β0ε(k−1)

– For n = 1, · · · , N

∗ For θ = θ1, · · · , θM

· Update f̂n,m estimation using (20) and (21)

· Update forward projection g and Q̇n

• End

III. RESULTS

The experiments have been conducted on simulated data.

These data were built from a 3D dynamic sequence acquired

on a 64-slice GE LightSpeed CT coronary angiography[12].

A sequence of 20 3D binary coronary trees was built corre-

sponding to 20 different cardiac phases. A C-arm rotational

R-X coronary angiography was then simulated using the

Siemens Axiom System imaging protocol. The detector plane

(200mm)2 was uniformly sampled into 5122 pixels. Recon-

structions were performed in a volume of (110mm)3, 80

projections of the 3D binary tree were generated, uniformly

spaced over the range RAO60o to LAO60o. 4 cardiac cycles

Fig. 1. Projection image acquired at angle RAO60o: left: after background
addition; right: after noise addition.

Fig. 2. Result of the background extraction: Left: vessel mask; right:
estimated background image

were considered, this means that a volume (associated with

a phase s of the cardiac cycle) was projected 4 times

during the acquisition, according to different viewpoints.

The projection operator A has been computed according

to [9] and optimized according to section II.A. We used

then the method of low order polynomials approximation to

create the required background images from real angiography

images acquired separately on the Siemens device (Fig. 1).

Poisson noisy data were then generated, which were used for

reconstructions.

A. Background Estimation

The background image, previously denoted bm , is

unknown and was estimated from the projection data. We

applied the following processing sequence:

• A low pass filtering on g (result noted 1g)

• A top-hat filtering on 1g (result noted 2g)

• A threshold on 2g (the result provides a vessel mask g̃)

• A Multiplication of the image g with the inverse

mask:g̃bkg = g × (1 − g̃)
• A closing filtering on g̃bkg

The final background image is then given by (Fig. 2): gbkg =
g̃bkg × g̃ + g × (1 − g̃)

B. 3D Reconstruction

The 3D reconstruction was performed using the 3

regularizer: L2, L1 and L0 norm. The parameter β was

chosen to minimize the MSE value of the reconstruction

during iteration: β =0.2 for L2 norm and 0.02 for L1 norm.

For L0 norm, we set ρ0 = 1.0, σ0 = 0.7, β0 = 1.0 and

ε = 0.7, K = 8, N = 50. For all the regularizers, the

convergence was reached for 400 iterations. To evaluate the



(a) (b)

(c) (d)

Fig. 3. A result of the coronary reconstruction from 4 projections of phase
1(RAO 60o, RAO 30o, LAO 0o, LAO 30o) (a) original 3D coronary tree
without the background, (b) reconstruction using L2 norm penalty (MSE
14.38%), (c) L1 norm (MSE 7.12%) (d) L0 norm (MSE 2.55%)

results, we computed the normalized percentage error MSE

(Fig.3).

Experiments showed that L0 norm prior provided the

lowest MSE and the best quality of reconstruction. In the

algorithm, a relaxation parameter σ was applied for succes-

sively approaching the ”true L0 norm”. Fig.4 shows the

influence of this parameter in the reconstruction quality(σ
sets in the range [0,1]). The chosen value was the one

that minimized the MSE error. This value was found to be

0.7. Above, the reconstruction appears over smoothed with

missing small branches. Under, artifacts appear due to the

fact that the solution reaches a local minimum.

IV. CONCLUSION

We evaluated three penalized-likelihood algorithms for the

3D coronary artery reconstruction using a Poisson model

for the data. Evaluations have been performed by means

of a realistic phantom representing an arterial tree extracted

from a sequence of MDCT datasets in order to get a ground

truth. Results showed that L0-norm significantly improved

the results compared to L1 and L2-norm. We also improved

the global computation time of the reconstruction algorithm

through the improvement of the time cost per iteration (in

the projection-backprojection matrix computation) and the

convergence speed of the algorithm.
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(a) (b)

(c) (d)

Fig. 4. Influence of the relaxation value in the quality of the reconstruction:
(a)σ= 0.5 (MSE:16.27%), (b)σ=0.6 (MSE :8.93%), (c)σ=0.7 (MSE: 2.55%)
(d)σ=0.8 (MSE :4.35%)
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