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On joint diagonalization of cumulant matrices for independent
component analysis of MRS and EEG signals

Laurent Albera, Amar Kachenoura, Fabrice Wendling, Lotfi Senhadji and Isabelle Merlet

Abstract— An extension of the original implementation of
JADE, named eJADE(1) hereafter, was proposed in 2001 to
perform independent component analysis for any combination
of statistical orders greater than or equal to three. More
precisely, eJADE(1) relies on the joint diagonalization of a
set of several cumulant matrices corresponding to different
matrix slices of one or several higher order cumulant tensors.
An efficient way, without lose of statistical information, of
reducing the number of third and fourth order cumulant
matrices to be jointly diagonalized is proposed in this paper.
The resulting approach, named eJADE(2)

3,4, can be interpreted
as an improvement of the eJADE(1)

3,4 method. A performance
comparison with classical methods is conducted in the context
of MRS and EEG signals showing the good behavior of our
technique.

I. INTRODUCTION

Independent Component Analysis (ICA) has lately raised
great interest in numerous applications including telecom-
munications, audio, or biomedical engineering [1], [9]–[11],
[17], [19]. For instance, Hu et al. [9] proposed to use ICA
for identification and removal of the reference signal con-
tribution from intracranial ElectroEncephaloGraphy (EEG)
recorded with a scalp reference signal. They showed that
such an approach gave better results than bipolar or average
common reference EEG montages. In fact ICA aims at
extracting the sources i) based on their mutual independence
and ii) from the sole observation of the mixtures recorded
by electrodes.

Comon originally proposed to maximize contrast functions
(simply called contrasts) derived from Higher Order (HO)
cumulants of the data in order to perform ICA [5]. This
led to the famous CoM2 method using Fourth Order (FO)
cumulants. Another famous ICA technique method appeared
at the same period, proposed by Cardoso and Souloumiac
[3]. The latter, named JADE(1)

4 hereafter, maximizes a novel
FO contrast by means of the joint diagonalization of a set of
several cumulant matrices corresponding to different matrix
slices of the FO cumulant tensor. A second implementation,
called JADE(2)

4 hereafter, was also given aiming at reducing
the number of matrices to be jointly diagonalized without
loss of statistical information. This requires to compute the
principal eigenvectors of the symmetric square unfolding
matrix, named quadricovariance, of the whole FO cumulant
tensor. The idea of combining HO cumulants of different or-
ders was originally proposed by Moreau [15]. Moreau unified
both contrasts maximized by CoM2 and JADE4, respectively,

L. Albera, A. Kachenoura, F. Wendling, L. Senhadji and I. Merlet are
with the INSERM U642, Rennes F-35000, France, and the Université de
Rennes 1, LTSI, Rennes F-35000, France.

through a more general contrast. Then he extended it to any
HO statistics and gave the possibility of combining different
HO’s. Moreover, he showed how such a generalized contrast
could be maximized by using a Jacobi-like procedure similar
to that used in CoM2. In addition, he showed that a link
with joint diagonalization of a set N of cumulant matrices
corresponding to different matrix slices of one or several HO
cumulant tensors can be established for some values of his
generalized contrast. In particular, such a link allowed him to
propose an extension of JADE(1)

4 , called eJADE(1) hereafter,
to any HO(’s). More recently, Blaschke and Wiskott proposed
to maximize a contrast combining Third Order (TO) and FO
cumulants leading to the CubICA technique [2]. If CubICA
can be seen as an extension of CoM2, the contrast maximized
by authors is just a particular case of the general contrast
introduced by Moreau [15]. The optimization scheme is close
enough to that proposed by Moreau. Hence the response
made by Moreau two years later [16].

The solution proposed in this paper, named eJADE(2)
3,4,

aims at improving the eJADE(1)
3,4 method [15]. More pre-

cisely, an efficient way, without lose of statistical informa-
tion, of reducing the number of TO and FO cumulant ma-
trices to be jointly diagonalized is proposed. A performance
comparison with nine classical ICA methods is performed in
the context of Magnetic Resonance Spectroscopic (MRS) and
EEG signals showing the good behavior of our technique.

II. ASSUMPTIONS AND PROBLEM FORMULATION

We assume that K realizations of an N -dimensional real
random vector x are observed such that:

x =
∑P

p=1 ap sp + ν = A s + ν (1)

where s = [s1, · · · , sP ]T is a P -dimensional real random
vector, called source vector, with mutually independent com-
ponents. We also assume that each source sp has a non-zero
TO or FO marginal cumulant. Matrix A = [a1, · · · ,aP ] is
the (N×P ) static mixing matrix with linearly independent
columns ap. As far as the N -dimensional real random vector
ν is concerned, it represents an additive Gaussian noise
independent of the source vector.

The goal of ICA is to determine a separating matrix, W ,
such that:

y = W T x (2)

is an estimate of vector s up to a multiplicative trivial matrix
(i.e. of the form ΛΠ where Λ is invertible diagonal and
Π is a permutation). In eJADE(2)

3,4, as in numerous other
ICA algorithms, the construction of W requires the blind
identification of mixture A.



III. THE CORE OF THE EJADE(2)
3,4 METHOD

As most of ICA techniques, eJADE(2)
3,4 requires a

prewhitening step. Such a procedure is well described in
[5, section 2.2] and it is not detailed hereafter. Just recall
that it allows to reduce the search space to the set of the
orthogonal mixing matrices. As a result, without loss of
generality, consider that x and A given in (1) are a P -
dimensional random vector and a (P×P ) orthogonal matrix,
respectively.

A. Toward an extended HO statistical matrix

Let Cn1,n2,n3,x and Cn1,n2,n3,n4,x be the entries of the TO
and FO cumulant arrays, C3, x and C4, x, respectively, of the
observation vector x (1). They can be sorted together in a
(M × P 2) rectangular matrix T (3,4)

x where M = P + P 2,
entrywise defined by T

(3,4)
m1,m2,x = Cp1,p2,m1,x where m2 =

p2 + P (p1 − 1) for m1 ≤ P and T
(3,4)
m1,m2,x = Cp1,p2,p3,p4,x

where m1 = p4+Pp3 and m2 = p2+P (p1−1) for m1 > P .
Under assumptions of section II and using the multi-linearity
property enjoyed by cumulants, we can show that matrix
T (3,4)

x has the following algebraic structure:

T (3,4)
x = C(A�A)T (3)

where the (M × P ) matrix C = [C3,sA
T,C4,s(A�A)T]T

is function of the (P × P ) following diagonal matrices
C3,s = diag ([C1,1,1,s, C2,2,2,s, · · ·, CP,P,P,s]) and C4,s =
diag ([C1,1,1,1,s, C2,2,2,2,s, · · ·, CP,P,P,P,s]). Recall that the p-
th column vector of the Khatri-Rao product A�A is given
by [A1,p ap

T, · · ·, AP,p ap
T]T where An,p denotes the (n, p)-th

component of A.

B. Principle of the eJADE(2) approach

The first step of the eJADE(2)
3,4 consists in computing a

Singular Value Decomposition (SVD) of matrix T (3,4)
x , say

computing the following decomposition:

T (3,4)
x = U D V T (4)

where D is a (P ×P ) positive semi-definite diagonal matrix
and where V T V = U T U = IP with IP the (P ×P ) identity
matrix. From (3), we can show that:

V = (A�A) Q (5)

where Q is a (P ×P ) non-singular matrix. Let Qp1,p2 be the
(p1, p2)-th entry of Q. By writting r1 = p2 + P (p1− 1), we
derive from (5) that the (r1, r2)-th entry, Vr1,r2 , of matrix V
has the following expression:

Vr1,r2 =
P∑

r3=1

Qr3,r2 Ap1,r3 Ap2,r3 (6)

Now, let’s build the P matrices V (r2) of size (P×P ), whose
(p1, p2)-th entry, V

(r2)
p1,p2 , is given by V

(r2)
p1,p2 = Vp2+P (p1−1),r2 .

Then, for every 1 ≤ r2 ≤ P , we have:

V (r2) = A Q(r2)AT (7)

where Q(r2) = diag (Q(:, r2)) is a (P ×P ) diagonal matrix
whose diagonal components are the elements of the r2-th

column of Q. So, a joint diagonalization of the P matrices
V (r2) using for instance the JAD technique [4] (and not the
JADE algorithm [3]) or the ELSALSsym scheme [12] allows
us to identify the orthogonal mixing matrix A. Note that
the eJADE(2)

3 method can be identically described provided
that the (M ×P 2) matrix T (3,4)

x is replaced by the (P ×P 2)
matrix T (3)

x entrywise given by T
(3)
m1,m2,x = Cp1,p2,m1,x with

m2 = p2 + P (p1 − 1).

IV. PERFORMANCE COMPARISON OF ICA METHODS ON
MRS AND EEG SIGNALS

This section aims at comparing the performance of eleven
ICA methods, namely CoM2 [5], INFOMAX [13], JADE(1)

4

[3], JADE(2)
4 [3], eJADE(1)

3 [15], eJADE(1)
3,4 [15], CubICA3

[2], CubICA4 [2], CubICA3,4 [2], eJADE(2)
3 and eJADE(2)

3,4,
on MRS and EEG synthetic signals.

A. Cumulant informative degree and performance criterion

First of all, we propose the following criterion to measure
the q-th order Cumulant Informative Degree (CID) associ-
ated to a bidimensional random vector s with unit-variance
components:

CID(q)
s =

|C1,...,1,s|+ |C2,...,2,s|∑2
p1
· · ·∑2

pq

∣∣Cp1,...,pq,s

∣∣ (1− δ[p1, . . . , pq])
(8)

where the generalized Kronecker symbol δ is given by
δ[p1, . . . , pq] = 1 if p1 = . . . = pq and δ[p1, . . . , pq] = 0
otherwise. The CID(q)

s criterion simply measures the diago-
nal character of the q-th order cumulant tensor of s, say the
statistical independence at order q of both components of s.

Secondly, we propose to measure the error between the
mixing matrix A and its estimate Â using the following
performance criterion [6]:

D(A, Â) = min
Π

Ψ(A, ÂΠ) (9)

where Π belongs to the set of permutations and where:

Ψ(A, Â) =
P∑

p=1

‖ap − (âT

p ap/‖âp‖2) âp‖ (10)

It is noteworthy that the D criterion is invariant to scale and
permutation indeterminacies inherent in ICA.

B. Magnetic resonance spectroscopic data

In the MRS context, it is assumed that the metabolites do
not interact so that the static linear mixing model is valid. In
addition, several studies [18] showed that ICA is able to de-
compose the MRS data into components with features typical
of different brain tissue or lesion types. Eight observations
(two of them are represented in figure 1), considered as a
noisy mixture of one source of interest, namely the N-Acetyl
Aspartate (NAA) metabolite, and one artifact source such as
the lipid metabolite, are generated. Each metabolite spectrum
(one realization is depicted in figure 1) is built using a
lorentzian function where the parameters (location and scale
parameters) are fixed to derive realistic NAA and lipid-like
metabolites. As far as the additive noise is considered, a



−15dB −10dB −5dB 0dB 5dB
COM2 1.2077 1.0499 0.7803 0.4560 0.2103

INFOMAX 1.2114 1.0773 0.8148 0.4722 0.2141

eJADE(1)
34 1.2079 1.0506 0.7818 0.4566 0.2105

JADE(1)
4 1.2076 1.0499 0.7803 0.4560 0.2103

eJADE(1)
3 1.2099 1.0671 0.8404 0.5060 0.2277

CubICA34 1.2187 1.1679 1.1099 0.0891 0.0455
CubICA4 1.2187 1.1680 1.1084 0.0898 0.0456
CubICA3 1.1654 0.7142 0.1509 0.0622 0.0427

eJADE(2)
34 1.1769 0.6981 0.1511 0.0640 0.0417

JADE(2)
4 1.1773 0.7463 0.1567 0.0642 0.0417

eJADE(2)
3 1.1481 0.6966 0.1468 0.0608 0.0413

TABLE I
CRITERION D AT THE OUTPUT OF THE 11 ICA METHODS AS A

FUNCTION OF SNR IN THE CONTEXT OF MRS DATA

Fig. 1. Median over 30 realizations of the sources at the output of CoM2,
INFOMAX, eJADE(1)

34, CubICA34 and eJADE(2)
34 in the context of MRS data

(SNR=0 dB)

Gaussian vector process is used to simulate the instrumental
noise. Regarding the mixing matrix A, it is defined as the
concatenation of two columns modelling the concentration
of the NAA and the lipid. Finally, all reported results are
obtained by calculating the median over 30 independent
experiments.

Table I shows the D criterion at the output of the
eleven ICA methods as a function of the Signal-to-Noise
Ratio (SNR). The eJADE(2)

3 method clearly gives the best
results. Next, three methods, namely CubICA3, eJADE(2)

34

and JADE(2)
4 , show similar and good results. Eventually, the

seven other methods seem to be less efficient, especially the
eJADE(1) and JADE(1) techniques. This shows the interest of
the eJADE(2) implementation, say in efficiently reducing the

number of cumulant matrices before jointly diagonalizing
them. This result is confirmed in figure 1, which displays
both sources at the output of CoM2, INFOMAX, eJADE(1)

3,4,
CubICA3,4 and eJADE(2)

3,4. The first source estimated by
eJADE(1)

3,4 is clearly a mixture of the NAA and lipid metabo-
lites whereas eJADE(2)

3,4 succeeds in extracting both metabo-
lites. The fact that eJADE(2)

3 gives better results than JADE(2)
4

is in total agreement with the CID values computed at orders
3 and 4, respectively, from the bidimensional vector s of the
NAA and lipid metabolites. Indeed, we get CID(3)

s = 6, 7932
and CID(4)

s = 4, 3927, which shows that the TO cumulants
are more informative than the FO ones and which justifies
their use in the case of MRS data.

C. Electroencephalographic signals

In the particular context of epileptic patients, for whom
EEG remains a key diagnosis tool, ICA is suitable for
denoising purposes, when electrophysiological events such
as interictal spikes or ictal discharges are masked by artifacts,
particularly muscle activity [14]. Indeed, EEG can be con-
sidered as a static linear mixture of such activities, assumed
mutually independent due to their different physiological
origins [10]. However, there is still few studies attempting
to validate ICA approaches using data for which the sources
of EEG activity are known a priori. In this study we focus
on the denoising of EEG data in the particular case of
epileptic interictal spikes. The simulated EEG data (two
observations are displayed in figure 2), are generated using
a realistic head model [7], [8], that consists in three nested
homogenous volumes realistically shaping the brain, the skull
and the scalp, respectively. More precisely, two distributed
sources, referred to as "patches" in the sequel and related to
interictal spikes, are simulated. One patch is defined in the
left superior temporal gyrus, and another one is given in the
left supramarginalis gyrus. Each patch is composed of 100
dipole sources assigned with hyper-synchronous (and so very
close) spike-like activities. These activities were kept inde-
pendent between the two patches (their mean is displayed
in figure 2). From this setup, and using 18 electrodes, the
forward problem is then calculated giving a mixing matrix
A = [A1, A2], where A1 and A2 are two (18×100) matrices
associated with patch 1 and 2, respectively. Uncorrelated
background activities are attributed to the remaining part of
the cortical activity. 30 trials of these simulated EEG are
generated for the study. A different muscle activity issued
from real EEG data is added to each of them.

The D criterion, computed at the output of the eleven
ICA methods as a function of the SNR, is displayed in
table II. All methods seem to give good results, except
eJADE(1)

3 , eJADE(2)
3 and CubICA3 as announced by the CID

values computed at orders 3 and 4, respectively, from the
bidimensional vector s of the mean activities of both patches:
CID(3)

s = 5, 2036 and CID(4)
s = 9, 0764. It appears that FO

cumulants are practically twice more informative than TO
cumulants. This result points out the robustness of eJADE(2)

3,4

with respect to weakly informative TO cumulants. Figure 2



−15dB −10dB −5dB 0dB 5dB
COM2 0.7835 0.4246 0.2125 0.1481 0.1270

INFOMAX 0.7823 0.3881 0.2312 0.1432 0.1261

eJADE(1)
34 0.7557 0.4268 0.2132 0.1480 0.1270

JADE(1)
4 0.7556 0.4252 0.2129 0.1480 0.1270

eJADE(1)
3 1.5583 1.2683 0.8693 0.6943 0.5402

CubICA34 0.8264 0.4265 0.2171 0.1515 0.1344
CubICA4 0.8130 0.4231 0.2157 0.1506 0.1344
CubICA3 1.6185 1.2134 0.8896 0.6401 0.4772

eJADE(2)
34 0.7568 0.3901 0.2048 0.1471 0.1306

JADE(2)
4 0.7532 0.3801 0.2011 0.1467 0.1305

eJADE(2)
3 1.5964 1.2652 0.8749 0.6081 0.5132

TABLE II
CRITERION D AT THE OUTPUT OF THE 11 ICA METHODS AS A

FUNCTION OF SNR IN THE CONTEXT OF EEG DATA

Fig. 2. Both sources at the output of COM2, INFOMAX, eJADE(1)
34,

CubICA34 and eJADE(2)
34 in the context of EEG data (SNR= −10 dB)

confirms the good behavior of eJADE(2)
3,4 with respect to other

methods.

V. CONCLUSION

In order to perform ICA, an efficient way of jointly
using SO, TO and FO statistics is proposed, leading to
the eJADE(2)

3,4 method. The latter can be interpreted as an
improvement of the eJADE(1)

3,4 technique. The SVD-based
reduction of the set of TO and FO cumulant matrices to
be jointly diagonalized is shown to considerably improve
performance in the case of MRS signals. Interestingly, poorly
informative TO cumulants as observed in EEG do not affect
performance of eJADE(2)

3,4, which encourages us to combine
them with FO cumulants in all contexts. It is noteworthy
that all tests were made using realistic synthetic signals in

order to allow for a quantitative comparison of eleven ICA
methods, most of them based on the use of HO cumulants.
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