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Abstract 

 
Shu et al. recently proposed an efficient radix-3 

decimation-in-Frequency (DIF) algorithm for the fast 
computation of forward and inverse modified discrete cosine 
transform (MDCT). Their algorithm decomposes the MDCT 
of a sequence with length N = 2×3m and the IMDCT of a 
sequence with length N = 4×3m into three N/3-point MDCTs 
and IMDCTs, respectively. In this paper, we present a 
refinement of their approach. Comparison with Shu’s 
algorithm shows that the number of arithmetic operations 
can be reduced from 17.5% to 20.5% for MDCT and from 
23.1% to 27.9% for IMDCT when N is varying from 36 to 
324.  
 
1. Introduction 

 
The problem of efficient computation of the 

modified discrete cosine transform (MDCT) and 
inverse MDCT (IMDCT) [1] has attracted attention of 
many researchers owing to its wide applications in 
several international standards and commercial 
products such as MPEG-1 [2], MPEG-2 [3], and AC-3 
[4] in audio coding. In the past decade, many fast 
algorithms have been reported in the literature (see, 
e.g., [5], [6] for a survey). It is worth mentioning that 
the MDCT is equivalent to the modulated lapped 
transform (MLT) introduced by Malvar [7]. 

Since the layer III specifies two different block 
sizes: a long block (N = 36) and a short block (N = 12), 
the MDCT implementation via the complex-valued 
FFT can not be directly achieved. To solve this 
problem, Britanak [8-11], Lee [12], Cheng [13], and 
Truong [14] proposed various approaches based on the 
computation of lower order discrete cosine transform 
(DCT). Recently, Shu et al. [15] developed a fast 
radix-3 decimation-in-Frequency (DIF) algorithm for 

computing the MDCT of a sequence with length N = 
2×3m and the IMDCT of a sequence with length N = 
4×3m. Wu et al. [16] proposed a mixed-radix MDCT 
algorithm based on radix-2 DIF algorithm and radix-3 
decimation-in-time (DIT) algorithm. 

In this paper, we propose a refinement of the 
algorithm presented in [15]. We improve their MDCT 
algorithm for data sequences with length N = 4×3m and 
extend their IMDCT algorithm to support the length N 
= 2×3m. We show that the improved algorithm 
achieves a substantial reduction of the arithmetic 
operations compared to Shu’s algorithm. 

 
2. Original Shu’s MDCT and IMDCT 
algorithm 
     
   The MDCT of an input data sequence x(n), n = 0, 1, 
2, …, N – 1, is defined as [1] 

, 

k = 0, 1, …, N/2 – 1,         (1) 
and its inverse transform is given by 

, 

n = 0, 1, 2, …, N – 1,           (2) 
where the length N is assumed to be divisible by 6, i.e., 
N = 2×3m. In [15], the following approach to MDCT 
computation is described. 
2.1. Computation of A(k) = X(3k + 1), k = 0, 1, 
…, N/6 – 1. 
 



,                (3) 

with an=x(n), bn=x(N/3+n), cn=x(2N/3+n), 
, , , and 

 for n = 0, 1, …, N/3–

1. 
2.2. Computation of B(k) = X(3k) + X(3k + 2), k 
= 0, 1, …, N/6 – 1. 

                 (4) 

with . 
2.3. Computation of C(k) = X(3k) – X(3k + 2), k 
= 0, 1, …, N/6 – 1. 

              (5) 

Note that A(k), B(k) and C(k) are all the N/3-length 
MDCTs. In [15], a radix-3 algorithm was derived for 
IMDCT of sequences with length N = 4×3m which is 
summarized below. 
2.4. Computation of , n = 0, 
1, …, N/3 – 1. 

,                 (6) 

with fk=X(k), gk=X(N/6+k), hk=X(N/3+k), and   
 for k = 0, 1, …, N/6 – 1. 

2.5. Computation of , n 
= 0, 1, …, N/3 – 1. 

             (7) 

with . 
2.6. Computation of ,  
n = 0, 1, …, N/3 – 1. 

    (8) 

with  and . 

   Note that the assumption of N being a multiple of 12 
instead of a multiple of 6 is necessary to obtain 
equation (8). 
 
3. Improved MDCT and IMDCT 
algorithm 

 
In practical application, the length of sequences, N, 

is often divisible by 4. For this reason, we present in 
this section an improved approach for computing the 
MDCT of sequence length N = 4×3m. We also propose 
an improved algorithm for computing the IMDCT in 
which the sequence length N needs only to be a 
multiple of 6. More importantly, the proposed IMDCT 
algorithm is more efficient than that reported in [15]. 
3.1. Improved MDCT algorithm 

In this subsection, we consider the case where the 
sequence length N is divisible by 4, i.e., N = 4×3m, m ≥ 
1. In this case, A(k) and B(k) can be obtained with (3) 
and (4), and C(k) is calculated in the following 
manner. 

           (9) 

If N is a multiple of 12, then Eq. (9) can be rewritten 
as 

 



 
Figure 1. Flow graph of a 12-point MDCT 

 

         (10) 

Eq. (10) shows that C(k) is the length-N/3 MDCT. 
Moreover, the input sequence of (10) is similar to that 
of (4) except for the twiddle factors. Figure 1 shows 
the flow graph of the realization of 12-point MDCT. 
 
3.2. Improved IMDCT algorithm 
   In this subsection, we show how to calculate the 
IMDCT in a more efficient way. 
3.2.1. Computation of , n = 0, 1, …, 
N/3 – 1.  

  (11) 

where 

,                                 (12) 

,                                (13) 

.                                 (14) 

For , we have 

        (15) 

Since N is a multiple of 6, we obtain 

. (16) 

For , we have 

.       (17) 

Therefore 

.  (18) 

3.2.2. Computation of , n = 
0, 1, …, N/3 – 1.  

       (19) 

Proceeding with the computation of  in a similar 
way as for , we obtain 

     (20) 

3.2.3. Computation of , n = 
0, 1, …, N/3 – 1. 

         (21) 

Similar to , we have 

      (22) 

Eq. (22) can be rewritten as 

                                                                                  (23) 
Eqs. (18), (20) and (23) show that ,  and 

 are all N/6-point IMDCTs. Contrary to the 
algorithm proposed in [15], the assumption of N being 
a multiple of 12 is not required to derive equation (23). 
Moreover, the input sequence of (23) is similar to that  



Figure 2. Flow graph of a 12-point IMDCT 
 
of (20) except for the twiddle factors. This permits 
reducing the number of arithmetic operations required 
in the calculation of  and . The flow graph 
corresponding to a 12-point IMDCT computation is 
shown in Figure 2. 
 
4. Computational complexity and 
comparison results 
      
    In this section, we will analyze the computational 
complexity of the improved radix-3 DIF MDCT and 
IMDCT algorithms and compare the results with the 
original algorithms [15]. The comparison of the 
advantages and disadvantages of these MDCT-based 
algorithms with the DCT-based algorithms [5-14], we 
refer the readers to [15] and [16]. 
4.1. Computational complexity of the proposed 
MDCT algorithm 

Since A(k), B(k) and C(k) are all the N/3-length 
MDCTs, the coefficients X(k) can be obtained from 
A(k), B(k) and C(k), k = 0, 1, …, N/6 – 1, with N/3 
additions. Hence, we can calculate an N-length MDCT 
via the computation of three N/3-point MDCTs. Note 
that the computation of 

 in (4) and 

 in (10) 
requires four multiplications for each n. However, for 
n = 4×3m,  when n = (N/4 – 1)/2, we have θn = π/4, 

. In this case, two 
multiplications can be saved. Thus, the computational 
complexity is given by 

   

for N = 4×3m, m ≥ 1.         (24) 
with and , where M, A 
and P denote Multiplications, Additions and the 
Proposed algorithm, respectively.  

 

Table 1. Comparison of the improved MDCT algorithm with 
Shu’s algorithm in terms of arithmetic complexity for N = 

4×3m, m ≥ 1. 
 Shu’s algorithm [15] Improved  algorithm 

N Mul Add Total Mul Add Total 
Saved 
(%) 

12 25 55 80 23 43 66 17.5 
36 123 285 408 115 213 328 19.6 

108 513 1215 1728 487 891 1378 20.3 
324 1971 4725 6696 1891 3429 5320 20.5 

 
When applying the algorithm presented in [15] for 

N = 4×3m, neither multiplication nor addition can be 
saved. The computational complexity of Shu’s 
algorithm is 

  

for N = 4×3m, m ≥ 1.        (25) 
where S denotes Shu’s algorithm. Table 1 lists the 
number of arithmetic operations needed by the two 
approaches for N = 4×3m, m ≥ 1. 
 
4.2. Computational complexity of the proposed 
IMDCT algorithm 

To obtain the input data sequences in (20) and (23), 
four multiplications are required for each k. However, 
for N = 2×3m, m ≥ 1, when k = (N/6 – 1)/2, we have θk 
= π/6, , . In this case, we 
can save three multiplications and two additions. 
Meanwhile, we can obtain the sequence 

from  and  with 2N/3 additions. 
The computational complexity of the proposed 
approach is given by 

 

   for N = 2×3m, m ≥ 1.      (26) 
with and  (See[16]). 
For N = 4×3m, m ≥ 1, when k = (N/4–1)/2, we have 
θk=π/4. In this case, two multiplications can be saved. 
Moreover, the sequence  has the following 
symmetries [13] 

  

n = 0, 1, …, N/4 – 1,                    (27) 
As a result, only , for n = 0, 1, …, N/4 – 1 and n 
= N/2, N/2 + 1, …, 3N/4 – 1, need to be calculated. 
Therefore, we can only evaluate ,  and 

for 
 



Table 2. Comparison of the improved IMDCT algorithm 
with Shu’s algorithm in terms of arithmetic complexity for N 

= 4×3m, m ≥ 1. 
 Shu’s algorithm [15] Improved  algorithm 

N Mul Add Total Mul Add Total 
Saved 
(%) 

12 17 35 52 15 25 40 23.1 
36 75 183 258 67 123 190 26.4 
108 297 783 1080 271 513 784 27.4 
324 1107 3051 4158 1027 1971 2998 27.9 
 

 from 

which we can obtain  with N/3 additions. The 
computational complexity is given by 

     

for N = 4×3m, m ≥ 1.       (28) 
with and . 
In [15], the computational complexity is given by: 

  

for N = 4×3m, m ≥ 1.         (29) 
In Table 2, we summarize the computational 
complexity of the two algorithms with length N = 
4×3m, m ≥ 1. 
 
5. Conclusions 

  
We have presented an improvement of the recently 

published algorithm for computing the MDCT and 
IMDCT based on the calculation of lower order 
MDCTs and IMDCTs, respectively. The comparison 
results show that the proposed approach outperforms 
the original one in terms of the number of arithmetic 
operations. 
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