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Abstract—A fast direct method for obtaining the length-N 
discrete Hartley transform (DHT) coefficients from three 
adjacent length-N/3 DHT coefficients is presented. The proposed 
method reduces significantly the number of arithmetic operations 
compared to the traditional approach. Furthermore, it is easy to 
implement. 
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I.  INTRODUCTION 
The discrete Hartley transform (DHT) introduced by 

Bracewell in 1983 [1] has become an important tool in signal 
and image processing [2-5]. Many fast algorithms for 
computing the DHT have already been reported in the 
literature. Sorensen, Jones, Burrus, and Heideman [6] proposed 
a set of fast algorithms for DHT, including radix-2 decimation-
in-frequency (DIF), radix-4, split radix, prime factor [7], and 
Winograd transform algorithms. Zhao [8] derived a radix-3 fast 
Hartley transform (FHT) algorithm, which was then extended 
to 2-D DHT [9]. Bi [10] suggested a radix-3/9 FHT algorithm 
for further speeding up the computation of DHT. Bouguezel, 
Ahmad, and Swamy [11] proposed an optimized split-radix 
FHT algorithm, taking arithmetic complexity, the number of 
data transfers, address generations, and twiddle factor 
evaluations into consideration, for computing the DHT of 
sequences with length N = q×2m, where q is an odd integer.  

Since the DHT can be used in signal or image compression 
techniques [2-4], a problem that is often encountered is how to 
directly manipulate a compressed data stored in the DHT 
domain. In particular, how to construct a long DHT sequence 
from several short DHT sequences? This kind of questions was 
first discussed in discrete cosine transform (DCT) domain by 
Kou and Fjallbrant [12], who proposed an efficient way for 
computing the length-N DCT coefficients when the two 
adjacent length-N/2 DCT coefficients are known. Their 
algorithm was then improved by Skodras [13], whose 
algorithm was further improved and extended to two 
dimensional DCT by Chuang and Wu [14] and 
multidimensional DCT by Dai, Chen, and Lin [15]. Jiang and 
Feng [16] discussed the spatial relationship between an image 
block of any size and all of its subblocks in the DCT domain. 
In [17], Pei and Kao presented an efficient method for 

obtaining the length-N DCT coefficients from three adjacent 
length-N/3 DCT coefficients. More recently, Shu, Wang, 
Senhadji, and Luo [18] realized a direct computation of length-
N type-II generalized discrete Hartley transform (GDHT) 
coefficients from two adjacent length-N/2 GDHT coefficients. 
Shu’s algorithm can be easily extended to the computation of 
DHT. In this paper, we address the problem of how to 
efficiently compute the length-N DHT coefficients from three 
consecutive length-N/3 DHT coefficients. Specifically, assume 
a length-N sequence xn is created by the concatenation of three 
length-N/3 adjacent sequences, i.e. an = xn, bn = xn+N/3, cn = 
xn+2N/3, for n = 0, 1, …, N/3–1, and Ak, Bk, and Ck are their DHT 
coefficients, respectively. How can we efficiently compute the 
length-N DHT coefficients Xk when Ak, Bk, and Ck are known? 
We develop a new method, which is similar to the approach 
presented in [17], to solve the above mentioned question in the 
DHT domain. 

II. TRADITIONAL APPROACH  
The schematic representation of the traditional approach is 

shown in Fig. 1. According to the scheme, three length-N/3 
inverse DHTs (IDHTs) and one length-N DHT are required. In 
this section, we apply two different schemes, based 
respectively on the algorithms presented in [8] and [11], to 
implement the length-N DHT according to the different values 
of N. 

 

 
Figure 1.  Schematic representation of traditional approach 

A. First scheme: Decomposing length-N DHT into three 
length-N/3 DHTs by using Zhao’s algorithm [8]. 

When N is divisible by 3, i.e., N = 3p, we can apply Zhao’s 
DIF radix-3 FHT algorithm [8] to decompose length-N DHT. 



into three length-N/3 DHTs. We will reformulate Zhao’s 
algorithm and analyze its computational complexity in the rest 
of this subsection. 
The normalized DHT of the sequence xn is defined by [1] 

,   

k = 0, 1, …, N – 1,           (1) 
and the corresponding IDHT is 

, 

n = 0, 1, …, N – 1,          (2) 
with casθ = cosθ + sinθ. 
According to [8], we can realize three formulations Dk = X3k, 
Ek = X3k+1+X3k-1, and FN/3-k = X3k+1–X3k-1, for k = 0, 1, …, N/3 – 
1, where X-1=XN-1, X0=XN and X1=XN+1, to obtain the DHT 
coefficients Xk instead of computing (1) directly. 

,             (3) 

       (4) 

        (5) 

where an, bn, and cn are the three adjacent sequences and 
.                                        (6) 

X3k+1and X3k-1 can be easily obtained as follows 

     k = 0, 1, …, N/3 – 1. (7) 

FN/3-k can be easily got by arranging Fk , where F0 = FN/3. 
Generally, the computation of 

in (4) and 

 in (5) 

requires 4 multiplications and 5 additions for each n. Moreover, 
when n = 0, we have cosθn =1 and sinθn = 0. In this case, 3 
multiplications and 2 additions can be saved. Thus, the 
computational complexity of Zhao’s algorithm is given by [8] 

                          (8) 

B. Second scheme: Direct computation of length-N DHT by 
using Bouguezel’s algorithm [11] 
When the sequence length N = q×2m, where q is an odd 

integer, we can use Bouguezel’s split-radix FHT algorithm 
[11] to compute the length-N DHT directly. In the following, 
we assume that a butterfly computation is implemented by 
using 3 multiplications and 3 additions. The computational 
complexity of Bouguezel’s algorithm for length-N = q×2m is 
given by 

    N>8q.  (9) 

Detailed computational complexity for the DHT with 
length-N = q×2m, q = 1, 3, 9, 15…, can be found in [11]. Note 
that , , , and .. 

III. PROPOSED METHOD 
In this section, we propose a new method which is based on 

Zhao’s radix-3 FHT algorithm to calculate the length-N DHT 
coefficients from three consecutive length-N/3 DHT 
coefficients. 

A. Calculation of Dk = X3k, k = 0, 1, …, N/3 – 1. 
From (3), we have 

                               (10) 

B. Calculation of Ek=X3k+1+X3k-1 ,k = 0, 1, …, N/3 – 1.  
From (4), we have 

   (11) 

C. Calculation of FN/3-k=X3k+1-X3k-1 ,k = 0, 1, …, N/3 – 1. 
From (5), we have 

   (12) 

Once Ek and Fk are computed, X3k+1 and X3k-1 can be 
obtained by (7). The schematic representation of the proposed 
method is depicted in Fig. 2. 

 

Figure 2.  Schematic representation of the proposed method (“●”denotes the 
adder). 



IV. COMPUTATIONAL COMPLEXITY 
We now analyze the computational complexity of the 

proposed method and the traditional approach. Since the same 
kernel is used for the DHT and the IDHT, they require the 
same computational complexity.  

According to Fig. 2, the computational complexity of the 
proposed method is given by 

                        (13) 

The computational complexity of the traditional approach 
shown in Fig. 1 is as follows 

                                              (14) 

A. Traditional approach using Zhao’s algorithm[8] (First 
Scheme) 

When Zhao’s algorithm is used in the traditional approach, 
substitution of (8) into (14) yields 

                         (15) 

1) When length-N = 3×2 m, m ≥ 2. 
In this case, the split radix FHT algorithm [11] can be used to 
efficiently compute length-N/3 = 2m DHTs where the 
computational complexity is shown in (9). The comparison 
results of the proposed algorithm and this scheme are shown in 
table I. 

2) When length-N is other values 
In this case, the prime factor DHT algorithm [6][7] can be 

used to efficiently compute length-N/3 DHTs. The 
computational complexity of this algorithm can be found in [7]. 
Note that the number of additions involved in computing the 
DHT via prime-factor FFT algorithm for real-valued series [7] 
is calculated by adding (N-2) to those involved in computing 
the DFT. The number of multiplications required for 
computing the DHT is the same as those of the DFT 
computation. The comparison results of the proposed algorithm 
and this scheme are shown in table II. 

B. Traditional approach using Bouguezel’s algorithm[11] 
(Second Scheme) 

When Bouguezel’s algorithm is used in the traditional 
approach, setting q = 3 in (9), and then substituting the results 
into (14), we have 

 N > 24.   

(16) 
We summarize the computational complexity of the 

proposed method and the second scheme of traditional 
approach in table III. 

 
 

TABLE I.  COMPUTATIONAL COMPLEXITY OF THE PROPOSED METHOD 
AND THE FIRST SCHEME OF TRADITIONAL APPROACH (N<500). 

Traditional approach ([8],[11]) Proposed method 
N 

      
Saved 
(%) 

12 13 78 91 13 62 75 18 
24 41 218 259 37 166 203 22 
48 121 570 691 101 422 523 24 
96 329 1418 1747 261 1030 1291 26 

192 841 3402 4243 645 2438 3083 27 
384 2045 7946 9991 1533 5638 7171 28 

 

TABLE II.  COMPUTATIONAL COMPLEXITY OF THE PROPOSED METHOD 
AND THE FIRST SCHEME OF TRADITIONAL APPROACH (N<500). 

Traditional approach ([7],[8]) Proposed method 
N 

      
Saved 

(%) 

6 5 26 31 5 22 27 13 
9 21 52 73 17 42 59 19 

12 13 78 91 13 62 75 18 
15 47 134 181 37 102 139 23 
21 73 264 337 57 194 251 26 
24 41 218 259 37 166 203 22 
27 93 316 409 73 234 307 25 
33 161 584 745 121 418 539 28 
36 93 382 475 77 286 363 24 
39 169 672 841 129 482 611 27 
45 207 598 805 157 438 595 26 
48 121 570 691 101 422 523 24 
51 275 1070 1345 205 758 963 28 
57 301 1260 1561 225 890 1115 29 
60 197 806 1003 157 590 747 26 
63 309 1060 1369 233 762 995 27 
72 225 946 1171 181 694 875 25 
84 301 1422 1723 237 1022 1259 27 
90 417 1390 1807 317 1006 1323 27 

105 587 2066 2653 437 1470 1907 28 
108 381 1726 2107 301 1246 1547 27 
120 457 1914 2371 357 1382 1739 27 
144 561 2290 2851 437 1654 2091 27 
168 689 3266 3955 533 2326 2859 28 
180 837 3142 3979 637 2254 2891 27 
216 873 3994 4867 677 2854 3531 27 
240 1097 4490 5587 837 3206 4043 28 
252 1245 4750 5995 941 3390 4331 28 
312 1529 7466 8995 1157 5254 6411 29 
315 2187 7474 9661 1597 5262 6859 29 
336 1633 7458 9091 1237 5270 6507 28 
360 1857 7186 9043 1397 5110 6507 28 
420 2357 9974 12331 1757 7022 8779 29 
432 2073 9178 11251 1573 6502 8075 28 

 

TABLE III.  COMPUTATIONAL COMPLEXITY OF THE PROPOSED METHOD 
AND THE SECOND SCHEME OF TRADITIONAL APPROACH (N<500). 

Traditional approach ([11]) Proposed method 
N 

      
Saved 
(%) 

12 4 72 76 13 62 75 1 
24 18 204 222 37 166 203 9 
48 74 540 614 101 422 523 15 
96 234 1356 1590 261 1030 1291 19 

192 642 3276 3918 645 2438 3083 21 
384 1652 7692 9344 1533 5638 7171 23 

 
As stated in [19], for modem computers, the run time for a 

multiplication is almost the same as that for an addition. They 
are exactly the same for some advanced signal processors, such 
as the series of TMS320. Therefore, we give the savings of the 
proposed algorithm in terms of the total number of 
multiplications and additions. It can be concluded from the 
tables that the proposed method reduces significantly the 



number of arithmetic operations compared to the first scheme 
of traditional approach. Although the reduction in terms of the 
arithmetic operations of the proposed method is less 
remarkable compared to the second scheme, it needs only to 
compute two length-N/3 DHTs and IDHTs, which can be 
implemented with one structure for sequences with length-2m 
[11]. On the other hand, for the second scheme of traditional 
approach, the computation of three length-N/3 IDHTs needs 
one structure with length-2m, but the computation of length-N 
DHT requires another structure with length-3×2m. Furthermore, 
the proposed algorithm supports a more wide range of choices 
of sequence length when compared to the second scheme 
whose length is limited to length-3×2m. 

V. CONCLUSIONS 
We have proposed in this paper an efficient method for the 

direct computation of length-N DHT from three adjacent 
length-N/3 DHT coefficients. Results show that the proposed 
method allows reducing the number of arithmetic operations in 
comparison with the traditional approaches. Another important 
feature of the proposed algorithm is its savings in memory and 
data transfers. Since the method proposed by Shu, Wang, 
Senhadji, and Luo [18] for the direct computation of type-II 
GDHT is also applicable to the DHT, its combination with the 
proposed method could find applications in signal processing 
tasks. In fact, scaling a DHT-based signal by the factor of 
1/(2p3q) can be easily obtained by cascading p for Shu’s 
structures and q for the authors’ structures. 
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