
HAL Id: inserm-00530948
https://inserm.hal.science/inserm-00530948

Submitted on 5 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sliding conjugate symmetric sequency-ordered complex
Hadamard transform: fast algorithm and applications

Jiasong Wu, Lu Wang, Lotfi Senhadji, Huazhong Shu

To cite this version:
Jiasong Wu, Lu Wang, Lotfi Senhadji, Huazhong Shu. Sliding conjugate symmetric sequency-ordered
complex Hadamard transform: fast algorithm and applications. European Signal Processing Confer-
ence (EUSIPCO), Jul 2010, AALBORG, Denmark. pp.1742-6. �inserm-00530948�

https://inserm.hal.science/inserm-00530948
https://hal.archives-ouvertes.fr

SLIDING CONJUGATE SYMMETRIC SEQUENCY-ORDERED COMPLEX
HADAMARD TRANSFORM: FAST ALGORITHM AND APPLICATIONS

Jiasong Wu1,2,3,4, Lu Wang1,4, Lotfi Senhadji2,3,4, and Huazhong Shu1,4
1LIST, Southeast University, 2 Sipailou, 210096, Nanjing, China

phone: +86-25-83794249, fax: +86-25-83792698, email: jswu@seu.edu.cn, wanglu@seu.edu.cn, shu.list@seu.edu.cn
2INSERM, U642, Rennes, F-35000, France

3LTSI, Université de Rennes 1, Campus Beaulieu, Rennes, F-35042, France
 phone: +33-2 23235577, fax: +33-2 23236917, email: lotfi.senhadji@univ-rennes1.fr

4Centre de Recherche en Information Biomédicale Sino-français (CRIBs), Rennes, France
www.imagetech.com.cn; www.ltsi.univ-rennes1.fr

ABSTRACT
This paper presents a fast algorithm for the computation of
forward and backward sliding conjugate symmetric se-
quency-ordered complex Hadamard transform (CSSCHT).
The forward CSSCHT algorithm calculates the values of
window i+N/4 from those of window i and one length-N/4
CSSCHT, one length-N/4 Walsh Hadamard transform (WHT)
and one length-N/4 modified WHT. The backward CSSCHT
algorithm can be obtained by transposing the signal flow
graph of that of the forward one. The proposed algorithm
requires O(N) arithmetic operations, which is more efficient
than the block-based algorithm and those based on the slid-
ing FFT and the sliding DFT. The applications of the sliding
CSSCHT in spectrum estimation and transform domain
adaptive filtering (TDAF) are also provided with supporting
simulation results.

1. INTRODUCTION

The discrete orthogonal transforms including discrete
Fourier transform (DFT), discrete cosine transform (DCT),
discrete Hartley transform (DHT), and Walsh-Hadamard
transform (WHT) play an important role in the fields of digi-
tal signal processing, filtering and communications [1, 2].
Recently, Aung et al. introduced a new transform named the
Conjugate Symmetric Sequency-ordered Complex Hadamard
Transform (CSSCHT) [3], which can be an alternative of
DFT and DCT in some applications needing lower computa-
tional complexity, such as spectrum estimation and image
compression. A fast decimation-in-sequency (DIS) block-
based algorithm was also reported in [3], which requires
N/2–1 multiplications with the imaginary number j, 2Nlog2N
real additions and 2N memory for length-N CSSCHT.

When dealing with a nonstationary process, such as
speech, radar, biomedical, and communication signals, the
commonly used method is sliding orthogonal transform
(also called short time orthogonal transform), whose compu-
tation is an intensive task. Therefore, many fast algorithms
were proposed [4-7]. Besides the commonly used sliding
FFT [4] and sliding DFT [5], the sliding WHT [6-8] was
also attractive in the real-time pattern matching applications
[9]. A fast algorithm, which decomposes a length-N WHT

into two length-N/2 WHTs plus 4N–4 real additions and
2N(log2N-1) size of memory, for the sliding WHT was pro-
posed in [6]. Ben-Artzi et al. [7] proposed a gray code ker-
nel WHT algorithm, which requires 4N real additions and
4N size of memory. Ouyang and Cham [8] presented a more
efficient algorithm to compute the sliding WHT, which de-
rives the length-N WHT from two length-N/4 WHTs plus
3N+2 real additions and 3N size of memory. Note that the
computational complexity and the memory storage require-
ments are considered for complex input data.

Inspired by a research work presented in [8], we pro-
pose in this paper a fast algorithm for the computation of
sliding CSSCHT, which computes the values of window
i+N/4 from those of window i and one length-N/4 CSSCHT,
one length-N/4 WHT and one length-N/4 modified WHT.

2. PRELIMINARY

Let XN(i)=[xi, xi+1, …, xi+N–1]T and YN(i)=[yi, yi+1, …, yi+N–1]T
be respectively the complex input vector and the trans-
formed complex vector of the ith window, where T denotes
the transposition, and let N = 2n, n ≥ 1, the length-N forward
and backward sliding CSSCHTs are defined as [3, 10]

YN (i) = HN XN (i), (1)

XN (i) = 1
N

HN
H YN (i), (2)

where the superscript H denotes the Hermitian transposition.
HN is the order-N CSSCHT matrix whose elements are given
by

ˆ
2(,) (1) () ,0 , 2 1, log ,nh a b j a b n N• •= − − ≤ ≤ − =A B A B (3)

where 0 1 1(, ,...,),na a a −=A 0 1 1
ˆ ˆ ˆ ˆ(, ,...,),na a a −=A and

B = (b0 ,b1,...,bn−1) . The dot ‘• ’ denotes the scalar product
of two vectors. ar and br are respectively the binary represen-
tation of a and b, r = 0, 1, ..., n–1, being the index of the
binary bit position. ra is a binary gray code of the bit rever-
sal of ar and ˆra is the rth bit of the binary bits of the highest
power of 2 in c(a)/2 where c(a) is the decimal number ob-
tained through a bit-reversed conversion of the decimal a.
Let HN = HN (0),HN (1),...,HN (N −1)⎡⎣ ⎤⎦ ,

in
se

rm
-0

05
30

94
8,

 v
er

si
on

 1
 -

5
D

ec
 2

01
3

Author manuscript, published in "European Signal Processing Conference (EUSIPCO), AALBORG : Denmark (2010)"

http://www.hal.inserm.fr/inserm-00530948
http://hal.archives-ouvertes.fr

 xi xi+1 xi+2 xi+3 xi+4 Proposed algorithm
y4(0,i)
y4(0,i+1)

1 1 1 1
 1 1 1 1

y4(0,i+1)= y4(0,i)-
(xi-xi+4)

y4(1,i)
y4(1,i+1)

1 j -1 -j
1 j -1 -j

y4(1,i+1)=-j[y4(1,i)-
(xi-xi+4)]

y4(2,i)
y4(2,i+1)

1 -1 1 -1
1 -1 1 -1

y4(2,i+1)=-[y4(2,i)-
(xi-xi+4)]

y4(3,i)
y4(3,i+1)

1 -j -1 j
1 -j -1 j

y4(3,i+1)=j[y4(3,i)-
(xi-xi+4)]

Table 1 - Fast algorithm for length-4 CSSCHT

Figure 1 - Signal flow graph of the length-N sliding
CSSCHT transform

HN
1/ m = HN 0(),HN 1(), ...,HN

N
m
−1

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= HN
1/ m 0(),HN

1/ m 1(), ...,HN
1/ m N −1()⎡

⎣⎢
⎤
⎦⎥
T

, m = 2,4.

 (4)

where HN(k), k = 0, 1, …, N–1, is the kth column of CSSCHT
matrix, 1/ ()m

N kH , k = 0, 1, …, N–1, is the kth row of 1/ m
NH ,

and the subscript T denotes the transpose.
Let yN(k, i) be the kth CSSCHT projection value for the ith
window :

 yN (k, i) = HN
T (k)XN (i),

for k = 0, 1, …N–1; i = 0, 1, …, M–N, N = 2n, n ≥ 1
where M is the length of the input data sequence.

3. FAST ALGORITHMS FOR SLIDING CSSCHT

In this section, we derive a fast algorithm for computing the
sliding CSSCHT.
3.1 Fast Algorithm for N=4
The proposed algorithm is shown in Table 1, from which we
have

y4(k, i +1) = (− j)k y4(k, i) − t4(k, i)⎡⎣ ⎤⎦ , k = 0,1,2,3

[] []
[]

1/ 4
4 4 4 4 4 4

4 4 4 4 4 4

(0,), (1,), (2,), (3,) ()

(), (), (), () , () .

T

T
i i

t i t i t i t i d i

d i d i d i d i d i x x +

=

= = −

H

where 1/ 4
4H is defined in (4). Therefore, 2 multiplications

with j, 10 real additions, and a memory size of 10 are needed.

3.2 Fast Algorithm for N=8
The proposed algorithm is shown in Table 2, from which we
have

y8(k, i + 2) = (− j)k y8(k, i) − t8(k, i)⎡⎣ ⎤⎦ , k = 0,1,...,7.

1/ 4
8 8 8 8 8 8(0,), (1,),..., (7,) (), (1) ,T Tt i t i t i d i d i= +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦H

21/ 2
4

2 21/ 4
8 8 2 8 2

2
2 2

2 2

1
, ,

j

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎡ ⎤⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

H
H

W S
H P W P S

W
J W

J W

d8(i+u)=xi+u-xi+8+u, u=0,1.
where P8 is defined in (8). J2 and W2 are described in the
following subsection. Therefore, 5 multiplications with j, 26
real additions, and 36 size of memory are needed.
3.3 Fast Algorithm for N=2n, n≥3
By using the same strategy as for N=4 and N=8, we have

(, / 4) () (,) (,) ,

0,1,..., 1,

k
N N Ny k i N j y k i t k i

k N

+ = − −⎡ ⎤⎣ ⎦
= −

 (5)

1/ 4

(0,), (1,),..., (1,)

(), (1),..., (/ 4 1)

T
N N N

T
N N N N

t i t i t N i

d i d i d i N

−⎡ ⎤⎣ ⎦

= + + −⎡ ⎤⎣ ⎦H

 HN
1/4 = PN

HN / 2
1/2

WN /4
JN / 4WN /4

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= PN

HN /4
QN / 4WN /4SN /4
WN /4
JN / 4WN /4

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (6)

SN =
IN / 2

jIN / 2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 dN(i+u)=xi+u-xi+N+u, u=0,1,…,N/4-1, (7)
[xi, xi+1, …, xi+N-1]T=PN×[xi, xi+4, …, xi+N-4, xi+2, xi+6,…,xi+N-2,
xi+1, xi+3, …, xi+N/2-1, xi+N /2+1, xi+N /2+2, …, xi+N-1]T (8)
[xi, xi+1, …, xi+N-1]T=QN×
[xi, xi+N-1, xi+1, xi+N-2,…, xi+N /2-1, xi+N /2+1]T (9)
where 1/ 4

NH and 1/ 2
NH are defined in (4). WN is the Nth order

WHT matrix. IN is the identity matrix and JN is the reverse
identity matrix. Figure 1 shows the signal graph of the pro-
posed algorithm, whose computational complexity and
memory storage requirement are analyzed as follows (assum-
ing that the algorithm is implemented in parallel):
1) The computation of (7) for u = N/4–1 needs only 2 real
addition. Note that the values of dN(i+u), u = 0, 1,…, N/4–2,
have already been obtained during the computation of
yN(k,i+v), v = 1, 2,…, N/4–1, respectively. A memory size of
N/2 is required for storing dN(i+u), u = 0, 1, …, N/4–1. The
input xi+u and xi+N+u for u = 0, 1, …, N/4–1, needs N memory,
which can be released after performing (7) since it will not be
used in the following steps.
2) The computation of (6) needs one length-N/4 CSSCHT,
one length-N/4 WHT, which can be computed by [8], one
length-N/4 modified WHT (WN/4SN/4), which can be com-
puted by [6] plus N/8 multiplications with j (multiplied by
SN/4).

in
se

rm
-0

05
30

94
8,

 v
er

si
on

 1
 -

5
D

ec
 2

01
3

 xi xi+1 xi+2 xi+3 xi+4 xi+5 xi+6 xi+7 xi+8 xi+9 Proposed algorithm
y8(0,i)

y8(0,i+2)
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
y8(0,i+2)=

y8(0,i)-[(xi - xi+8)+(xi+1- xi+9)]
y8(1,i)

y8(1,i+2)
1 1 j j -1 -1 -j -j

1 1 j j -1 -1 -j -j
y8(1,i+2)=

-j{y8(1,i)-[(xi - xi+8)+(xi+1- xi+9)]}
y8(2,i)

y8(2,i+2)
1 j -1 -j 1 j -1 -j

1 j -1 -j 1 j -1 -j
y8(2,i+2)=

-{y8(2,i)-[(xi - xi+8)+j(xi+1- xi+9)]}
y8(3,i)

y8(3,i+2)
1 -1 -j j -1 1 j -j

1 -1 -j j -1 1 j -j
y8(3,i+2)=

j{y8(3,i)-[(xi - xi+8)-(xi+1- xi+9)]}
y8(4,i)

y8(4,i+2)
1 -1 1 -1 1 -1 1 -1

1 -1 1 -1 1 -1 1 -1
y8(4,i+2)=

y8(4,i)-[(xi - xi+8)-(xi+1- xi+9)]
y8(5,i)

y8(5,i+2)
1 -1 j -j -1 1 -j j

1 -1 j -j -1 1 -j j
y8(5,i+2)=

-j{y8(5,i)-[(xi - xi+8)-(xi+1- xi+9)]}
y8(6,i)

y8(6,i+2)
1 -j -1 j 1 -j -1 j

1 -j -1 j 1 -j -1 j
y8(6,i+2)=

-{y8(6,i)-[(xi - xi+8)-j(xi+1- xi+9)]}
y8(7,i)

y8(7,i+2)
1 1 -j -j -1 -1 j j

1 1 -j -j -1 -1 j j
y8(7,i+2)=

j{y8(7,i)-[(xi - xi+8)+(xi+1- xi+9)]}
Table 2 - Fast algorithm for length-8 CSSCHT.

Proposed
algorithm

Muls(j) 5N/6-4/3, N=2n, n=4,6,…
5N/6-5/3, N=2n, n=3,5,…

Adds 17N/3+6log2N-86/3, N=2n,
n=4,6,…

17N/3+6log2N-103/3, N=2n,
n=3,5,…

Me {
() }/ 4 2

/ 2 max 7 / 2,

2 log 3 / 4CSSCHT
N

N N

Me N N

+

+ −

Algorithm
[3]

Muls(j) N/2-1
Adds 2Nlog2N
Me 2N

Sliding FFT
 [4]

Muls 4N–8log2N
Muls(j) log2N–1
Adds 4N–4log2N-2
Me 2Nlog2N-8

Sliding DFT
[5]

Muls 4N-16
Muls(j) 2
Adds 4N-6
Me 4N-6

Table 3 - Comparison results of the proposed algorithms with the
block-base one in [3], the sliding FFT in [4] and the sliding DFT in
[5] for N = 2n, n ≥ 4. “Muls” represents real multiplications, “Muls
(j)” means multiplication with j , “Adds” means real additions. “Me”
denotes memory (words).

Size 3N/2 memory is needed for storing the values tN(i+u),
u∈[0, N-1] but u ∉{N/2+1, N/2+3,…, N-1}, since JN/4WN/4
is just row change operations of WN/4. We also assume that
the memory storage requirements of length-N/4 CSSCHT,
length-N/4 WHT, and length-N/4 modified WHT are

 MeN /4
CSSCHT , MeN / 4

WHT , and / 4
MWHT
NMe , respectively. Note

that the multiplication by j or –j can be realized by switching
the real and imaginary parts of the input with one sign chang-
ing, so that there is no memory requirement.
3) The computation of (5) needs N/2 multiplications with j
and 2N real additions. The values of yN(k, i), yN(k, i+1),…,

yN(k, i+N/4–1) can be obtained by zero padding method
(5N/4–1 zeros) as proposed in [9]. For the implementation,
we first distribute 2N memory for yN(k, i), k = 0, 1, …, N–1,
which is then overlaid by yN(k, i+N/4), k = 0, 1, …, N–1 after
performing (5). Thus, the computational complexity and
memory requirement of the proposed algorithm is given by

/ 4 5 / 8CSSCHT CSSCHT
N NM M N= +

/ 4 / 4 / 4 2 2CSSCHT CSSCHT WHT MWHT
N N N NA A A A N= + + + +

/ 4 / 4 / 4
7max ,

2 2
CSSCHT CSSCHT WHT MWHT
N N N N

NMe N Me Me Me⎧ ⎫= + + +⎨ ⎬
⎩ ⎭

with the initial values 4 42, 10;CSSCHT CSSCHTM A= =

8 85, 26;CSSCHT CSSCHTM A= = 4 810, 36;CSSCHT CSSCHTMe Me= =
and 4 810, 24WHT WHTMe Me= = .
The comparison results of the proposed algorithm and the
algorithms in [3-5] are shown in Tables 3 and 4. It can be seen
from the tables that the proposed algorithm reduces signifi-
cantly the real additions compared to the algorithm in [3], but
at the cost of a little more memory requirement. The proposed
algorithm is also more efficient than the sliding FFT in [4]
and sliding DFT in [5]. This is because the proposed algo-
rithm only needs the multiplications with j and real additions,
and can save the memory for storing the twiddle factors. For
comparison purpose, Tables 3 and 4 give the real multiplica-
tions, multiplications with j and real additions where one
complex multiplication is implemented by four real multipli-
cations and two real additions. It should be noted that for the
computation of yN(k, i), k = 0, 1, …N–1; i = 0, 1, …, M–N, N
= 2n, n ≥ 1, the proposed algorithm should perform (M+N/4)
times the module shown in Figure 1. However, the sliding
DFT [5] and the block-base algorithm [3] are only performed
M and M–N +1 times, respectively. Sliding FFT [4] should
perform a radix-2 FFT algorithm first and then perform M–N
times the sliding algorithm. The computation of the backward
CSSCHT, if ignoring the normalization factor 1/N in (2), can
be simply realized by transposing the signal flow graph of the
forward CSSCHT.

in
se

rm
-0

05
30

94
8,

 v
er

si
on

 1
 -

5
D

ec
 2

01
3

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8
x 10

-4 Single-Sided CSSCHT Amplitude Spectrum of y(t)

Frequency (Hz)

|Y
(f)

|

 0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8
x 10

-4 Single-Sided DFT Amplitude Spectrum of y(t)

Frequency (Hz)

|Y
(f)

|

 (a) SNR=5 (b) SNR=5

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6
x 10

-4 Single-Sided CSSCHT Amplitude Spectrum of y(t)

Frequency (Hz)

|Y
(f)

|

 0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10-3 Single-Sided DFT Amplitude Spectrum of y(t)

Frequency (Hz)

|Y
(f)

|

 (c) SNR=10 (d) SNR=10

 0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6
x 10

-4 Single-Sided CSSCHT Amplitude Spectrum of y(t)

Frequency (Hz)

|Y
(f)

|

 0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10-3 Single-Sided DFT Amplitude Spectrum of y(t)

Frequency (Hz)

|Y
(f)

|

 (e) SNR=15 (f) SNR=15

Figure 2 - Spectrogram of a 50Hz sinusoidal signal with additive white noise: (a)(c)(e) sliding CSSCHT (b)(d)(f) sliding DFT

0 100 200 300 400 500 600 700 800 900 1000
-0.05

0
0.05

i

d(
i)

Desired signal

0 100 200 300 400 500 600 700 800 900 1000
-0.05

0
0.05

i

x i

Corrupted signal

0 100 200 300 400 500 600 700 800 900 1000
-0.05

0
0.05

i

z(
i)

Filter output signal based on sliding CSSCHT

0 100 200 300 400 500 600 700 800 900 1000
-0.05

0
0.05

i

z(
i)

Filter output signal based on sliding DFT

0 100 200 300 400 500 600 700 800 900 1000
-0.05

0
0.05

i

e(
i)

Error signal based on sliding CSSCHT

0 100 200 300 400 500 600 700 800 900 1000
-0.05

0
0.05

e(
i)

Error signal based on sliding DFT

Figure 3 - Block diagram of CSSCHT Figure 4 - Transform domain adaptive filtering using sliding

 domain adaptive filtering CSSCHT and sliding DFT

Table 4- The quantitative comparison results of the proposed algorithms with other three algorithms ([3]-[5]) for N = 2n, n ≥ 4.

N Proposed algorithm Algorithm [3] Sliding FFT [4] Sliding DFT [5]
Muls (j) Adds Me Muls(j) Adds Me Muls Muls (j) Adds Me Muls Muls (j) Adds Me

4 2 10 10 1 16 8 0 1 6 8 0 2 10 10
8 5 25 36 3 48 16 8 2 18 40 16 2 26 26
16 12 86 64 7 128 32 32 3 46 120 48 2 58 58
32 25 177 128 15 320 64 88 4 106 312 112 2 122 122

in
se

rm
-0

05
30

94
8,

 v
er

si
on

 1
 -

5
D

ec
 2

01
3

4. APPLICATION EXAMPLES

In this section, we will give some application examples of
the sliding CSSCHT.
4.1 Spectrum estimation
CSSCHT is applied in spectrum estimation of a sinusoidal
signal. In the proposed spectrum analysis, the window shifts
one step each time leading to a highly overlapping window,
which is exactly the sliding CSSCHT/DFT. Note that the use
of a sliding window can decrease the variance of the estima-
tion when compared to that of using a single window. Figure
3 shows the single-sided amplitude spectrum of 512-point
sliding CSSCHT and sliding DFT of a 50Hz sinusoidal signal
with additive white Gaussian noise and signal-to-noise ratio
(SNR) being from 5 dB to 15 dB. The length of the input data
sequence is M = 4096 and the sampling frequency is 1000 Hz.
We compute the transformations of the whole sliding win-
dows, and then calculate the average of those coefficients to
obtain the estimated spectrum. From the figure, it can be seen
that the CSSCHT frequency magnitude is matched with that
of DFT. The desired peaks occur in the same locations as that
of DFT even though there are some spurious spikes in the
CSSCHT spectrum. Therefore, it is worth considering sliding
CSSCHT for spectrum analysis instead of sliding DFT when
it is necessary to achieve significant hardware savings and
reduced computational time [3].
4.2 CSSCHT domain LMS adaptive filter

Transform domain least-mean-square adaptive filters
(TDLMSAF), introduced by Narayan et al.[11], exploit the
de-correlation properties of some well-known signal trans-
forms such as DFT, DCT, DHT and WHT, in order to pre-
whiten the input data and speed up filter convergence [12].

 Similar to the DFT domain LMS adaptive filter [11, 12],
the CSSCHT domain LMS adaptive filter algorithm, shown
in Figure 3, is described as follows:

() (), () () (), () () (),H
N N N N Ni i z i i i e i d i z i= = = −Y H X W Y

 WN (i +1) = WN (i) + 2μD−1(i)e(i)YN
* (i),

where * denotes the complex conjugate operator, XN(i) is the
input signal vector, YN(i)=[yN(0,i), yN(1,i), …, yN(N-1,i)]T is
the CSSCHT domain coefficients. WN(i)=[wN(0,i),
wN(1,i), …, wN(N-1,i)]T is the adaptive weight vector. z(i),
d(i), e(i) are the filter output signal, the desired signal, the
error signal, respectively. μ is a positive step-size and D(i) is
a diagonal matrix of the estimated input powers which is
given by

D(i) = diag{σ 2(k, i)}, k = 0,..., N −1

σ 2(k, i) = βσ 2(k, i −1) + (1− β) yN (k, i)
2

,0 < β < 1

The sliding CSSCHT and sliding DFT are compared in a
simulation for this type of adaptive filter. Using a 32-tap filter,
a 5 Hz sinusoid with 1024 samples per second corrupted by
Gaussian white noise with SNR equal to 0 db is processed
through the filter. The parameters are set as µ = 0.01 and β =
0.9. Figure 4 shows the desired signal, corrupted signal and
the filtered signals by TDLMSAF using sliding DFT and slid-

ing CSSCHT. It can be seen that the result of TDLMSAF
using sliding CSSCHT is almost the same as that obtained
with sliding DFT.

5. CONCLUSION

In this paper, we have presented a fast algorithm for comput-
ing the forward and backward sliding CSSCHT. The arithme-
tic complexity order of the proposed algorithms is N, a factor
of log2N improvement is made over the block-based algo-
rithm for the length-N CSSCHT. The proposed algorithm is
also more efficient than the sliding FFT algorithm and the
sliding DFT algorithm. The applications of sliding CSSCHT
to spectrum estimation and transform domain adaptive filter-
ing (TDAF) have been discussed.

6. ACKNOWLEDGMENTS
This work was supported by the National Natural Science Founda-
tion of China under Grant 60873048, by the National Basic Re-
search Program of China under Grant 2010CB732503, by a Pro-
gram of Jiangsu Province under Grant SBK200910055 and the
Natural Science Foundation of Jiangsu Province under Grant
BK2008279. This work is also supported by the “Eiffel Doctorate”
excellence grant of the French Ministry of Foreign and European
Affairs. The authors are also thankful to Dr. Aung for providing his
MATLAB code constructing the CSSCHT matrix and Dr. Ouyang
for helpful discussion.

REFERENCES

[1] N. Ahmed and K. R. Rao, Orthogonal Transforms for Digital
Signal Processing. New York: Springer, 1975.

[2] O.K. Ersoy, “A comparative review of real and complex Fou-
rier-related transforms,” Proc. IEEE, vol. 82, pp. 429-447, 1994.

[3] A. Aung, B. P. Ng, and S. Rahardja, “Conjugate Symmetric
Sequency-Ordered Complex Hadamard Transform,” IEEE
Trans. Signal Process., vol. 57, pp. 2582–2593, Jul. 2009.

[4] B. Farhang-Boroujeny and Y. C. Lim, “A comment on the com-
putational complexity of sliding FFT,” IEEE Trans. Circuits
Syst., vol. 39, pp. 875-876, Dec. 1992.

[5] E. Jacobsen and R. Lyons, “The sliding DFT,” IEEE Signal
Process. Mag., vol. 20, pp. 74–80, Mar. 2003.

[6] Y. Hel-Or and H. Hel-Or, “Real time pattern matching using
projection kernels,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 27, pp. 1430-1445, Sept. 2005.

[7] G. Ben-Artzi, H. Hel-Or, and Y. Hel-Or, “The gray-code filter
kernels,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29,
pp.382-393, Mar. 2007.

[8] W. Ouyang and W.K. Cham, “Fast algorithm for Walsh Ha-
damard transform on sliding windows,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 32, pp. 165-171, Jan. 2010.

[9] Yair Moshe and H. Hel-Or, “Video Block Motion Estimation
Based on Gray-Code Kernels,” IEEE Trans. Image Process.,
vol. 18, pp. 2243-2254, Oct. 2009.

[10] V. Kober, “Fast algorithms for the computation of sliding dis-
crete sinusoidal transforms,” IEEE Trans. Signal Process., vol.
52, pp. 1704–1710, Jun. 2004.

[11]S.S. Narayan, A.M. Peterson, and M.J. Narashima, “Transform
domain LMS algorithm,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 31, pp. 609-615, Jun. 1983.

[12]A.H. Sayed, Adaptive Filters. New York: Wiley, 2008.

in
se

rm
-0

05
30

94
8,

 v
er

si
on

 1
 -

5
D

ec
 2

01
3

