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ABSTRACT 
This paper presents a fast algorithm for the computation of 
forward and backward sliding conjugate symmetric se-
quency-ordered complex Hadamard transform (CSSCHT). 
The forward CSSCHT algorithm calculates the values of 
window i+N/4 from those of window i and one length-N/4 
CSSCHT, one length-N/4 Walsh Hadamard transform (WHT) 
and one length-N/4 modified WHT.  The backward CSSCHT 
algorithm can be obtained by transposing the signal flow 
graph of that of the forward one. The proposed algorithm 
requires O(N) arithmetic operations, which is more efficient 
than the block-based algorithm and those based on the slid-
ing FFT and the sliding DFT. The applications of the sliding 
CSSCHT in spectrum estimation and transform domain 
adaptive filtering (TDAF) are also provided with supporting 
simulation results. 

1. INTRODUCTION 

The discrete orthogonal transforms including discrete 
Fourier transform (DFT), discrete cosine transform (DCT), 
discrete Hartley transform (DHT), and Walsh-Hadamard 
transform (WHT) play an important role in the fields of digi-
tal signal processing, filtering and communications [1, 2]. 
Recently, Aung et al. introduced a new transform named the 
Conjugate Symmetric Sequency-ordered Complex Hadamard 
Transform (CSSCHT) [3], which can be an alternative of 
DFT and DCT in some applications needing lower computa-
tional complexity, such as spectrum estimation and image 
compression. A fast decimation-in-sequency (DIS) block-
based algorithm was also reported in [3], which requires 
N/2–1 multiplications with the imaginary number j, 2Nlog2N 
real additions and 2N memory for length-N CSSCHT. 

When dealing with a nonstationary process, such as 
speech, radar, biomedical, and communication signals, the 
commonly used method is sliding orthogonal transform 
(also called short time orthogonal transform), whose compu-
tation is an intensive task. Therefore, many fast algorithms 
were proposed [4-7]. Besides the commonly used sliding 
FFT [4] and sliding DFT [5], the sliding WHT [6-8] was 
also attractive in the real-time pattern matching applications 
[9]. A fast algorithm, which decomposes a length-N WHT 

into two length-N/2 WHTs plus 4N–4 real additions and 
2N(log2N-1) size of memory, for the sliding WHT was pro-
posed in [6]. Ben-Artzi et al. [7] proposed a gray code ker-
nel WHT algorithm, which requires 4N real additions and 
4N size of memory. Ouyang and Cham [8] presented a more 
efficient algorithm to compute the sliding WHT, which de-
rives the length-N WHT from two length-N/4 WHTs plus 
3N+2 real additions and 3N size of memory. Note that the 
computational complexity and the memory storage require-
ments are considered for complex input data. 

Inspired by a research work presented in [8], we pro-
pose in this paper a fast algorithm for the computation of 
sliding CSSCHT, which computes the values of window 
i+N/4 from those of window i and one length-N/4 CSSCHT, 
one length-N/4 WHT and one length-N/4 modified WHT. 

2. PRELIMINARY 

Let XN(i)=[xi, xi+1, …, xi+N–1]T and YN(i)=[yi, yi+1, …, yi+N–1]T 
be respectively the complex input vector and the trans-
formed complex vector of the ith window, where T denotes 
the transposition, and let N = 2n, n ≥ 1, the length-N forward 
and backward sliding CSSCHTs are defined as [3, 10] 

YN (i) = HN XN (i),                                  (1) 

XN (i) = 1
N

HN
H YN (i),                               (2) 

where the superscript H denotes the Hermitian transposition. 
HN is the order-N CSSCHT matrix whose elements are given 
by 

ˆ
2( , ) ( 1) ( ) ,0 , 2 1, log ,nh a b j a b n N• •= − − ≤ ≤ − =A B A B  (3) 

where 0 1 1( , ,..., ),na a a −=A  0 1 1
ˆ ˆ ˆ ˆ( , ,..., ),na a a −=A  and 

B = (b0 ,b1,...,bn−1) . The dot ‘• ’ denotes the scalar product 
of two vectors. ar and br are respectively the binary represen-
tation of a and b,  r = 0, 1, ..., n–1, being the index of the 
binary bit position. ra  is a binary gray code of the bit rever-
sal of ar and ˆra  is the rth bit of the binary bits of the highest 
power of 2 in c(a)/2 where c(a) is the decimal number ob-
tained through a bit-reversed conversion of the decimal a.   
Let      HN = HN (0),HN (1),...,HN (N −1)⎡⎣ ⎤⎦ ,                   
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     xi xi+1 xi+2 xi+3 xi+4 Proposed algorithm
y4(0,i) 
y4(0,i+1)  

1       1       1        1 
         1       1        1        1 

y4(0,i+1)= y4(0,i)- 
(xi-xi+4)  

y4(1,i) 
y4(1,i+1) 

1        j      -1       -j 
1         j      -1       -j 

y4(1,i+1)=-j[y4(1,i)-
(xi-xi+4)]  

y4(2,i) 
y4(2,i+1) 

1      -1       1      -1 
1       -1       1      -1 

y4(2,i+1)=-[y4(2,i)-
(xi-xi+4)]  

y4(3,i) 
y4(3,i+1) 

1       -j       -1       j 
1        -j      -1        j 

y4(3,i+1)=j[y4(3,i)-
(xi-xi+4)]  

Table 1 - Fast algorithm for length-4 CSSCHT 

 
Figure 1 - Signal flow graph of the length-N sliding 
CSSCHT transform 
 

   

HN
1/ m = HN 0( ),HN 1( ), ...,HN

N
m
−1

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= HN
1/ m 0( ),HN

1/ m 1( ), ...,HN
1/ m N −1( )⎡

⎣⎢
⎤
⎦⎥
T

, m = 2,4.

   (4) 

where HN(k), k = 0, 1, …, N–1, is the kth column of CSSCHT 
matrix, 1/ ( )m

N kH , k = 0, 1, …, N–1, is the kth row of 1/ m
NH , 

and the subscript T denotes the transpose. 
Let yN(k, i) be the kth CSSCHT projection value for the ith 
window : 

   yN (k, i) = HN
T (k)XN (i),  

for k = 0, 1, …N–1; i = 0, 1, …, M–N, N = 2n, n ≥ 1 
where M is the length of the input data sequence. 

3. FAST ALGORITHMS FOR SLIDING CSSCHT  

In this section, we derive a fast algorithm for computing the 
sliding CSSCHT. 
3.1  Fast Algorithm for N=4 
The proposed algorithm is shown in Table 1, from which we 
have 

  
y4(k, i +1) = (− j)k y4(k, i) − t4(k, i)⎡⎣ ⎤⎦ , k = 0,1,2,3  

[ ] [ ]
[ ]

1/ 4
4 4 4 4 4 4

4 4 4 4 4 4

(0, ), (1, ), (2, ), (3, ) ( )

( ), ( ), ( ), ( ) , ( ) .

T

T
i i

t i t i t i t i d i

d i d i d i d i d i x x +

=

= = −

H
 

where 1/ 4
4H  is defined in (4).  Therefore, 2 multiplications 

with j, 10 real additions, and a memory size of 10 are needed. 

3.2 Fast Algorithm for N=8 
The proposed algorithm is shown in Table 2, from which we 
have 

y8(k, i + 2) = (− j)k y8(k, i) − t8(k, i)⎡⎣ ⎤⎦ , k = 0,1,...,7.  

1/ 4
8 8 8 8 8 8(0, ), (1, ),..., (7, ) ( ), ( 1) ,T Tt i t i t i d i d i= +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦H        

21/ 2
4

2 21/ 4
8 8 2 8 2

2
2 2

2 2

1
, ,

j

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎡ ⎤⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

H
H

W S
H P W P S

W
J W

J W

 

d8(i+u)=xi+u-xi+8+u, u=0,1.                  
where P8 is defined in (8). J2 and W2 are described in the 
following subsection. Therefore, 5 multiplications with j, 26 
real additions, and 36 size of memory are needed. 
3.3  Fast Algorithm for N=2n, n≥3 
By using the same strategy as for N=4 and N=8, we have 

( , / 4) ( ) ( , ) ( , ) ,

0,1,..., 1,

k
N N Ny k i N j y k i t k i

k N

+ = − −⎡ ⎤⎣ ⎦
= −

             (5) 

1/ 4

(0, ), (1, ),..., ( 1, )

( ), ( 1),..., ( / 4 1)

T
N N N

T
N N N N

t i t i t N i

d i d i d i N

−⎡ ⎤⎣ ⎦

= + + −⎡ ⎤⎣ ⎦H
 

      HN
1/4 = PN

HN / 2
1/2

WN /4
JN / 4WN /4

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= PN

HN /4
QN / 4WN /4SN /4
WN /4
JN / 4WN /4

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (6) 

SN =
IN / 2

jIN / 2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

                           

              dN(i+u)=xi+u-xi+N+u, u=0,1,…,N/4-1,                        (7) 
[xi,  xi+1, …, xi+N-1]T=PN×[xi,  xi+4, …, xi+N-4, xi+2,  xi+6,…,xi+N-2, 
xi+1,  xi+3, …, xi+N/2-1, xi+N /2+1,  xi+N /2+2, …, xi+N-1]T                 (8) 
[xi,  xi+1, …, xi+N-1]T=QN× 
[xi,  xi+N-1, xi+1, xi+N-2,…, xi+N /2-1, xi+N /2+1]T                             (9) 
where 1/ 4

NH and 1/ 2
NH are defined in (4). WN is the Nth order 

WHT matrix. IN is the identity matrix and JN is the reverse 
identity matrix. Figure 1 shows the signal graph of the pro-
posed algorithm, whose computational complexity and 
memory storage requirement are analyzed as follows (assum-
ing that the algorithm is implemented in parallel): 
1) The computation of (7) for u = N/4–1 needs only 2 real 
addition. Note that the values of dN(i+u), u = 0, 1,…, N/4–2, 
have already been obtained during the computation of 
yN(k,i+v), v = 1, 2,…, N/4–1, respectively. A memory size of 
N/2 is required for storing dN(i+u), u = 0, 1, …, N/4–1. The 
input xi+u and xi+N+u for u = 0, 1, …, N/4–1, needs N memory, 
which can be released after performing (7) since it will not be 
used in the following steps. 
2) The computation of (6) needs one length-N/4 CSSCHT, 
one length-N/4 WHT, which can be computed by [8], one 
length-N/4 modified WHT (WN/4SN/4), which can be com-
puted by [6] plus N/8 multiplications with j (multiplied by 
SN/4). 
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 xi xi+1 xi+2 xi+3 xi+4 xi+5 xi+6 xi+7 xi+8 xi+9 Proposed algorithm 
y8(0,i) 

y8(0,i+2) 
1        1        1        1         1        1         1        1 

1        1        1        1         1        1         1         1 
y8(0,i+2)= 

y8(0,i)-[( xi - xi+8)+( xi+1- xi+9)] 
y8(1,i) 

y8(1,i+2) 
1         1         j        j        -1       -1        -j        -j 

1         1        j          j        -1       -1       -j        -j 
y8(1,i+2)= 

-j{y8(1,i)-[( xi - xi+8)+( xi+1- xi+9)]} 
y8(2,i) 

y8(2,i+2) 
1          j       -1       -j         1         j        -1        -j 

1          j       -1        -j        1          j        -1       -j 
y8(2,i+2)= 

-{y8(2,i)-[( xi - xi+8)+j( xi+1- xi+9)]} 
y8(3,i) 

y8(3,i+2) 
1        -1        -j         j        -1        1         j         -j 

1         -1       -j         j        -1        1          j        -j
y8(3,i+2)= 

j{y8(3,i)-[( xi - xi+8)-( xi+1- xi+9)]} 
y8(4,i) 

y8(4,i+2) 
1        -1         1       -1        1        -1       1        -1 

1       -1       1        -1         1       -1        1       -1
y8(4,i+2)= 

y8(4,i)-[( xi - xi+8)-( xi+1- xi+9)] 
y8(5,i) 

y8(5,i+2) 
1        -1           j        -j       -1          1       -j         j 

1       -1        j          -j        -1         1      -j         j
y8(5,i+2)= 

-j{y8(5,i)-[( xi - xi+8)-( xi+1- xi+9)]} 
y8(6,i) 

y8(6,i+2) 
1         -j         -1        j        1          -j        -1        j 

1        -j       -1        j         1         -j       -1         j
y8(6,i+2)= 

-{y8(6,i)-[( xi - xi+8)-j( xi+1- xi+9)]} 
y8(7,i) 

y8(7,i+2) 
1          1          -j        -j       -1       -1         j          j 

1         1         -j        -j       -1        -1         j       j
y8(7,i+2)= 

j{y8(7,i)-[( xi - xi+8)+( xi+1- xi+9)]} 
Table 2 -  Fast algorithm for length-8 CSSCHT. 

 
 
 
 
 

Proposed 
algorithm 

Muls(j) 5N/6-4/3, N=2n, n=4,6,… 
5N/6-5/3, N=2n, n=3,5,… 

Adds 17N/3+6log2N-86/3, N=2n, 
n=4,6,… 

17N/3+6log2N-103/3, N=2n, 
n=3,5,… 

Me {
( ) }/ 4 2

/ 2 max 7 / 2,

2 log 3 / 4CSSCHT
N

N N

Me N N

+

+ −

Algorithm 
[3] 

Muls(j) N/2-1 
Adds 2Nlog2N 
Me 2N 

Sliding FFT 
 [4] 

Muls 4N–8log2N 
Muls(j) log2N–1 
Adds 4N–4log2N-2 
Me 2Nlog2N-8 

Sliding DFT 
[5] 

Muls 4N-16 
Muls(j) 2 
Adds 4N-6 
Me 4N-6 

Table 3 - Comparison results of the proposed algorithms with the 
block-base one in [3], the sliding FFT in [4] and the sliding DFT in 
[5] for N = 2n, n ≥ 4. “Muls” represents real multiplications, “Muls 
(j)” means multiplication with j , “Adds” means real additions. “Me” 
denotes memory (words). 
 
Size 3N/2 memory is needed for storing the values tN(i+u), 
u∈[0, N-1] but u ∉{N/2+1, N/2+3,…, N-1}, since JN/4WN/4 
is just row change operations of WN/4. We also assume that 
the memory storage requirements of length-N/4 CSSCHT, 
length-N/4 WHT, and length-N/4 modified WHT are 

  MeN /4
CSSCHT ,   MeN / 4

WHT , and / 4
MWHT
NMe , respectively. Note 

that the multiplication by j or –j can be realized by switching 
the real and imaginary parts of the input with one sign chang-
ing, so that there is no memory requirement. 
3) The computation of (5) needs N/2 multiplications with j 
and 2N real additions. The values of yN(k, i), yN(k, i+1),…, 

yN(k, i+N/4–1) can be obtained by zero padding method 
(5N/4–1 zeros) as proposed in [9]. For the implementation, 
we first distribute 2N memory for yN(k, i), k = 0, 1, …, N–1, 
which is then overlaid by yN(k, i+N/4), k = 0, 1, …, N–1 after 
performing (5). Thus, the computational complexity and 
memory requirement of the proposed algorithm is given by 

/ 4 5 / 8CSSCHT CSSCHT
N NM M N= +  

/ 4 / 4 / 4 2 2CSSCHT CSSCHT WHT MWHT
N N N NA A A A N= + + + +  

/ 4 / 4 / 4
7max ,

2 2
CSSCHT CSSCHT WHT MWHT
N N N N

NMe N Me Me Me⎧ ⎫= + + +⎨ ⎬
⎩ ⎭

 

with the initial values 4 42, 10;CSSCHT CSSCHTM A= =   

8 85, 26;CSSCHT CSSCHTM A= = 4 810, 36;CSSCHT CSSCHTMe Me= =  
and 4 810, 24WHT WHTMe Me= = . 
The comparison results of the proposed algorithm and the 
algorithms in [3-5] are shown in Tables 3 and 4. It can be seen 
from the tables that the proposed algorithm reduces signifi-
cantly the real additions compared to the algorithm in [3], but 
at the cost of a little more memory requirement. The proposed 
algorithm is also more efficient than the sliding FFT in [4] 
and sliding DFT in [5]. This is because the proposed algo-
rithm only needs the multiplications with j and real additions, 
and can save the memory for storing the twiddle factors. For 
comparison purpose, Tables 3 and 4 give the real multiplica-
tions, multiplications with j and real additions where one 
complex multiplication is implemented by four real multipli-
cations and two real additions. It should be noted that for the 
computation of yN(k, i), k = 0, 1, …N–1; i = 0, 1, …, M–N, N 
= 2n, n ≥ 1, the proposed algorithm should perform (M+N/4) 
times the module shown in Figure 1. However, the sliding 
DFT [5] and the block-base algorithm [3] are only performed 
M and M–N +1 times, respectively.  Sliding FFT [4] should 
perform a radix-2 FFT algorithm first and then perform M–N 
times the sliding algorithm. The computation of the backward 
CSSCHT, if ignoring the normalization factor 1/N in (2), can 
be simply realized by transposing the signal flow graph of the 
forward CSSCHT. 
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                   (a)  SNR=5                                                                               (b) SNR=5 

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6
x 10

-4 Single-Sided CSSCHT Amplitude Spectrum of y(t)

Frequency (Hz)

|Y
(f)

|

         0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10-3 Single-Sided DFT Amplitude Spectrum of y(t)

Frequency (Hz)

|Y
(f)

|
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                                                           (e) SNR=15                                                                                (f) SNR=15 

Figure 2 - Spectrogram of a 50Hz sinusoidal signal with additive white noise:  (a)(c)(e) sliding CSSCHT  (b)(d)(f) sliding DFT 
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Figure 3 - Block diagram of CSSCHT                                                      Figure 4 - Transform domain adaptive filtering using sliding  

 domain adaptive filtering                                                                                   CSSCHT and sliding DFT 
 

Table 4- The quantitative comparison results of the proposed algorithms with other three algorithms ([3]-[5]) for N = 2n, n ≥ 4. 

N Proposed algorithm Algorithm [3] Sliding FFT [4] Sliding DFT [5] 
Muls (j) Adds Me Muls(j) Adds Me Muls Muls (j) Adds Me Muls Muls (j) Adds Me 

4 2 10 10 1 16 8 0 1 6 8 0 2 10 10 
8 5 25 36 3 48 16 8 2 18 40 16 2 26 26 
16 12 86 64 7 128 32 32 3 46 120 48 2 58 58 
32 25 177 128 15 320 64 88 4 106 312 112 2 122 122 
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4. APPLICATION EXAMPLES 

In this section, we will give some application examples of 
the sliding CSSCHT. 
4.1 Spectrum estimation 
CSSCHT is applied in spectrum estimation of a sinusoidal 
signal. In the proposed spectrum analysis, the window shifts 
one step each time leading to a highly overlapping window, 
which is exactly the sliding CSSCHT/DFT. Note that the use 
of a sliding window can decrease the variance of the estima-
tion when compared to that of using a single window. Figure 
3 shows the single-sided amplitude spectrum of 512-point 
sliding CSSCHT and sliding DFT of a 50Hz sinusoidal signal 
with additive white Gaussian noise and signal-to-noise ratio 
(SNR) being from 5 dB to 15 dB. The length of the input data 
sequence is M = 4096 and the sampling frequency is 1000 Hz. 
We compute the transformations of the whole sliding win-
dows, and then calculate the average of those coefficients to 
obtain the estimated spectrum. From the figure, it can be seen 
that the CSSCHT frequency magnitude is matched with that 
of DFT. The desired peaks occur in the same locations as that 
of DFT even though there are some spurious spikes in the 
CSSCHT spectrum. Therefore, it is worth considering sliding 
CSSCHT for spectrum analysis instead of sliding DFT when 
it is necessary to achieve significant hardware savings and 
reduced computational time [3]. 
4.2 CSSCHT domain LMS adaptive filter 

Transform domain least-mean-square adaptive filters 
(TDLMSAF), introduced by Narayan et al.[11], exploit the 
de-correlation properties of some well-known signal trans-
forms such as DFT, DCT, DHT and WHT, in order to pre-
whiten the input data and speed up filter convergence [12].  

  Similar to the DFT domain LMS adaptive filter [11, 12], 
the CSSCHT domain LMS adaptive filter algorithm, shown 
in Figure 3, is described as follows: 

( ) ( ), ( ) ( ) ( ), ( ) ( ) ( ),H
N N N N Ni i z i i i e i d i z i= = = −Y H X W Y    

   WN (i +1) = WN (i) + 2μD−1(i)e(i)YN
* (i),          

where * denotes the complex conjugate operator, XN(i) is the 
input signal vector, YN(i)=[yN(0,i), yN(1,i), …, yN(N-1,i)]T is 
the CSSCHT domain coefficients. WN(i)=[wN(0,i), 
wN(1,i), …, wN(N-1,i)]T is the adaptive weight vector. z(i), 
d(i), e(i) are the filter output signal, the desired signal,  the 
error signal, respectively. μ is a positive step-size and D(i) is 
a diagonal matrix of the estimated input powers which is 
given by 

  

D(i) = diag{σ 2(k, i)}, k = 0,..., N −1

σ 2(k, i) = βσ 2(k, i −1) + (1− β) yN (k, i)
2

,0 < β < 1
 

The sliding CSSCHT and sliding DFT are compared in a 
simulation for this type of adaptive filter. Using a 32-tap filter, 
a 5 Hz sinusoid with 1024 samples per second corrupted by 
Gaussian white noise with SNR equal to 0 db is processed 
through the filter. The parameters are set as µ = 0.01 and β = 
0.9. Figure 4 shows the desired signal, corrupted signal and 
the filtered signals by TDLMSAF using sliding DFT and slid-

ing CSSCHT. It can be seen that the result of TDLMSAF 
using sliding CSSCHT is almost the same as that obtained 
with sliding DFT. 

5. CONCLUSION 

In this paper, we have presented a fast algorithm for comput-
ing the forward and backward sliding CSSCHT. The arithme-
tic complexity order of the proposed algorithms is N, a factor 
of log2N improvement is made over the block-based algo-
rithm for the length-N CSSCHT. The proposed algorithm is 
also more efficient than the sliding FFT algorithm and the 
sliding DFT algorithm. The applications of sliding CSSCHT 
to spectrum estimation and transform domain adaptive filter-
ing (TDAF) have been discussed. 
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