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Abstract

A lumped-parameter model of the cardiovascular sys-

tem, made of 3 interacting modules (an electrical heart

model, an elastance-based mechanical heart model and a

circulatory system) is proposed in this paper. This model is

able to reproduce the clinically observed quasi-parabolic

nature of the dependence of systolic blood pressure (SBP)

on atrioventricular (AV D) and interventricular (V V D)

delays and the increased SBP on AV D dependance at

high heart rates. A sensitivity analysis has been performed

on the main variables of this model, as well as parameter

identification on interpolated clinical data. Results from

these analyses show the importance of integrating the cir-

culatory and regulatory systems for the reproduction of ap-

propriate physiological responses to CRT.

1. Introduction

Cardiac resynchronization therapy (CRT) is widely ap-

plied to patients suffering from chronic heart failure, meet-

ing specific criteria [1]. However, among patients selected

for CRT, around 30% are non-respondents. A possible rea-

son for this is that the atrioventricular (AV D) and inter-

ventricular (V V D) pacing delays are not correctly opti-

mized. One of the possible non-invasive optimization tar-

gets, systolic blood pressure (SBP), has been shown to

exhibit an optimal AV D and V V D configuration with a

pseudo-parabolic variation for both; the curvature for the

former being more pronounced [2, 3]. In addition, higher

heart rates induce increased SBP(AV D) dependance. The

aim of this work is to propose a mathematical model of the

cardiovascular system reproducing these main hemody-

namic effects resulting from changes in AV D and V V D
during CRT. In the first part of this paper, we describe the

model used, before investigating possible causes for the in-

creased SBP(AV D) dependance at higher heart rates. Fi-

nally, parameter identification is carried out by minimizing

a cost function defined between the model output and a set

of interpolated clinical data.

2. Model description

The system model used in this paper is composed of a

pacemaker, an electrical heart, a mechanical heart and a

circulatory system as schematically described in fig. 1.

Figure 1. System model.

2.1. Electrical heart model

The electrical heart model is based on a previous work

proposed in our laboratory [4]. It is made of two types

of adaptive automata representing different cardiac struc-

tures. The seven nodal automata represent the sinoatrial

node atrioventricular node, upper and lower bundle of His,

left and right bundle branches and left and right septal bun-

dle branches, while the five myocardial automata represent

the left and right atria, left and right ventricles and the

interventricular septum. The model has four inputs; the

heart rate (HR) which is fed directly to the sinoatrial node

and three stimulation inputs coming from the pacemaker

(Stim.A, Stim.RV and Stim.LV ) simulating the three

pacing leads used in CRT. The model then sends five acti-

vation signals which are fed to the mechanical heart model;

a sixth output representing the atrial sensing is also sent to

the pacemaker model.

2.2. Circulatory and mechanical models

The mechanical heart model is embedded into the cir-

culatory model, as shown in fig. 2. The mechanical heart

model is composed of four chambers, representing atria

and ventricles, and one artificial volume, associated with

the interventricular septum, as proposed by [5,6]. The right

ventricle and left atrium are connected via the pulmonary

circulation while blood flows from the left ventricle to the



right atrium through the systemic circulation. For both

of these circulations, lumped-parameter models have been

chosen. Resistances (R) simulate pressure gradients due to

resistances encountered by blood passing through the dif-

ferent sections. Inductors (L) describe inertial effects due

to changes in the velocity of blood flow and finally, ca-

pacitors (C) are included since blood can be stored in the

different vessels. Parameter values for these elements are

given in fig.2. Four diodes have been included to represent

the aortic, tricuspid, pulmonary and mitral valves. These

diodes have been assigned a resistance of 0.01 in forward

bias and 100 mmHg.s/ml in reverse bias.

Figure 2. Circulatory and mechanical heart model.

2.3. Atrial and ventricular activities

The dynamics of atria and ventricles are described by

elastic chambers. One cycle of the atrial elastance is given

by:

Ea(t) = Ea,max

[

ea(t) +
Ea,min

Ea,max

]

, (1)

e(t) being the driver function. In the present paper, a gaus-

sian function was chosen [7]:

ea(t)=exp

[

−Ba.

(

HR

80

)2

.

(

t − Ca

(

80

HR

))2
]

, (2)

Ba and Ca are parameters equal to 180 s−2 and 0.2 s re-

spectively. These values are chosen for a reference heart

rate (HR) of 80 beats per minute (bpm).

As for the ventricles, one can identify two main char-

acteristics in their PV cycles, namely the end systolic

pressure-volume relationship (ESPVR) and the end dias-

tolic pressure-volume relationship (EDPVR), which de-

fine, respectively, the upper and lower bounds of the loops.

These two relationships can be written as follows [8]:

Pes = Ees (V − V0) , (3)

Ped = P0

(

eλ(V −V0)
− 1

)

. (4)

Eq. (3) describes the linear relationship between end

systolic pressure (Pes), volume (V ), volume at zero pres-

sure (V0) and elastance (Ees), while eq. (4) defines

the non-linear relationship between end diastolic pressure

(Ped) and volume (V ); P0, λ and V0 being the related pa-

rameters. The pressure of anyone ventricle can finally be

written in terms of equations (3) and (4) and its driver func-

tion (ev(t)):

Pv(V, t) = ev(t)Pes + (1 − ev(t))Ped. (5)

The driver function for the ventricles are similar to the

one used for the atria, except for parameters Bv and Cv

which are different reflecting longer ventricular contrac-

tions (with respect to atrial contractions). Throughout this

paper, we have set Bv and Cv equal to 112 s−2 and 0.26 s
respectively.

2.4. Interventricular coupling

The two ventricles are made to interact through the in-

terventricular septum. Following Smith’s model [5, 6] the

left and right ventricular free wall volumes read:

Vlvf = Vlv − Vspt, (6)

Vrvf = Vrv + Vspt, (7)

where Vspt represents the modification on both Vlvf and

Vrvf due to septal dynamics. Pressures for the ventricles

and septum are in the same form as eq.(5):

Plvf = elvf (t)Pes,lvf + (1 − elvf (t))Ped,lvf

Prvf = ervf (t)Pes,rvf + (1 − ervf (t))Ped,rvf

Pspt = espt(t)Pes,spt + (1 − espt(t))Ped,spt

and are interelated as follows:

Pspt = Plvf − Prvf . (8)

The complete model has been developed using SimulinkTM

and the next sections discuss results obtained from this

model.

3. Simulation results

Fig. 3 shows an example of simulated pressures and

left ventricular volume obtained from our model. The sig-

nals correspond to a stationnary state reached by the model

after an initial transient regime. To obtain a complete

AV D/V V D scanning, for each pacing configuration, the





• for the atrial elastance :Ea,max, Ea,min, and Ca

• three elastance parameters for the ventricles and septum:

Ees, P0 and λ (different for each chamber)

• gain values for contractility (different for each chamber),

venous regulation, systemic and pulmonary resistance.

• UAP values for ventricles and septum.

The procedure yields the set of parameters minimizing the

rMSEs which read 0.111, 0.096 and 0.114 for the above-

mentionned optimal configurations. In fig. 6(a) we com-

pare, for the first configuration, the interpolated and simu-

lated data while figure 6(b) shows the corresponding com-

plete AV D/V V D scanning results.

(a)

(b)

Figure 6. (a) Comparison between interpolated

clinical data (dash) and simulation results (circles)

for SBPrel(AV D) at V V D = 0 ms (left) and

SBPrel(V V D) at AV D = 120 ms (right) for an opti-

mal configuration of AV D = 100 ms and V V D = 0 ms
and (b) AV D/V V D scanning results of the simulations.

5. Conclusion

We have proposed a lumped-parameter model of the

cardiovascular system, capable of generating a quasi-

parabolic dependence of SBPrel with respect to the AV D
and V V D pacing parameters. Although appropriate clin-

ical datasets are still required to complete the validation

of the model, obtained results are encouraging and show

the importance of taking into account the interactions be-

tween electrical, mechanical and hemodynamic phenom-

ena, in order to analyze the consequences of different pac-

ing parameters on CRT. The inclusion of a regulatory sys-

tem reveals to be fundamental for studying CRT response

to varying HRs and, although a model of short-term auto-

nomic regulation has not being integrated yet in this model,

the obtained results will certainly serve in this sense. In

its current state, the model can be employed in develop-

ing and testing CRT pacing parameters optimization algo-

rithms, functioning in a continuous fashion. It could also

be useful in defining realistic boundary conditions for a

more detailed cardiac model.
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