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Abstract

Mutual Information (MI) has been extensively studied

as similarity measure for the registration of medical im-

ages, and it has been found to be especially robust for

multimodal image registration. However, MI estimators

are known i) to have a very high variance and ii) to be

computationally costly. In order to overcome these draw-

backs, we propose a new similarity measure based on the

sum of squared cumulants. In addition, our measure can

be easily derivated with respect to registration parame-

ters leading to an optimization with a simple gradient rule.

Such a scheme is presented for a non-rigid registration and

its performance is studied through computer results in the

context of cardiac multislice computed tomography.

1. Introduction

MultiSlice Computed Tomography (MSCT) imaging of-

fers advantages to study both cardiac anatomy and func-

tion. Cardiac function assessment from 3D image se-

quences has been greatly improved by the recent techni-

cal developments: 3D echography, cine-MRI and MSCT

providing 3D dynamic images in a single exam. But these

3D images need the development of adapted tools to ex-

tract cardiac movement. Motion estimation problems can

be viewed as registration problems. Many automatic med-

ical image registration methods have been proposed (see

[1] for a bibliographical survey). Among them, the tech-

niques based on Mutual Information (MI) [2] have become

standards of processing in the context of multidimensional

non-rigid and multimodal medical image registration [3]

since their first use in such applications [4, 5].

The computation of the MI requires the estimation of

marginal and joint Probability Density Functions (PDF’s)

as we will see in section 2. Consistent kernel estimators

like Parzen estimators can be used. But in practical con-

texts, the integral computation of such estimators is time-

consuming and the estimation of PDF’s from a finite set

of data generally implies a high variance estimate. A sim-

ple way of avoiding these drawbacks was proposed two

decades ago in Independent Component Analysis (ICA). It

is noteworthy that the ICA scheme aims at identifying the

statistical independent components of a noisy static mix-

ture [6]. Although the MI was shown to be an appropriate

independent measure to perform ICA, cumulants appeared

to be useful statistical tools easier to handle [7]. Cumu-

lants allow to measure the statistical dependence of two

random variables, vanishing if the two components are in-

dependent.

As a result, in order to overcome the drawbacks of the

MI estimators, we propose in this paper a new similarity

measure based on cumulants. It can be viewed as a gen-

eralization of the classical Mean Square Error (MSE) to

higher order statistics. Moreover, measure can be easily

derived with respect to registration parameters allowing for

an optimization with a simple gradient rule. Such a scheme

is presented for a non-rigid registration of MSCT cardiac

images and its performance is studied through computer

results showing its good behavior.

2. Toward a novel dependence measure

The major components of a registration framework are

basically the feature space (the characteristics of the im-

ages taken in account), the similarity measure used to com-

pare these characteristics, the type of transformation we

consider, and the chosen optimization method. In this sec-

tion, we focus on the new similarity measure proposed in

this paper to register images.

In information theory, the MI of two random variables

x and y gives a measure of the statistical dependence of

both variables. This Kullback-Leibler divergence can be

expressed as a function of the marginal and joint entropies

of x and y:

MI(x, y) = H(x) + H(y) − H(x, y) (1)

In fact, Shannon entropy [8] of x, H(x), is a measure of

the average or expected information content of an event

described by the random variable x, given by:

H(x) = −
∑

u

px(u) log(px(u)) (2)



where px is the marginal probability distribution of x. The

joint entropy H(x, y), measuring the dispersion of the joint

PDF, px,y , of the couple (x, y), is defined by:

H(x, y) = −
∑

u,v

px,y(u, v) log(px,y(u, v)) (3)

As shown in equations (1)-(3), in practice the estimation

of the MI requires the estimation of the marginal and joint

PDF’s of the couple (x, y). Recall also that it is possible to

derive a metric (or distance function), DMI, from the MI,

say a function which defines a distance between variables

of the set of the random variables with values in R:

DMI(x, y) = H(x, y) − MI(x, y)
= 2H(x, y) − H(x) − H(y)

(4)

It is noteworthy that a function D : F ×F → R is a metric

on a set F if, for all x, y and z in F , we get:

A1. D(x, y) ≥ 0 with equality if and only if x = y;

A2. D(x, y) = D(y, x);
A3. D(x, y) ≤ D(x, z) + D(z, y);

The first axiom ensures the positive definiteness of the D
function. Note that if F denotes the set or a subset of the

random variables, the equality between x and y has to be

observed almost surely, say with a probability equal to one.

The second axiom means that D is symmetric and the third

axiom refers to the triangle inequality. In addition, we have

DMI(x, y) ≤ H(x, y) for all couples (x, y) of variables,

which implies that the values DMI(x, y)/H(x, y) will be

always upper bounded by one.

Another way to quantify the amount by which a random

variable x differs from another one y consists in computing

the MSE between both variables, say:

MSE(x, y) = E[(x − y)2]
= E[x2] + E[y2] − 2E[xy]

(5)

where E[x] denotes the mathematical expectation of x.

Such a measure only involves the marginal and joint sec-

ond moments of the couple (x, y), which are easily esti-

mated in practical contexts under some mild conditions. In

fact, the MSE is also a metric but this time on the subset of

the second order random variables in comparison with the

DMI distance.

Now, let Φx(u) = E[exp(iux)] be the first characteris-

tic function of the random variable x. Since Φx(0) = 1
and Φx is continuous, then there exists an open neighbor-

hood of the origin, in which Ψx(u) = log(Φx(u)) can be

defined. Function Ψx is called the second characteristic

function of x. The coefficients of the Taylor expansion Ψx

in the neighborhood of the origin allow to define special

statistical quantities, called cumulants [9]. Cumulants are

also named semi-invariants in statistics and can be explic-

itly related to moments as illustrated below [10]:

C
(2)
x = E[x2] = Var(x)

C
(3)
x = E[x3]

C
(4)
x = E[x4] − 3E[x2]

(6)

where C
(2)
x , C

(3)
x and C

(4)
x are the Second Order (SO), Third

Order (TO) and Fourth Order (FO) marginal cumulants of

the zero-mean, unit-variance variable x. Then we propose

the Ψ measure given by:

Ψα,β,γ(x, y) = α C
(2)
x−y + β

(
C

(3)
x−y

)2

+ γ
(
C

(4)
x−y

)2

(7)

where α, β and γ are strictly positive real numbers. It may

be asked whether the Ψ measure is well a metric on the set

of the random variables with finite SO, TO and FO cumu-

lants. The axioms A1 and A2 are well-satisfied. Indeed,

from (6) and (7), the Ψ measure is always positive. Be-

sides, even if some variables z = x − y may have zero

TO and FO cumulants for z 6= 0 such as the Gaussian one,

their SO cumulant will be always non-zero. As far as the

third axiom is concerned, there is no trivial result about it

using our measure. This will be studied in a forthcoming

work.

3. A cumulant-based registration scheme

In the following, IR and IF will denote the reference

image and the floating image on which a transformation

φ will be applied to perform the registration, respectively.

The chosen transformation is a Free-Form Deformation

(FFD) model based on B-splines, which is a powerful tool

for modeling 3D deformable objects. It warps an image by

moving an underlying set of control points distributed over

a regular grid. The displacement of a point v of the image

can be written as a linear combination of B-spline func-

tions β(k), weighted by the parameters ξ(k) in the neigh-

borhood K(v) of this point:

φ(v, ξ) = v +
∑

k∈K(v)

ξ(k) βk(v) (8)

Interesting properties of the B-splines for our study are the

compacity of their support, derivability and separability in

each dimension. The aim of the registration process is to

align the pixels IF (φ(v, ξ)) of the transformed floating im-

age with the pixels IR(v) of the reference image. The vec-

tor ξ describes the B-spline coefficients to be determined.

Then, the registration can be formulated as a minimization

problem:

ξ̂ = arg min
ξ

Ψα,β,γ(IR, IF (φ(., ξ))) (9) 



A gradient descent is thus used in order to find the ξ̂ param-

eter which minimizes the cumulant-based similarity metric

Ψα,β,γ . At iteration it, we take the actual estimate ξ(it) of

the vector parameter ξ and calculate an update ξ(it + 1)
by using the following rule:

ξ(it + 1) = ξ(it) − µ(it)∇Ψα,β,γ(IR, IF (φ(., ξ(it))))
(10)

This iterative scheme is performed until convergence,

where µ(it) is the step size of the gradient descent which

requires to be adjusted at each iteration it.

4. Computer results

The aim of this section is to analyze the behavior of the

cumulant-based registration scheme in comparison with

the MSE-based method through computer simulations. In

our experiment we use two dimensional MSCT slices of

(200×200) pixels. We present experiments in a controlled

environment, allowing an exact evaluation of the registra-

tion accuracy. A (200 × 200) image (Fig. 2(b)) is ex-

tracted from an original MSCT slice (Fig. 2(a)) in order to

form the floating image. Next, we non-rigidly transform

the floating image using a (10×10) deformation grid (Fig.

2(e)) of B-spline control points to obtain the reference im-

age (Fig. 2(c)). Then, we try to find back the deforma-

tion using the cumulant-based and MSE-based optimiza-

tion procedures from the floating and reference images. To

compare the performance of both approaches, we compute

the distance between the vector ξ of B-spline coefficients

and its estimate ξ̂ given by:

D(ξ, ξ̂) =
||ξ − ξ̂||

length(ξ)
(11)

where ||h|| denotes the Euclidean norm of vector h.

Figure 1 shows the distance (11) at the output of both

approaches as a function of the number of iterations of the

gradient rule (10). The convergence to zero can be ob-

served for both methods with a slightly smoother curve for

our cumulant-based approach. In addition, the registered

image obtained using the cumulant-based similarity mea-

sure is shown in figure 2(d). It appears to be very close

to the reference image as shown in figure 3 for which the

absolute value between both images was computed.

5. Conclusion

Recently, MI and its normalized versions have emerged

as effective similarity measures for image registration.

However, MI estimators are known i) to have a very high

variance and ii) to be computationally costly. Conversely,

the MSE similarity measure may appear to be very attrac-

tive. Nevertheless, it uses only the SO statistical informa-

Figure 1. Non-rigid image registration using 10 ∗ 10 grid

of B-spline control points to parametrize the deformation

field for (200 × 200) images.

tion of the data, which may be restrictive when the consid-

ered images are not Gaussian.

As a result, we proposed a new similarity measure based

on q-th (q ≤ 4) order cumulants, which generalizes the

MSE measure to higher order statistics. Our measure then

can use more statistical information of the data for an ac-

ceptable variance of estimation. In addition, it can be eas-

ily derivated with respect to registration parameters allow-

ing for an optimization with a simple gradient rule.

So, we developed a fully automatic and intensity-based

registration algorithm with a parametric model of the de-

formation such as the B-spline model, which is compu-

tationally more efficient than other alternatives. Such a

scheme is evaluated for the non-rigid registration of MSCT

cardiac slices and its performance is compared with the

MSE-based procedure. Computer results show the good

behavior of our cumulant-based registration technique.

Forthcoming works will extend the proposed cumulant-

based registration algorithm to a double multiresolution

strategy (for both images and B-spline transformation

grid), which will allow us to perform a time efficient reg-

istration of 3-dimensional images. Besides, in this paper,

we did not prove that our measure statisfies the triangle

inequality, even if our measure gives good registration re-

sults. Such a study will be given in a longer paper.
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