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Abstract: 

Cellular FLIP, also known as FLICE-inhibitory protein, has been identified as an 

inhibitor of apoptosis triggered by engagement of Death Receptor (DR) such as Fas or 

TRAIL. c-FLIP is recruited to DR signalling complexes, where it prevents caspase 

activation. Animal models indicated that c-FLIP plays an important role in T-cell 

proliferation and heart development. Abnormal c-FLIP expression has been identified in 

various diseases such as multiple sclerosis, Alzheimer’s disease, diabetes mellitus, 

rheumatoid arthritis and various cancers. The present review focuses on recent insights in 

c-FLIP dysregulation associated with human diseases, and addresses the possibilities of 

using c-FLIP as a therapeutic target. 

 

1-Introduction 

Tissue homoeostasis is essential for the maintenance of multicellular organisms 

and requires a fine tuned balance between cell proliferation and death. Elucidation of the 

molecular mechanisms involved in the latter process progressed exponentially over the 

last two decades and provided significant insights into the comprehension of 

pathogenesis of human diseases. Amongst the cell death mechanism characterized in 

mammals, namely apoptosis, necrosis and autophagy, programmed cell death or 

apoptosis is currently the best characterized. This a discrete and active process that was 

originally identified on morphological characteristics, including cell shrinkage, 

membrane blebbing, chromatine condensation and nuclear fragmentation [1]. Apoptosis 

has been involved in embryonic development, adult tissue homeostasis and cell response 

to noxious stimuli. Its triggering can proceed through an extrinsic or intrinsic pathway 

[2].  

The intrinsic pathway can be initiated by the release of proapototic molecules 

such as cytochrome c, from damaged mitochondria, which activate the intracellular 

receptor Apaf-1 (Apoptotic Protease- Activating Factor 1) forming with caspase-9 a 

proteotically active structure called the apoptosome [3]. Extrinsic activation of apoptosis, 

on the other hand, can occur upon stimulation of a cell membrane associated death 

receptor (DR). To date eight DRs have been described: TNF-R1 (CD120a) [4, 5], Fas 
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(APO-1 or CD95) [6, 7], TRAMP (DR3, Apo3, LARD or Wsl-1)[8-12], TRAIL-R1 

(DR4) [13-16], TRAIL-R2 (DR5) [14, 16], DR6 [17], NGFR (p75NTR) [18] and EDA-R 

(ectodermal dysplasia receptor) [19]. The best characterized are TRAIL-R1/R2 and Fas, 

which have been shown to play a crucial role in the immune system, in both immune-cell 

mediated cytotoxicity and downregulation of immune responses. Upon binding with their 

cognate ligands, these receptors form aggregates that enable the recruitment of the 

adapter molecule FADD (MORT1) [20] and the initiator protease caspase-8 (FLICE, 

MACH, MCH5) [21-23], hence forming the so-called Death-Inducing Signalling 

Complex (DISC) in which caspase-8 is processed and activated [24]. Both intrinsic and 

extrinsic systems transmit signals through protein–protein interactions that are mediated 

by homologous and evolutionarily related protein-interaction motifs, including the death 

domain (DD), the death effector domain (DED) or the caspase-recruitment domain 

(CARD). Execution of the apoptotic process in all instances is dependent on a family of 

intracellular cysteine proteases, called caspases [7, 25-27]. These interactions induce 

caspase activation by cleavage in a close proximity [28] that enables the activation of the 

caspase cascade culminating in the cleavage of various substrates, such as lamins, fodrin, 

gelsolin, actin or the Inhibitor of Caspase-Activated DNase (ICAD), leading to cell 

dismantle (Figure 1).  

Dysregulation of apoptosis, however, can lead to various pathologies.  Defective 

apoptosis generates cell accumulation that characterizes autoimmune disease and cancer, 

whereas excessive apoptosis plays a role in neurodegenerative diseases, heart failure and 

AIDS [29]. It appears thus essential to understand more thoroughly how this process is 

regulated at the cellular level, but also with respect to human diseases, in order to design 

new therapeutic strategies that would circumvent apoptotic dysregulation and prove 

beneficial for human health. To avoid uncontrolled cell or tissue damage, apoptosis is 

tightly controlled by a collection of cellular inhibitors, such as the Proteins of the 

Inhibitor of Apoptosis (IAP) family which regulate apoptosis at the post-mitochondrial 

level by binding to and inhibiting caspase-3, -6, -7 and -9, the Bcl-2 family members 

which regulate apoptosis at the mitochondrial level [2], and c-FLIP, that negatively 

interferes with DR-induced cell death, upstream of the mitochondrial events [25]. This 

review focuses on c-FLIP whose dysregulation has been identified in various diseases 
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including multiple sclerosis, Alzheimer’s disease, diabetes mellitus, rheumatoid arthritis, 

cardiovascular disorder and various cancers. 

 

2-FLICE-Inhibitory Protein or c-FLIP.  

Viral FLICE-inhibitory proteins (v-FLIPs), were initially discovered by 

bioinformatic search for novel virus-encoded apoptosis-regulatory molecules containing a 

DED. Mammalian homologues of v-FLIPs, also designed c-FLIP, CASH, Casper, 

CLARP, FLAME, I-FLICE, MRIT and usurpin [30-37], share structural and sequence 

homologies with caspase-8 and -10, upstream caspases involved in the initiation of DR-

induced apoptosis, such as Fas/Apo1, TRAIL or TNFR-1. c-FLIP contains two serial 

amino-terminal DEDs followed by a carboxy-terminal extension comprising a caspase-

homologous domain similar to caspase-8 and caspase-10. However, owing to the 

substitution of several amino acids conserved in caspases, such as the cysteine residue 

within the QACXG-motif and the histidine residue within the HG-motif, c-FLIP is 

devoid of proteolytic activity [25, 38]. Consistently, a protective role for c-FLIP in DR-

induced apoptosis was found in fibroblast cell lines derived from c-FLIP-knockout mice 

[39]. The DEDs of c-FLIP bind to the DED of the adaptor protein FADD, acting as 

dominant-negative inhibitors of the processing and release of active caspase-8 or –10 to 

the cytosol. 

Although cellular FLIPs exists as multiple splice variants at the mRNA level, it 

appears that only two variants are expressed as proteins in vivo: short FLIP (c-FLIP (S)) 

of 26 kDa and long FLIP (c-FLIP (L)) of 55 kDa. Compared to c-FLIP (L), described 

above, c-FLIP (S) has a shorter carboxy-terminal extension of approximately 20 amino 

acids [25, 40]. Both c-FLIP (S) and c-FLIP (L) inhibit apoptosis induced by Fas, TRAIL-

R1, TRAIL-R2, TRAMP and TNF-R1 [32-34, 36, 41, 42]. At comparable expression 

levels, however, c-FLIP (L) is a more potent inhibitor than c-FLIP (S) [36]. In the 

canonical Fas and TRAIL-induced caspase activation pathway, both caspase-8 and c-

FLIP (L) are partially processed at the DISC level [43, 44]. c-FLIP (L) contains a 

conserved aspartic-acid cleavage site (Asp-341) between the p20- and p10-like domains 

[32], which can be cleaved in vitro. In c-FLIP (L) overexpressing cells, procaspase-8 is 
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found in the DISC partially processed as a p44/41 fragment [43, 45], corresponding to the 

first cleavage of procaspase-8 generally observed upon Fas or TRAIL stimulations. In 

contrast, c-FLIP (S) forms a caspase-8/c-FLIP (S) heterocomplex, in which no processing 

of caspase-8 occurs [43, 45]. Thus, although able to inhibit DR-induced cell death, both 

isoforms proceed differently, suggesting that a) these isoforms are not redundant and b) 

their non apoptosis-inhibitory functions, yet to be determined, could differ importantly. 

When overexpressed, c-FLIP (L), but not c-FLIP (S), has been reported to be pro-

apoptotic [33]. This cytocidal effect was suggested to result from the non-physiological 

aggregation of its pro-apoptotic interaction partners FADD and caspase-8 under 

conditions of overexpression. We have recently provided molecular evidences that the 

heterocomplex c-FLIP (L)/caspase-8, contrarily to c-FLIP (S)/caspase-8, could exhibit a 

proteolytic activity, at the DISC level [45]. While physiologically restricted to the plasma 

membrane, this proteolytic activity could account for the pro-apoptotic activity of c-FLIP 

(L) under non-physiological conditions.  

In Fas-stimulated cells, c-FLIP (L) was suggested to be involved in the regulation 

of gene expression by the extracellular signal-regulated kinase (ERK)-mediated gene 

expression and by NF-kB, suggesting that c-FLIP (L) could play a role in proliferation 

and/or differentiation [46, 47]. Interestingly, c-FLIP (L) has been shown to interact with 

additional signalling molecules, such as RIP and Raf-1 [46, 48], TRAF-1 and -2 [30, 46, 

48] or caspase-10 [32-34]. Therefore c-FLIP could act as an adapter-like molecule for the 

recruitment of proteins involved in cell proliferation signals in the Fas pathway [46, 47]. 

The first indications of a non pro-apoptotic function for the Fas pathway came from the 

observation that FADD-deficient mice or mice expressing a dominant-negative version of 

FADD exhibited impaired T cell proliferation [49-51]. Thymocytes derived from 

transgenic mice expressing a dominantly interfering mutant of FADD lacking the 

caspase-dimerizing death effector domain, and those from mice overexpressing the 

poxvirus serpin, CrmA, an inhibitor of caspases downstream of FADD, are completely 

protected from Fas-dependent cytotoxicity. Neither transgene afforded protection from 

apoptosis induced during thymocyte selection and neither led to the lymphoproliferative 

disorders associated with deficiencies in Fas. Nevertheless, in FADD dominant negative 

mice, early thymocyte development was retarded and peripheral lymphocyte pools were 
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devoid of normal populations of T cells, suggesting that FADD is probably involved in T 

cell development and activation [49-51]. This is concordant with earlier observations 

indicating that Fas-engagement could induce co-stimulation of TCR-induced lymphocyte 

proliferation in resting human and murine memory T cells [52-54]. Accordingly, Fas 

engagement was shown to induce neurite growth through ERK [55], and c-FLIP (L) was 

recently shown to enhance TCR-triggered proliferation in transgenic mice [47].  

Gene-targeted inactivation of either FADD [49], caspase-8 [56] or c-FLIP [39], in 

mice, provided important information on the contribution of DRs in human embryonic 

development and human diseases. Although carrying opposite regulatory functions, 

caspase-8 and c-FLIP deficient mice, exhibit a similar embryonic phenotype as FADD-/- 

mice. These mice die from day 10.5 to 12.5 of embryogenesis, with apparent heart 

defects. However, neither FADD-deficient nor c-FLIP-deficient embryos demonstrate 

changes in cell death rate, suggesting that the developmental defects in these mutant mice 

may be independent of apoptosis. However, unlike FADD-/- and caspase-8-/- cells, FLIP-

/- embryonic fibroblasts are highly sensitive to apoptotic stimuli that involve death 

receptors. This result is consistent with the predicted role of c-FLIP to counteract FADD 

and caspase-8 in the regulation of DR-induced apoptosis. 

 

c-FLIP (L) is expressed in many tissues, but most abundantly in the heart, skeletal 

muscle, lymphoid tissues and kidney. In lymphatic tissues, an additional 25 kDa c-FLIP 

species is detectable, which corresponds to the predicted size of c-FLIP (S) [35]. 

Although expressed constitutively in many cell types, c-FLIP is a very short-lived protein 

[42, 57, 58], whose expression can be regulated by a variety of stimuli. Protein synthesis 

inhibitors [42, 57], oxidized low-density lipoproteins [59], chemotherapeutic agents [60-

62], p53 [63], synthetic PPAR ligands [64], sodium butyrate [65], interferon  [66] and 

E1A [67] were shown to downregulate c-FLIP expression, through mechanisms that 

could involve the ubiquitin-proteasome pathway. Degradation of c-FLIP is dramatically 

elevated in TRAF2-deficient mice embryonic fibroblasts [68]. More recently, hemin-

mediated erythroid differenciation was shown to downregulate both splicing variants of 

c-FLIP in K562 cells [69].  
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In contrast, the PI3K/Akt [70-72], and MAPK (Mitogen-Activated Protein 

Kinase) [73, 74] pathways, stem cell factor [75] and the Calcium/Calmodulin-dependent 

protein kinase II [76], increased c-FLIP expression at the transcriptional level. Amongst 

the stimuli implicated so far in the regulation of c-FLIP expression, the discovery that c-

FLIP expression was up-regulated by NF-kB signals, provided for the first time a 

molecular explanation of the well-known TNF-induced NF-kB-dependent survival 

pathway [42, 57, 77].  

Moreover, c-FLIP appears to be post-translationally regulated. Phosphorylation of 

c-FLIP, in hepatocytes treated with bile acids, was shown to affect c-FLIP binding to 

FADD, hence sensitizing cells to TRAIL-induced cell death without altering c-FLIP 

steady state levels [78]. In contrast, 1 integrin-mediated adhesion of human U937 

histiocytic lymphoma cells to fibronectin, increased c-FLIP (L) cytosolic solubility and 

availability for FADD binding by redistributing c-FLIP (L) from a preexisting 

membrane-associated fraction [79].  

 

3-FLIP and human diseases 

3.1-Lymphoproliferative syndrome with autoimmunity 

Autoimmune lymphoproliferative or Canale and Smith syndrome (ALPS) is a 

human disorder that is characterized by defective lymphocyte apoptosis, 

lymphadenopathy, splenomegaly and autoimmunity [80]. Its pathogenesis has been 

attributed to dysregulated lymphocyte homeostasis, a process involving negative 

selection and activation-induced cell death (AICD) [80]. Genetically, ALPS was first 

described in MRL lpr and in MRL gld mice, two animal models of human lupus, which 

exhibit mutations in Fas receptor and Fas ligand respectively [81]. In humans, ALPS is 

defined by functional analysis of lymphocyte sensitivity to Fas-induced apoptosis in vitro 

in 3 categories ranging from a complete (APLS 0) or partial Fas deficiency (ALPS Ia and 

II) to an absence of defect in the Fas pathway (ALPS Ib and III)[81]. So far, heterozygous 

mutations in Fas, Fas ligand or caspase-10 underlie most cases of human inherited 

genetic deficiency with deregulated lymphocyte proliferation. Recently, inherited 

caspase-8 deficiency has been described in human patients [82]. Individuals with 
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homologous mutations in caspase-8 manifest defective lymphocyte apoptosis and 

homeostasis but, unlike individuals affected with ALPS, also have defects in T 

lymphocytes, B lymphocytes and natural killer cells activation, which leads to 

immunodeficiency. Surprisingly, caspase-8 deficiency in humans is compatible with 

normal development, in contrast to mice for which caspase-8 gene inactivation is lethal 

[56, 82]. The observation that c-FLIP (L) expression is modulated in activated T cells in 

an IL-2-dependent manner suggests that c-FLIP (L) could play a role in the control of T-

cell activation [36, 83-85]. This idea is consistent with a recent report providing evidence 

that c-FLIP (L), rather than preventing AICD, could enhance TCR-triggered proliferation 

[47]. Since c-FLIP can in the one hand inhibit cell death and in the other hand contribute 

to TCR-triggered lymphocyte proliferation, further experiments will be required before 

considering its therapeutic modulation in the context of lymphoproliferative diseases.  

 

 3.2-Alzheimer’s Disease  

Alzheimer's disease (AD) is a neurodegenerative disease characterized by 

elevated levels of -Amyloid (A) in the brains [86]. Senile plaques deposition of A and 

dysregulated apoptosis are though to be involved in the pathogenesis of Alzheimer's 

disease [29, 87]. A-induced neuronal death has been attributed to be triggered by two 

members of the TNF superfamily, namely t p75(NGFR) nerve growth factor 

receptor and Fas through an indirect mechanism. It has been shown that 

A p75(NGFR) and activates neuronal cell death [88] via the 

JNK pathway [89]. Albeit described as a caspase-8-independent, but mitochondria-

dependent mechanism [88], the A-induced cortical neuronal cell death was also shown 

by others to be triggered by Fas indirectly through a JNK-dependent-Fas-ligand 

upregulation [90] or activation of the caspase-8 pathway [91]. Although not accounting 

for the total cell death induced by A, Fas ligand has been shown to play a substantial 

role in this process [90], suggesting a critical role for the JNK pathway in the regulation 

of A-induced apoptosis in AD patients and the potential involvement of inhibitory 

molecules located downstream of the Fas signalling pathway, such as c-FLIP. The JNK-

Fas ligand pathway can also be triggered by survival factor withdrawal in neurons [92], 
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or by stress stimuli as UV-lights or gamma irradiation [93, 94]. Interestingly, a recent 

report suggested that a viral homologue of c-FLIP, the HHV8-v-FLIP could rescue 

growth factor withdrawal-induced apoptosis in the TF-1 human myeloid leukemia cell 

line [95]. In addition, studies evaluating the expression levels of caspases or apoptosis-

related proteins, in human postmortem brain cerebellum or frontal cortex tissues of 

patients with AD supported the notion that dysregulation of apoptosis-induced by the Fas 

pathway could contribute to the pathology of AD [96, 97]. In these studies, c-FLIP 

expression was indeed shown to be decreased in AD patients as compared to controls. 

Therefore, therapeutic strategies aiming at increasing c-FLIP expression in neurons, 

should both prevent progression of the disease and stabilize cognitive functions of 

patients showing early signs of AD. 

 

 3.3-Multiple sclerosis 

Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous 

system (CNS) that is characterized pathologically by perivascular mononuclear cell 

infiltrates and myelin damage [98]. Experimental autoimmune encephalomyelitis (EAE) 

is an animal model of this disease that is characterized by increased permeability of the 

blood-brain barrier, perivascular inflammatory infiltrates comprised of T cells, B cells, 

macrophages, and granulocytes, and demyelination leading to an ascending paralysis of 

the extremities. In this model, the principal targets of the autoimmune attack are 

oligodendrocytes and myelin.  

Although the mechanisms causing myelin disruption and damage to axons in the 

CNS are still unclear, this autoreactive immune-mediated disorder is thought to be 

initiated by activated T lymphocytes recognizing myelin components of the CNS [99], 

and autoreactive B lymphocytes directed against oligodendroglial and myelin antigens 

[100, 101]. In animal EAE models, Fas-mediated apoptosis of activated T cells and other 

inflammatory cells in the CNS modulates the inflammatory response [102]. In the early 

phases of the disease however the Fas pathway may be responsible for myelin destruction 

since administration of neutralizing antibody against Fas ligand was shown to suppress 
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the acute progression phase of EAE [103]. In patients with MS, the Fas pathway has also 

been suggested to be involved [104-107]. 

Overexpression of c-FLIP (L) by retroviral gene transfer in hemopoietic stem 

cells increases the severity of myelin oligodendrocyte glycoprotein-induced EAE [108]. 

Consistently, c-FLIP (L) and c-FLIP (S) are overexpressed in cortical-spinal- fluid 

lymphocytes and activated-peripheral T cells from patients with clinically active MS, 

which may contribute to maintaining autoreactive T cells [109, 110]. Interestingly, 

interferon , known to reduce clinical exacerbations in MS, was recently shown to 

downregulate c-FLIP [66]. Other ligands of the TNF superfamily, such as TRAIL, were 

suggested to be able to contribute to the regulation of inflammatory cells in both EAE 

and MS, however this issue yielded controversial results [111 , 112 , 113 , 114 , 115 , 

116].  

Nevertheless, as several DR-induced apoptotic signals are regulated by c-FLIPs, 

these findings demonstrate that effective apoptotic elimination of inflammatory cells to 

achieve disease remission may be crucial. Therefore, downregulation of c-FLIPs could 

prove beneficial for the prevention of MS pathogenesis.  

 

3.4- Rheumatoid Arthritis (RA) 

Rheumatoid arthritis (RA) is a chronic inflammation of the synovial joints 

characterized by infiltration of activated T cells, macrophages and plasma cells [117, 

118].  Its etiology although poorly understood, is thought to involve both impaired 

clearance of activated infiltrating cells (T cells, macrophages) and increased cartilage and 

bone sensitivity to cell death. Human chondrocytes [119] and osteoblasts [120] have been 

shown to express functionnal Fas receptor, and as T cells infiltrating the RA-affected 

joints express FasL [121, 122], it is thougth that the Fas pathway plays an important role 

in cartilage and bone destruction. Indeed, it has recently been shown that arthritic lesions 

could be induced, in vitro, by persistent engrafted syngeneic lymphocytes overexpressing 

FasL [123]. In contrast to Fas, TRAIL was suggested to be a potent inhibitor of 

autoimmune arthritis and blocking endogenous TRAIL with soluble TRAIL-R1 impaired 

this inhibition and enhanced proliferation of autoreactive lymphocytes and synovial cells. 
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Furthermore, by use of deficient mice, TRAIL has recently been shown to play an 

important role in autoimmune diseases and in particular in the clearance of autoreactive 

synovium-infiltrating cells in RA [124]. The inhibitory effect of TRAIL on arthritis 

proceeds through inhibition of cell cycle progression and/or cytokine production 

inhibition [116, 125]. Interestingly, synoviocytes and particularly synovial macrophages 

which are thought to be the main trigger of the inflammatory response in RA, via the 

production of TNF and IL-1 [126], are naturally sensitive to anti-Fas monoclonal 

antibody-induced apoptosis in vitro, but particularly resistant to this process when 

isolated from arthritic mice [127] and RA patients [128, 129]. Furthermore, RA synovial 

macrophages express high levels of c-FLIP [130], and c-FLIP expression was shown to 

be increased in synovial biopsy specimens from patients with early RA, especially in RA 

synovial macrophages which express high levels of c-FLIP.  

Altogether, these data point to c-FLIP as an interesting therapeutic target for the 

treatment of rheumatoid arthritis for several reasons. 1) c-FLIP is involved in both Fas 

and TRAIL-induced apoptosis inhibition. 2) c-FLIP is highly expressed in RA 

macrophages which account for the sustained joint inflammation through TNF and IL-1. 

3) Inhibiting TNF and IL-1 macrophage production, ameliorates RA symptoms and joint 

destruction [126]. 4) c-FLIP expression is increased by TNF via NF-kB [42]. Therefore, 

downregulating c-FLIP locally in activated infiltrating synovial T cells and macrophages 

could sensitize these cells to Fas- or TRAIL-induced clearance and prove useful for the 

treatment of RA.  

 

 

 

 

  

  3.5- Diabetes mellitus 

Diabetes mellitus is the most common metabolic disease worldwide. Type 1 diabetes 

results from autoimmune destruction of Langerhans islets pancreatic  cells causing 
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insulin deficiency. Type 2 or noninsulin-dependent diabetes mellitus (NIDDM) is a 

polygenic disease that accounts for more than 90% of cases of diabetes, in which long-

term adaptation of pancreatic islets  cells mass expansion in response to glucose is 

impaired. Autoimmune diabetes results from  cell destruction by islet-reactive T cells, a 

process that involves  cell apoptosis. Apoptosis via Fas/Fas ligand (FasL) interactions 

has been proposed to be a major T-cell-mediated effector mechanism in autoimmune 

diabetes [131]. Nonobese diabetic (NOD) mice develop a type 1 diabetes mellitus, in 

which the Fas pathway has been shown to be involved in the destruction of insulin-

producing cells and the development of diabetes, in a T-cell-dependent [132] or -

independent manner [133]. Overexpressing c-FLIP (L) in  cells prevents from TNF-

induced apoptosis [134], and predisposition of NOD mice to develop autoimmune disease 

is usually attributed to defects in peripheral tolerance mechanisms, which has recently 

been attributed to the up- regulation of c-FLIP (L) in activated T cells [135]. This 

suggests that the Fas pathway or death receptors of this family could also contribute to 

the progression of the disease or associated side effects [124]. Diabetic macular edema is 

the most prevalent cause of vision loss in diabetes, was recently shown to result from 

leukocyte-mediated Fas-FasL-dependent retinal endothelial cell apoptosis [136]. Taken 

together, these data indicate that increasing c-FLIP expression in specific cells by 

therapeutic targeting may prove beneficial for the treatment of diabetes, or associated 

retinopathy.  

 

  3.6- Cardiovascular diseases 

The cardiovascular system is continuously subjected to stressfull haemodynamic 

forces due to blood pressure and flow. Although essential for the maintenance of organic 

structure and function, this mechanical stress can eventually induce apoptosis and lead to 

cardiovascular disorders such as heart failure, hypertension or atherosclerosis [137]. 

Some members of the TNF family could be involved in these diseases.  

TNF was shown to be elevated in the cardiomyocytes and in the circulation of 

heart failure patients [138, 139], and chronic overexpression of TNF results in the 

development of a dilated cardiomyopathy also leading to heart failure [140]. DNA 
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microarray analysis of a collection of human left ventricular myocardium samples 

obtained from explanted cardiomyopathic hearts from patients with end-stage heart 

failure undergoing heart transplantation, showed a clear reduction in expression of anti-

apoptotic genes such as TNFR-1,c-FLIP and A20, together with an increase in expression 

of TRAIL [141].c-FLIP is highly expressed in the adult human and murine healthy heart, 

but its expression is severely reduced in cardiomyocytes originating from 

cardiomyopathic hearts that have undergone apoptosis [35, 142].  

Normal vascular endothelial cells express both Fas and FasL but are resistant to 

Fas-mediated apoptosis, however overexpression of FasL was shown to promotes 

atherosclerosis in a rabbit experimental model [143]. Interestignly, vascular endothelial 

cells express c-FLIP [59], but downregulation of its expression by oxidized lipids 

sensitize endothelial cells to DR-induced apoptosis, suggesting that c-FLIP could play an 

important role in controlling vascular tissue destruction [59, 144] and that dysregulated 

expression of c-FLIP could be involved in the etiology and pathogenesis of 

atherosclerosis [39].  

Although different, the pathological mechanisms underlying heart failure, 

hypertension or atherosclerosis are believed to be related to sustained mechanical 

overload or stress, leading to proliferation, differentiation or to cell death [137]. With 

respect to apoptosis, c-FLIP has been suggested to could play a major role in heart 

development as well as in pathogenesis of heart failure and atherosclerosis [39]. 

Interestingly, FADD-, caspase-8- or FLIP-, but not Fas- nor tumor-necrosis-factor 

receptor-1 (TNFR-1)-deficient mice, show symptoms of impaired heart development [39, 

49, 56, 145, 146]. Furthermore, the observation that the Fas-deficient mice phenotype 

differ from that of FLIP-deficient mice, suggests that other receptors of the TNF 

superfamily, as TRAIL receptors, may play a major role in cardiovascular diseases. 

Therefore, therapeutic up-regulation of c-FLIP-expression levels might turn out to be 

useful for the treatment of cardiovascular diseases such as heart failure or atherosclerosis. 

 

  3.7- Cancer  
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Cancer is a malignant disease generally arising from impaired cellular 

homeostasis and resulting in the excessive accumulation of unwanted cells in the body, 

which eventually lead to a loss of organic function and death. Dysregulation of cellular 

homeostasis can be inherited or acquired. For example, neuroblastoma tumour cells show 

complex combinations of acquired genetic aberrations [147] while colon carcinomas 

result from multiple genetic alterations, some of which may be inherited, while others 

reflect somatic mutations. The latter may themselves be the indirect result of 

environmental factors such as diet [148, 149]. The etiology and the progression of 

cancers is the addition of cumulative genetic changes, combining both the activation of 

oncogenes with the inactivation of tumour suppressor genes.  

In recent years it became evident that TRAIL receptors are key regulators of 

immune surveillance against tumours [150-154].  Trail appears to be the most promising 

new anti-tumour therapeutic tool since this cytokine is capable of inducing apoptosis in 

tumour cells, but is devoid of severe toxicity towards normal cells, both in vitro and in 

vivo [155]. However, not all tumour cells are sensitive to TRAIL, and c-FLIP, which 

inhibits TRAIL-induced cell death, is often over-expressed in tumours and was suggested 

to be a tumour-progression factor [156-158]. Accordingly, expression of c-FLIP has been 

shown to correlate with resistance to Fas-induced apoptosis in vitro in certain tumour cell 

lines derived from B-cell lymphomas [159-161], and with tumour escape from T-cell 

immunity and enhanced tumour progression in vivo [157, 162]. Moreover, abnormal 

overexpression of c-FLIP (L) is a frequent event in colon adenocarcinomas [163]. In Fas-

resistant melanoma cell lines and in melanoma tissue, c-FLIP was shown to be highly 

expressed [164, 165], compared to surrounding normal melanocytes. However, other 

studies could not correlate c-FLIP expression levels with resistance of melanoma cell 

lines towards Fas or TRAIL-induced apoptosis [164, 166-168]. The reasons for the 

discrepancies in the above-mentioned studies on melanomas are unclear, however other 

anti-apoptotic factors could control the DR resistance of tumour cells, as the alternative 

mitochondrial pathway for instance [2, 169]. Recently, it has been demonstrated that c-

FLIP (L) could protect MHC class I-deficient tumours from rejection mediated by NK 

cells, in the absence of perforine [170, 171]. These data, which are in good agreement 

with the anti-apoptotic function of c-FLIP (L) towards TRAIL-induced cell death and the 
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NK-mediated immune-surveillance function of TRAIL [151, 152, 157, 172], comfort the 

notion that c-FLIP can be regarded as a tumour progression factor.  

Efficacy of chemotherapeutic drugs is however hampered by the occurrence of 

intrinsic and acquired drug resistance. A variety of studies have suggested that DRs and 

chemotherapeutic agents, which share common apoptotic pathways, could show cross-

resistancy to apoptosis [46, 173-175]. Moreover, tumour cells can become resistant to 

chemotherapeutic agents, but the combination of DNA-damaging agents or metabolic 

inhibitors, such as the 5FU, together with TRAIL can circumvent this resistance in 

various tumour cells in vitro [61, 173, 176-189] and in vivo [183, 190, 191]. Hence, 

sensitization of tumour cells to Fas- or TRAIL-induced cell death can be achieved by a 

variety of stimuli inducing the downregulation of c-FLIP, such as antisense cDNA 

constructs [192, 193], short interfering RNAs [194], proteasome inhibitors [63, 64], 

protein or RNA synthesis inhibitors [58, 177] or chemotherapeutic agents [60-62, 195, 

196]. In addition, overexpression of viral analogues of c-FLIP or c-FLIP (L) itself was 

shown to impair chemotherapy-induced apoptosis [197, 198]. Likewise, resistance to DR- 

or anti-tumour drug-induced apoptosis is often associated with a loss of function of 

caspase-8, the major target of c-FLIPs [199-202]. Loss of caspase-8 expression has been 

shown to occur in a variety of tumour cells including the common childhood primitive 

neuroectodermal brain tumours/medulloblastomas, highly malignant human 

neuroblastomas, Ewing tumours, and melanomas [173, 202-205]. Reexpression of 

caspase-8 through promoter demethylation or gene transfer restored tumour cell 

sensitivity to DR- or chemotherapeutic drug-induced cell death [173, 202]. 

Taken together, since c-FLIP expression can be regulated by certain anti-tumour 

agents, monitoring c-FLIP-expression levels, might therefore, turn out to be of diagnostic 

value for certain tumours, and could improve cancer therapy at the clinical level.  

 

4- Conclusions 
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 The understanding of the molecular basis of apoptosis has dramatically 

progressed in the last decade and has led to the identification of many target genes whose 

dysregulated expression contributes substantially to human diseases. Amongst these 

target genes, c-FLIP, which plays a central role in the inhibition of death receptors of the 

TNF superfamilly, has been shown to be dysregulated in multiple sclerosis, Alzheimer’s 

disease, diabetes mellitus, rheumatoid arthritis and cancer, as documented in this review. 

Therefore, developing analytical tools to evaluate c-FLIP expression in biological 

samples originating from these diseases would likely be beneficial to therapeutic 

strategies targeting immunologic or neurologic disorders associated with c-FLIP 

dysregulation.  

Targeting c-FLIP may notably have beneficial impact in oncology. For the past 

decades, anti-tumour drug design strategies have mainly focused on inhibiting cellular 

proliferation. However, it is becoming increasingly clear that cell death dysregulation can 

also lead to neoplastic transformation and development. Therefore, strategies aiming at 

the restoration of the apoptotic machinery in tumour cells, may prove to be useful for the 

treatment of cancer patients in the future.  

The growing number of c-FLIP expression regulators (Table 1) extends 

considerably the possibilities of developing novel therapeutic protocols, which may prove 

useful in improving patient’s care. Yet the molecular mechanisms of c-FLIP regulation 

still remains poorly understood and further studies are required, especially for the 

understanding of c-FLIP isoforms. Since c-FLIP is a major regulator of DR-induced 

apoptosis, and since dysregulated c-FLIP expression is associated with a growing number 

of pathologies, monitoring c-FLIP levels might be of diagnostic value, and drugs that 

specifically alter c-FLIP-expression levels will certainly turn out to be of therapeutic 

benefit.  

 

 I apologize to researchers whose work could not be cited in this review due to space 

limitation.  
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