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Abstract 

Cellular-FLICE inhibitory protein (c-FLIP) is a key anti-apoptotic regulator that inhibits cell 

death mediated by the death receptors Fas, DR4, DR5, and TNFR1. Three splice variants of c-

FLIP function at the DISC level by blocking the processing and activation of procaspase-8 and -

10. Overexpression of c-FLIP has been identified in many different tumor types, and its 

downregulation in vitro has been shown to restore apoptosis mediated by CD95L and TRAIL. c-

FLIP therefore represents a promising target for cancer therapy. This review focuses on the 

molecular mechanisms that control c-FLIP expression and current research into inhibitors of the 

protein. Increasing evidence supports the investigation of c-FLIP as a therapeutic target to restore 

an apoptotic response in cancer cells. 
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1 Introduction 
Apoptosis is crucial for tissue homeostasis and normal development. Two major signaling 

pathways engage the apoptotic program: the mitochondrial-dependent intrinsic pathway that is 

activated upon intracellular signals, and the extrinsic pathway that is triggered upon binding of 

ligands such as TRAIL, Fas, and TNFα with their cognate death receptors at the cell surface. 

Ligand binding induces oligomerization of the receptors, allowing the formation of 

macromolecular complexes formed by homotypic interactions by means of the Death Domain 

(DD) and Death Effector Domains (DEDs) of adaptor proteins such as FADD or TRADD, 

intitiator caspases, the procaspase-8 and -10. Binding of Fas ligand and TRAIL to death receptors 

recruits initiator caspases to the membrane, within the death-inducing signaling complex (DISC) 

(Figure 1A). Upon assembly of the DISC, the dimerization and transproteolytic cleavage of 

procaspase-8 results in the release of the catalytically active p10-p18 subunit heterotetramer [1]. 

Recruitment and activation of initiator caspases upon TNF-R1 engagement takes place in 

complex II, a cytosolic complex generated sequentially from TNF-R1 DISC, which at the 

membrane contains TRADD and RIP but lacks FADD and caspase-8 [2]. This event triggers a 

proteolytic cascade, leading to the activation of executioner caspases-3 and -7, which drive 

apoptotic cell death (Figure 1A).  

 

2 c-FLIP 

2.1 c-FLIP isoforms 
c-FLIP, also known as Casper, iFLICE, FLAME-1, CASH, CLARP, MRIT or usurpin, is a 

crucial negative regulator of the apoptotic pathway [3]. Thirteen splice variants of the gene have 

been identified, but only three of these have been shown to be translated to protein. These are c-



FLIPL, c-FLIPS, and c-FLIPR (Figure 1B). c-FLIPL  is a 55 kDa protein that is structurally similar 

to procaspase-8, with two N-terminal DED domains and a C-terminal caspase-like domain [4]. 

The C-terminal domain of c-FLIPL lacks the catalytic cysteine residue, which confers the 

proteolytic activity of caspases. c-FLIPL is thus devoid of enzymatic activity. c-FLIPS (26 kDa) 

and c-FLIPR (24 kDa) also contain two N-terminal DEDs, but with a shorter carboxy terminus 

than c-FLIPL. The C-terminal tails of the short forms of c-FLIP play an important role in the 

ubiquitylation and degradation of the proteins, as well as contributing to apoptotic function [5; 6]. 

All three isoforms of c-FLIP can be recruited to the DISC through an interaction of their tandem 

DED domains with the adaptor protein FADD. 

2.2 c-FLIP functions 

Recruitment of c-FLIPS to the DISC or to complex II inhibits procaspase-8 dimerization and 

activation, thus blocking the activation of the apoptotic cascade. c-FLIPL, on the other hand, 

forms a heterodimeric complex with caspase-8, but unlike c-FLIPS, heterodimerization of c-

FLIPL with procaspase-8 induces caspase-8 activation in the absence of cleavage [7]. Limited 

activation of caspase-8 in these complexes results in the generation of p43-c-FLIP and the p41/43 

caspase-8 subunits. However, as no further processing occurs due to the lack of proteolytic 

activity of c-FLIPL, cleaved products remain bound at the DISC, preventing further transduction 

of the apoptotic signal (Figure 1A). Nevertheless, active caspase-8 has access to a limited subset 

of substrates, including RIP [7]. Differential cleavage RIP at the membrane, could therefore 

account for the differential regulation of downstream signaling pathways such as c-Fos or NF-kB 

by c-FLIPL and c-FLIPS upon Fas ligand stimulation [8]. A puzzling detail with respect to the 

inhibitory potential of this protein, is the finding that c-FLIPL expression levels in some tumor 

cells are sometimes much lower than the levels of caspase-8 itself [9], yet c-FLIP clearly protects 



against ligand mediated cell death. This inhibitor appears in fact to be preferentially recruited 

within the DISC [10] or complex II [2], with caspase-8. The molecular mechanisms behind this 

preferential recruitment are unknown, but since the heterodimer c-FLIPL-Caspase-8 is more 

stable than the homodimer [7; 10], it cannot be excluded that the heteromers may stabilize DISC 

formation more efficiently than the caspase-8 homodimers, but this hypothesis awaits further 

investigation. 

 

2.3 Overexpression of cFLIP in tumors  

 c-FLIP has been found at elevated levels in a number of different cancers. Studies of cell 

lines have demonstrated increased levels of c-FLIP in colorectal carcinoma [11], gastric 

adenocarcinoma [12], pancreatic carcinoma [13], melanoma [14], ovarian carcinoma [15], and 

prostate carcinoma [16]. Studies in primary tissues from patients have also demonstrated that 

there are increased levels of c-FLIP in malignant cells in B-cell chronic lymphocytic leukemia 

[17; 18], bladder urothelial carcinoma [19], lung adenocarcinoma [20], gallbladder carcinoma 

[21] and hepatocellular carcinoma [22]. Analysis of primary cells from patients also confirmed 

the upregulation of c-FLIP in gastric carcinoma [23; 24], Hodgkins lymphoma [25], non small 

cell lung carcinoma [26], and melanoma [27]. It is of interest to note that in primary Ewing 

sarcoma, including metastases, c-FLIP was shown to be abundantly expressed in 18 of 18 

patients [28]. 

 In the majority of cases it is the c-FLIPL isoform that is overexpressed in malignancy, 

however there are some studies showing upregulation of c-FLIPS. Gastric carcinoma SNU-216 

cells demonstrated high levels of c-FLIPS [12], as did pancreatic cancer cell lines [29]. Tissue 

samples from lung adenocarcinoma patients also showed an overexpression of c-FLIPS, but not c-



FLIPL [20]. 

 Overexpression of c-FLIP is associated with an increased resistance to apoptosis mediated 

by Fas and TRAIL, and studies have demonstrated that in some tissue types, high levels of c-

FLIP expression correlates with a more aggressive tumor [30]. Studies of patients with colorectal 

carcinoma [31], cervical carcinoma [32], Burkitt’s lymphoma [33], non-Hodgkin’s lymphoma 

[34], and bladder urothelial carcinomas [19] have demonstrated that elevated levels of c-FLIP in 

tumor tissue is correlated with a poor prognosis. To our knowledge only one study suggested that 

c-FLIP levels did not have any correlation with survival in ovarian cancers [35]. Altogether these 

findings demonstrate that c-FLIP isoforms are often found to be overexpressed in tumors. Their 

expression levels should thus not only be considered with regard to death receptor targeted 

therapies, but also to conventional chemotherapy since c-FLIP was shown to inhibit anticancer 

drug-induced cell death in preclinical models [36; 37]. 

 

3 Transcriptional regulation of c-FLIP expression 
c-FLIP is a transcriptional target of several transcription factors including NF-B [38; 39], p53 

[40], p63 [41], the forkhead transcription factor FOXO3a [42], EGR1 [43], AR [44; 45], sp1 [44], 

E2F1 [20], c-myc [46], IRF5 [47], c-Fos [48], NFATc2 [49] and hnRNPk [50]. NF-kB, p53, p63, 

NFAT, EGR1, hnRNP K, AR and sp1 induce c-FLIP expression, while c-myc, Foxo3a, c-Fos, 

IRF5 or sp3 inhibit c-FLIP transcription (Figure 2). Activation of these transcription factors can 

be mediated by a large panel of signaling pathways, including TNF ligands, growth factors, 

interleukins, chemokines, DNA damaging agents or non-conventional chemotherapeutic agents 

(Table 1) [51]. Activation of NF-kB by TNFα or CD40 ligand leads to c-FLIP upregulation and 

to inhibition of Fas-, TNFR1- and TRAIL receptor-induced apoptosis [38; 52; 53]. Likewise, 



activation of the PI3K (phosphatidylinositol-3 kinase)/Akt, MAPK (mitogen-activated protein 

kinase) pathways, or growth factor stimulation, induces the transcriptional upregulation of c-FLIP 

expression and affords protection to apoptosis induced by death receptors [3]. More recently, the 

chemokine IL-8 was shown to increase c-FLIPS and c-FLIPL mRNA levels through both NF-kB- 

and androgen-receptor dependent transcriptional activation in prostate cancer cell lines [54]. 

Alternatively, inhibition of c-FLIP expression has been shown to occur through interferon β-

mediated IRF5 activation [47], as well as PMA or TRAIL-induced activation of c-Fos [55; 56].  

 Regulation of c-FLIP isoforms is still, however, not completely understood, but appears to 

depend both on the transcription factor itself or the signaling pathway that is activated, and on the 

specific cell line. For example, in lung cancer cells, E2F1 was shown to inhibit c-FLIPS 

expression, but not c-FLIPL[20]. In another study, up-regulation of c-FLIPS in activated T-cells 

was shown to specifically rely on NFATc2 [49]. Regulation of the c-FLIPR isoform is less 

characterized. CD40-mediated upregulation of c-FLIPR was demonstrated to inhibit Fas ligand-

induced cell death in primary precursor B-ALL [57]. Interestingly, although c-FLIPS and c-FLIPL 

expression are both regulated by NF-kB, c-FLIPR expression was shown to be induced upon TNF 

stimulation in a NF-kB-independent manner in the erythroleukemic cell line, TF-1 [58]. 

Moreover, a RNAi screen aimed at defining p63 targets, in HaCat cells, further highlighted the 

findings that c-FLIP isoforms may be differentially regulated by a single transcription factor. It 

was found in this study that p63 could induce specifically c-FLIPR expression, while repressing 

that of c-FLIPS without affecting the transcription levels of c-FLIPL [41].  

 The increasing number of transcriptional regulators found to bind CFLAR promoter, thus 

certainly account for the differential regulation of c-FLIP isoforms, in cell-type dependent 

manner, and ultimately determine cell fate from a given stimulus [51]. However, the molecular 

mechanisms that regulate the alternative splicing of the c-FLIP gene, CFLAR, are still 



incompletely understood and require further efforts.  

 

4 Post-translational regulation of c-FLIP expression   
 Besides, transcriptional regulation, c-FLIP isoforms are also heavily regulated at the post-

transcriptional level by a plethora of compounds that induce c-FLIP degradation and afford 

sensitization to death receptor induced apoptosis (Table 1). c-FLIP isoforms are short lived 

proteins whose expression can easily be attenuated by the use of protein or RNA synthesis 

inhibitors [11; 59]. Their expression was shown to be regulated by heat stress [60], JNK 

activation via the E3 ubiquitin ligase ITCH [61] and by the ubiquitin proteasomal pathway [62], 

through phosphorylation dependent or independent mechanisms (Figure 3).  

 The pathways for the degradation of c-FLIP by the proteasome are surprisingly complex, 

partly due to the different mechanisms that exist for the long and the short forms, and to our 

incomplete understanding of the post-translational modifications that can target c-FLIP isoforms. 

The short form of c-FLIP is more prone to ubiquitylation and degradation, due to its unique C-

terminal tail [5]. The E3 ubiquitin ligase ITCH, which is under control of JNK, builds 

polyubiquitin chains on c-FLIP to target it for degradation at the proteasome [61]. Initially it was 

established that only the long form of c-FLIP could be ubiquitylated by ITCH, however more 

recent work has demonstrated that ITCH is also a key regulator of c-FLIPS ubiquitylation and 

stability [63; 64]. Interestingly, ubiquitylation of c-FLIPL was shown to be independent of CUL3, 

the E3 ligase that mediates caspase-8 ubiquitylation upon TRAIL stimulation [65].  c-FLIPL and 

c-FLIPS can also be degraded in a JNK-independent manner [66; 67; 68].  

 Phosphorylation events also play important roles in the regulation of c-FLIP protein levels. 

Phosphorylation at the serine 193 residue of the c-FLIPS form inhibits its polyubiquitylation, thus 



stabilizing c-FLIPS levels in the cell [69] and enhancing cell survival. Akt can phosphorylate c-

FLIPL at serine residue 273, which is important in the reduction of c-FLIP levels, though in a 

JNK and ITCH dependent manner [70]. Conversely, Akt can also enhance the polyubiquitylation 

and degradation of the E3 ligase ITCH, which acts to stabilize c-FLIPS levels [63]. Another 

mechanism has been identified in mouse macrophages undergoing Mycobacterium-induced 

apoptosis, where the protein kinases p38 and c-Abl phosphorylate specific residues on c-FLIPS, 

facilitating an interaction between c-FLIPS and the E3 ligase c-Cbl. Ubiquitylation of c-FLIPS 

results in its degradation by the proteasome [71]. It may be important to note that the authors in 

this paper discuss c-FLIPS, rather than c-FLIPR, which is the only short isoform of c-FLIP present 

in murine cells [49].  

Finally, a role for reactive oxygen species (ROS) has also been described for the regulation of c-

FLIP, however it is still not clearly understood how this particular mechanism works. ROS were 

described to induce FLIP downregulation through the proteasome in FasL mediated apoptosis  

[72]. It has also been demonstrated that NF-B can inhibit JNK activation by suppressing the 

levels of ROS in cells [73], which could lead to a decrease in the activity of Itch, thus stabilizing 

the levels of c-FLIP. This indicates that modulation of NF-B can affect c-FLIP levels at both the 

transcriptional and posttranscriptional level. 

5 Targeting c-FLIP for cancer therapy 
  

 There is a strong correlation between the overexpression of c-FLIP and resistance to FasL- 

or TRAIL-induced apoptosis, and many in vitro studies have demonstrated that inhibiting c-FLIP 

directly or indirectly can overcome this resistance. Thus targeting c-FLIP may be a promising 

strategy for cancer therapy, especially if combined with other treatments, such as TRAIL or 



conventional chemotherapy [36; 74; 75; 76; 77].  

5.1  Transcriptional regulators 

 Treatment with DNA damaging agents has shown some promise with regard to decreasing 

c-FLIP levels, however the effect on expression levels varies between cell types. This finding 

was at first rather unexpected since c-FLIP was shown to be a p53 target [40]. However, the 

upregulation of c-FLIP by chemotherapeutic drugs has not yet been documented at the protein 

level. On the contrary, some chemotherapeutic drugs have been shown to downregulate levels of 

c-FLIP (Table 1.). Cisplatin, in particular, has been well studied in ovarian cancer cell lines, and 

shown to induce ubiquitylation and degradation of c-FLIP in a p53 dependent manner, through 

the formation [78]of a ternary complex with both p53 and Itch [79]. Ubiquitylation of c-FLIPS/L 

by this ternary complex was recently shown to be under the control of the Akt pathway in these 

ovarian cancer cells [80]. An earlier study also indicated that cisplatin could downregulate c-

FLIPS expression in melanoma cells, but not the long. Instead c-FLIPL was found to be 

dephosphorylated upon cisplatin stimulation as evidence by 2D-gel analysis in resistant 

melanoma cells [78]. Based on earlier studies showing that phosphorylation of c-FLIPL by 

CaMKII can promote c-FLIP recruitment and inhibition of caspase-8 within the DISC [81], it was 

proposed that dephosphorylation of c-FLIPL would impair its inhibitory activity in glioma cells 

[78]. In line with the involvement of p53 in regulating c-FLIP expression, oxaliplatin and CPT11 

were shown to induce c-FLIPS/L downregulation in the p53 wt colon carcinoma cell line HCT116, 

but not in the p53-/- isogenic clone [75]. However c-FLIPS/L were also deregulated in the p53 

mutated HT29 cell line and sensitization to TRAIL-induced cell death by these drugs was 

achieved irrespective of the p53 status [75]. Histone deacetylase inhibitors and topoisomerase I 

inhibitors are two additional emerging cancer therapies which have been shown to regulate c-



FLIP levels. Trichostatin A treatment downregulated c-FLIPL mRNA and protein levels in 

ovarian cancer cells, with no effect on c-FLIPS. Interestingly, treatment with inhibitors of the 

EGRF signaling pathway blocked the regulation of c-FLIPL by trichostatin A[82]. Two other 

HDACis, ITF2357 and valproic acid, were studied in heptocellular carcinoma cells. These two 

agents were also shown to decrease c-FLIP mRNA and protein levels, though the study did not 

differentiate between the different isoforms [83]. More recently, 4-(4-Chloro-2-methylphenoxy)-

N-hydroxybutanamide (CMH), a small molecule inhibitor of c-FLIP, identified using a high-

throughput chemical library screen [84; 85], was demonstrated to induce killing in the breast 

cancer cell line MCF7. CMH induced apoptosis through c-FLIPL and c-FLIPS mRNA 

downregulation [86]. The use of DNA-damaging agents to target c-FLIP  or presents some 

difficulties, as the effect on c-FLIP varies from cell type to cell type, and can affect either both or 

just one of the isoforms.  

 

5.2 Genetic approaches : siRNAs 

Directly inhibiting translation through RNA interference represents the most specific method of 

downregulating c-FLIP, and this approach has been used in many in vitro studies to sensitize 

cells to TRAIL or FasL mediated killing [36; 74; 75]. However, there are many limitations for 

siRNA in vivo, and clinical trials using siRNA to target c-FLIP are probably still some time 

away.   

5.3 Targeting c-FLIP for degradation 

General metabolic inhibitors were among the first compounds used to study the mechanics of 

inhibiting c-FLIP expression. c-FLIP has been shown to be downregulated by several compounds 

that have a broad activity on the cell. For example, cycloheximide [29; 87; 88; 89], or anisomycin 



[85], two protein synthesis inhibitors, like the RNA synthesis inhibitor actinomycin D [11; 14; 

17; 78], have been shown to downregulate the long and the short forms of c-FLIP (Table 1). 

Chemotherapy with fluorouracil (5-FU) has also been demonstrated to downregulate both the 

long and short isoforms of c-FLIP in colon cancer cell lines [75; 90]. 

The protease inhibitor bortezomib has been widely studied in many different cell lines, with 

differing outcomes depending on the type of cell line studied. c-FLIP levels in Hodgkins and 

Reed-Sternberg cells [91], astrocytoma and oligoastrocytoma [92], esthesioneuroblastoma [93], 

myeloid leukaemia cells [94], and myeloma cell lines [95; 96] were decreased after treatment 

with bortezomib. While most studies have mainly focused on c-FLIPL, it should be noted 

however that in at least two studies where the short isoform was analyzed in parallel, c-FLIPL 

deregulation was associated with the up-regulation of c-FLIPS, [93; 97]. Likewise, studies on the 

small molecule proteasome inhibitor MG-132 have also demonstrated both increases and 

decreases in cellular c-FLIP levels in different cell lines [51]. Strikingly, both bortezomib and 

MG132 sensitized each of these cell types to TRAIL-induced cell death, indicating that 

deregulation of both the long and the short isoforms is not an absolute requirement for the 

restoration of apoptosis. Much effort needs to be made to understand why the remaining c-FLIP 

isoform fails to protect cells from death ligands.  

6  Conclusions 
 

 Many in vitro studies have demonstrated the importance of the role of c-FLIP in 

resistance to apoptosis induced by death receptors and, to a lesser extent, to conventional 

chemotherapy. Elevated expression of c-FLIP is often identified in malignant cancers, and is 

strongly correlated with a poor prognosis. Many studies in cell lines demonstrate that sensitivity 



to Fas ligand or TRAIL induced apoptosis can be restored by decreasing the levels of c-FLIP in 

malignant cells. However, as covered in this review, c-FLIP is highly regulated through many 

different pathways, and the existence of the three separate isoforms, which appear to be 

differentially modulated, adds another level of complexity with regard to targeting c-FLIP for 

cancer therapy. 

 Particularly, it remains unclear whether c-FLIP isoforms may play different regulatory 

functions in different types of cancer. While most c-FLIP inhibitors described so far target c-

FLIPL and c-FLIPS isoforms simultaneously, some compounds affect only one isoform. In line 

with this is the finding that bortezomib can inhibit the expression of c-FLIPL and induce that of c-

FLIPS, but nevertheless can sensitize cells to death receptor induced apoptosis. Post-translational 

modifications of c-FLIP, including phosphorylation of serine 193, may selectively inactivate one 

isoform by preventing its recruitment at the DISC level. A better understanding of these post-

translational modifications and the systematic analysis of the different isoforms of c-FLIP could 

in the future help address this question. 

  Thus far, apart from siRNAs, the inhibitors that have been studied act indirectly on c-

FLIP. The development of compounds targeting c-FLIP directly, either at the mRNA or protein 

level, would be of great interest for further study, but this presents a major challenge. As a key 

negative regulator of the death receptor apoptotic machinery, c-FLIP represents a promising 

target for cancer therapy. However c-FLIP is enzymatically inactive, and structurally very similar 

to caspase-8. Specific targeting of c-FLIP may be difficult and has so far not been achieved. One 

strategy would be to develop compounds that interfere with the recruitment of c-FLIP to the 

DISC through the DED domains, however, such compounds would have to be designed so that 

they would not inhibit recruitment of caspase-8, with its highly homologous DED. Alternatively, 

some of the inhibitors found so far to target c-FLIP to proteosomal degradation, may in fact act 



indirectly at the transcriptional level, and could simultaneously induce the stabilization or 

degradation of transcription factors found to regulate CFLAR expression. These include p63 

which, like c-FLIP, can be targeted to proteosomal degradation by the E3 ligase ITCH [98], or  c-

myc [99], c-Fos [100] and Foxo3a [101], to name a few. Kinase inhibitors targeting Akt and NF-

kB, or multikinase inhibitors such as sorafenib, could also lead to transcriptional and post-

transcriptional regulation of c-FLIP expression and function.  

 

The preclinical data clearly indicate that selective inhibitors of c-FLIP, in combination with a 

ligand such as TRAIL or FasL, or a conventional chemotherapy such as 5-FU, could represent an 

effective anti-tumor therapy, however, selective inhibition of c-FLIP may be more difficult than 

anticipated. A deeper understanding of the regulation of the protein, and the role of the different 

isoforms would be probably required for the rational design or for chemical library screens of 

selective c-FLIP inhibitors. An ideal situation would be the development of a panel of 

compounds that can to restore sensitivity to death receptor induced cell death through the specific 

regulation of the cFLIP isoforms. Using these compounds it could be possible to regulate the 

levels, or even modulate the ratios of the different isoforms in malignant cells, offering a way in 

which to control ligand-mediated apoptosis as a therapy for cancer. The future will tell whether 

such compounds can be obtained.  
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 Primary mode of 

action 

Agent References 

Transcriptional Alkylating agent 

  

Cisplatin 

Oxaliplatin 
[75; 78; 79; 

102; 103] 

Intercalating of DNA Doxorubicin [104] 

Histone deacetylase 

inhibitor 

Vorinostat,Trichostatin, Droxinostat, Valproic 

acid 
[82; 83; 

105; 106] 

Topoisomerase I 

inhibitor 

Camptothecin, 9-NC, Irinotecan [32; 75; 

107; 108; 

109] 

Modulation of 

Ras/PI3K/NF-B 

pathway 

 

Lupeol (triterpene) 
 

[110] 

Suppression NF-B 

pathway 

Celastrol, Zerumbone (sesquiterpene), 

Withaferin A (steroidal lactone) Quinacrine 
[111; 112] 

[113; 114] 

Decreases TNF 

mediated NF-B 

activation 

 

Chrysin (flavanoid) 
 

[115] 

Inhibition of STAT3 

activation 

CDDO-Imidazolide – synthetic triterpenoid [116] 

Postranscriptional RNA interference siRNAs [36; 117] 

? – phosphorylation 

of long form 

Cisplatin [78] 

RNA synthesis 

inhibitor 

Actinomycin D [11; 14; 17] 

Protein synthesis 

inhibitor 

Cycloheximide 

Anisomycin 
[29; 85; 87; 

88; 89; 118] 

Thymidylate synthase 

inhibitor  

Fluorouracil (5-FU) [75; 90] 

Proteasome inhibitor PS-34 (bortezomib) [91; 94; 95; 

96; 97] 

Small molecule 

proteasome inhibitor 

MG-132 [48; 119] 

PPAR modulating 

agent 

Troglitazone [120; 121; 

122] 

Multikinase inhibitor Sorafenib [123; 124] 

Antimicrotubule 

agent 

Taxol (paclitaxel), Nocodazole [66; 125] 

Downregulation Akt 

and NF-B 

Genistein (isoflavone) [126] 

? Silibinin (Flavonoid) [67] 

COX-2 inhibitor Celecoxib [127] 

? CDDO-Me [68] 

 

Table 1. Inhibitors of c-FLIP and their main modes of action. 



Figure 1. c-FLIP forms and interaction at the DISC. A c-FLIP is expressed as three different 

isoforms in the human cell. c-FLIPL contains a caspase-like domain. The two aspartate proposed 

cleavage sites are indicated. c-FLIPR contains a unique sequence at the C-terminus. B Interaction 

of the long and the short c-FLIP isoforms at the DISC.   1- In the absence of c-FLIP, procaspase-

8 dimerization induce full processing and activation of caspase-8, leading to the release of active 

caspase-8 to the cytosol and activation of apoptosis. 2- In the presence of c-FLIPS procaspase-8 

remains mostly uncleaved and thus non functional. 3- When c-FLIPL is present, procaspase-8 

forms heterodimers with c-FLIPL limiting procaspase-8 autoprocessing. Autoprocessing occurs 

either between the prodomain and the caspase domain or between the p20 and p10 subunits of the 

caspase domain. The active heterodimer remains associated with the DISC complex where it can 

cleave a limited number of substrates including RIP leading to enforced NF-kB activation of the 

activation of non apoptotic signaling pathways such as ERK. Like c-FLIPS, c-FLIPL prevents 

death-receptor induced apoptosis.  

 

Figure 2. Signaling pathways leading to the upregulation or downregulation of c-FLIP.  See 

text for details. 

 

Figure 3. Posttranslation modifications and regulation of degradation of c-FLIP.  JNK 

activates the E3 ubiquitin ligase ITCH to mediate accelerated turnover of c-FLIPL and c-FLIPS 

through polyubiquitylation and degradation by the proteasome. Different compounds have been 

identified which accelerate the degradation of either c-FLIPL, c-FLIPS. Phosphorylation events by 

p38 and c-Abl allow polyubiquitylation of c-FLIPS by c-Cbl, resulting in degradation.  Akt 

phosphorylates the c-FLIPL form, enhancing an ITCH independent degradation of the protein. 

Conversely, loss of PTEN and activation of Akt are events in a pathway that bring about the 

ubiquitylation of ITCH, which results in stabilization of c-FLIPS. Protein kinase C (PKC) has 

been shown to phosphorylate c-FLIPS at a specific serine, decreasing its ubiquitylation and 

stabilizing levels of c-FLIPS. Finally, generation of ROS, can also enhance degradation of cFLIP. 
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