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Abstract

Apo2L/TRAIL is a promising anti-cancer drug owing to its ability to trigger apoptosis by binding to TRAIL-R1 or TRAIL-R2, two

membrane bound receptors that are often expressed by tumor cells. TRAIL can also bind non-functional receptors such as

TRAIL-R4, but controversies still exist regarding their potential to inhibit TRAIL-induced apoptosis.

We show here that TRAIL-R4, expressed either endogenously or ectopically, inhibits TRAIL induced apoptosis. Interestingly, the

combination of chemotherapeutic drugs with TRAIL restores tumor cell sensitivity to apoptosis in TRAIL-R4 expressing cells. This

sensitization, which mainly occurs at the DISC level, through enhanced caspase-8 recruitment and activation, is compromised by

c-FLIP expression and is independent of the mitochondria.

Importantly, TRAIL-R4 expression prevents TRAIL-induced tumor regression in nude mice, but tumor regression induced by

TRAIL can be restored with chemotherapy.

Our results clearly support a negative regulatory function for TRAIL-R4 in controlling TRAIL signaling, and unveil TRAIL-R4 s’
ability to cooperate with c-FLIP to inhibit TRAIL-induced cell death.

Author Keywords TRAIL ; chemotherapy ; cancer

Introduction

TRAIL (TNF-Related Apoptosis Inducing Ligand or Apo2L) is a promising tool for cancer therapy, owing to its ability to eradicate

tumor cells while sparing normal cells . TRAIL is a type II transmembrane protein, whose binding to its agonistic receptors namely1 

TRAIL-R1 (DR4) and TRAIL-R2 (DR5, TRICK2 or KILLER) triggers apoptosis in a p53-independent manner. Engagement of TRAIL

agonistic receptors induce the formation of a molecular platform called the DISC (Death-Inducing Signaling Complex) within minutes,

through homotypic interactions . This platform includes the adaptor protein FADD, and caspase-8, an initiator caspase that is activated2 

and subsequently released from the DISC to the cytosol for the dismantling of the cells. The amount of caspase-8 generated within the

DISC in type I cells is sufficient to trigger apoptosis through the direct activation of the effector caspase-3. Type II cells require the

engagement of a mitochondrial amplification loop, which is activated by caspase-8-dependent cleavage of Bid, a BH3-only protein that

targets the intrinsic pathway through Bax and Bak, allowing the formation of the apoptosome. However, enforced aggregation of TRAIL

agonistic receptors in these cells enhances caspase-8 activation at the DISC level and overcomes mitochondrial checkpoints . Likewise,3 

enhanced caspase-8 recruitment and activation at the TRAIL DISC by chemotherapeutic drugs has been associated with the restoration of

TRAIL sensitivity in hepatocellular and colon carcinomas , .4 5 

Cellular resistance to TRAIL-induced cell death arises from a large variety of events, ranging from defects in DISC formation, or

inhibition of more distal events, including mitochondrial block , .6 7 

TRAIL-induced cell death can be specifically inhibited by two membrane bound antagonistic receptors, TRAIL-R3 (DcR1, LIT or

TRID) or TRAIL-R4 (DcR2 or TRUNDD) . These receptors have been shown to be expressed and to prevent TRAIL-induced cell death2 
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in various human primary tumor cells, including lymphomas, lung, breast and prostate carcinomas , but the inhibitory potential of8 –10 

this receptor still remain controversial . While TRAIL-R3 is a GPI anchored receptor that sequesters TRAIL into lipid rafts, TRAIL-R411 

interacts with TRAIL-R2 within the DISC, and impairs caspase-8 processing , inhibiting thus TRAIL-induced apoptosis , .12 13 14 

The efficacy of recombinant hAPO2L/TRAIL in association with chemotherapy is evaluated in ongoing clinical trials . It remains1 

unknown whether TRAIL-R4 expression may compromise the efficacy of TRAIL.

We demonstrate here that TRAIL-R4 efficiently inhibits TRAIL, and that chemotherapeutic drugs can overcome this resistance.

Restoration of apoptosis primarily occurs at the membrane level, irrespective of the mitochondria, through enhanced caspase-8 recruitment

and activation at the TRAIL DISC. TRAIL-R4 expression also impairs TRAIL-induced tumor regression , but sequentialin vivo 

treatments associating CDDP and TRAIL prevent tumor growth in nude mice. Altogether, our results demonstrate that TRAIL-R4 is a

negative regulator of TRAIL, whose inhibitory function can be overcome by chemotherapy.

Results
TRAIL and chemotherapeutic drugs synergistically induce apoptosis in TRAIL-R4 expressing cells

We have demonstrated previously that ectopic expression of TRAIL-R4 impairs TRAIL-induced cell death through the formation of a

heteromeric complex with TRAIL-R2, leading to the inhibition of caspase-8 activation within the TRAIL DISC . Owing to TRAILR4 s12 ’
ability to inhibit TRAIL-induced cell death, we evaluated whether its expression may compromise combination therapies associating

TRAIL with conventional chemotherapeutic drugs. To test this hypothesis, TRAIL-R4 was ectopically expressed using retroviruses in

three TRAIL-sensitive tumoral cell lines, HeLa, Jurkat and SW480. Cell surface expression was assessed by flow cytometry (Fig. 1A and

). TRAIL-R4 inhibited TRAIL-induced apoptosis in these cells ( ). Strikingly, TRAIL-R4 also inhibited death induced byB Fig. 1C and D 

chemotherapeutic drugs in some cell lines. Pretreatment with pharmacological concentrations of CDDP, VP16 for 3 hours or 5FU for 72

hours, however, restored TRAIL sensitivity in these cells ( ). Similar results were obtained in the B lymphoma cell lineFig. 1C and D 

VAL, which are poorly sensitive to TRAIL-induced cell death ( ). VAL cells endogenously express TRAIL-R4 at the cell surfaceFig. 1E 

and high levels of Bcl-2, due to the t(14;18) chromosomal translocation ( ). Cells sensitivity to TRAIL-induced cell deathFig. 1F and G 

was restored in VAL cells after pretreatement with CDDP, VP16, or 5FU ( ). siRNA-mediated downregulation of TRAIL-R4 orFig. 1E 

Bcl-2 expression in VAL cells also restored sensitivity to TRAIL ( ), demonstrating that both TRAIL-R4 and Bcl-2 areFig. 1F and G 

functional in these cells.

Sequential chemotherapy and TRAIL treatments restore caspase activation

Chemotherapeutic drugs enhanced caspase activation upon TRAIL stimulation ( ) without changing TRAIL receptorFig. 2A 

expression ( ). In HeLa control cells, TRAIL alone triggered the activation of caspase-8, caspase-9 and caspase-3 and induced BidFig. S1 

and PARP cleavage, as demonstrated by the disappearance of their proform or the appearance of cleaved fragments ( ). However,Fig. 2A 

in HeLa cells expressing TRAIL-R4 (H-TRAIL-R4 cells), TRAIL induced only a modest cleavage of caspase-8 and caspase-9, resulting in

the poor activation of caspase-3 ( ). Pretreatment of these cells with CDDP, VP16, or 5FU restored caspase-3 activation uponFig. 2A 

TRAIL stimulation, as demonstrated by the appearance of the caspase-3 p17 fragment and an increase in PARP cleavage ( ).Fig. 2A 

Restoration of caspase-3 activation by chemotherapeutic drugs in HeLa-TRAIL-R4 cells was associated with partial activation of both

caspase-8 and caspase-9 ( ).Fig. 2A 

Activation of the mitochondrial intrinsic pathway is not required to restore sensitivity to TRAIL in response to chemotherapy

Since most chemotherapeutic drugs engage the mitochondrial pathway to trigger apoptosis, we next analyzed its contribution with

regard to chemotherapy-mediated sensitization to TRAIL-induced cell death. TRAIL stimulation in control HeLa cells triggered the

activation of the intrinsic pathway, as evidenced by the disappearance of Bid ( ), the release of cytochrome c, Smac/DIABLO andFig. 2A 

omi to the cytosol ( ), and by the activation of Bax ( ). Release of cytochrome c, Smac/DIABLO and omi were muchFig. 2B Fig. 2D and E 

weaker in H-TRAIL-R4 cells as compared to control cells ( ), however, chemotherapy combined with TRAIL nearly completelyFig. 2C 

restored Bax activation in these cells ( ). Overexpression of Bcl-2 or Bcl-xL in H-TRAIL-R4 failed to protect cells fromFig. 2D and E 

TRAIL-induced apoptosis after chemotherapy ( ). These results are consistent with the demonstration that chemotherapeuticFig. 3A and B 

drugs can restore TRAIL sensitivity in VAL cells, despite large amounts of Bcl-2 expression ( ). To determine the role of Bax inFig. 1F 

drug-mediated sensitization to TRAIL-induced cell death, we performed the same experiments in the Bax-deficient or parental wt HCT116

cells engineered to express TRAIL-R4 ( ). TRAIL-mediated apoptosis in HCT116 cells was shown to rely on Bax- but notFig. 3C 

Bak-activation . According to these findings, TRAIL alone, or simultaneous combinations of TRAIL and 5FU, failed to induce15 

apoptosis in Bax-deficient cells ( and ). Nevertheless, pretreatment for 72 h with 5FU before adding TRAIL efficiently inducedFig. 3D S2 

cell death in these cells ( ). Likewise, treating Bax-deficient cells sequentially for 3 h with CDDP or VP16, and stimulating withFig. 3D 

TRAIL, 48 h after the onset of the treatment in drug-free medium (see material and methods) restored TRAIL-induced apoptosis (Fig. 3D 
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). As in HeLa cells, sequential use of chemotherapy and TRAIL afforded sensitization to TRAIL-induced cell death in Bax-proficient cells

expressing TRAIL-R4 ectopically ( ). However, in the absence of Bax, TRAIL-R4 overexpression induced resistance to TRAILFig. 3D 

after CDDP or VP16 pretreatment, but not upon 5FU stimulation ( ).Fig. 3D 

Sensitization to TRAIL-induced cell death by 5FU has previously been described to involve the deregulation of c-FLIP , . We4 16 

therefore analyzed c-FLIP expression after chemotherapy at the time when the cells were exposed to TRAIL stimulation. Contrary to our

expectations, we found that 5FU poorly induced c-FLIP deregulation in our settings ( ), but that CDDP and VP16 induced c-FLIPFig. 3E 

up-regulation in these cells ( ). Consistent with these findings, expression of c-FLIP abrogated sensitization to TRAIL after 5FUFig. 3E 

treatment, irrespective of TRAIL-R4 or Bax expression in HCT116 cells ( ), indicating that the mere up-regulation of c-FLIP isFig 3F 

probably sufficient to impair the synergy irrespective of the mitochondria. In agreement with this finding, the caspase-9 inhibitor

z-LEHD-fmk failed to protect TRAIL-R4 expressing cells from TRAIL-induced cell death after chemotherapy, while the pan-caspase

inhibitor z-VAD-fmk completely abrogated the synergy ( ).Fig. S3 

Chemotherapeutic drugs enhance caspase-8 recruitment and activation within the TRAIL DISC

To determine the contribution of TRAIL DISC formation and caspase-8 activation in the synergy, c-FLIP was co-expressed in

H-TRAIL-R4 cells and cells were stimulated with TRAIL after chemotherapy. Like TRAIL-R4, expression of c-FLIP ( ) reducedFig. 3G 

cell sensitivity to TRAIL, but alone failed to block apoptosis induced by TRAIL upon chemotherapy ( ). However, combinedFig. 3H 

expression of TRAIL-R4 and c-FLIP severely impaired TRAIL-induced apoptosis by chemotherapeutic drugs, indicating that activation of

caspase-8 plays a prominent role in the synergy ( ). In agreement with these findings, DISC analysis in cells subjected toper se Fig. 3H 

chemotherapy and TRAIL treatments revealed that chemotherapeutic drugs enhanced caspase-8 recruitment and activation within the

TRAIL DISC in HeLa control cells ( ) but, probably more importantly, also in HeLa expressing TRAIL-R4 ( ) and VALFig. 4A Fig 4B 

cells ( ), which express TRAIL-R4 endogenously. Altogether, these results clearly demonstrate that TRAIL-R4 inhibitsFig. 4C 

TRAIL-induced cell death, but that chemotherapy can restore tumor cell sensitivity to apoptosis, mainly through the restoration of

caspase-8 recruitment and activation within the DISC.

TRAIL-R4 inhibits TRAIL-induced cell death but not chemotherapy induced sensitization to TRAIL in vivo

TRAIL-R4 s ability to prevent TRAIL-induced tumor regression, combined or not with chemotherapy, was next evaluated in nude’
mice using xenografts of HCT116 cells expressing TRAIL-R4. Mice were implanted, in both flanks, with HCT116-Ctl cells (right flank)

and HCT116-TRAIL-R4 (left flank). When the tumor volume reached 20 mm , mice were treated with PBS, CDDP, recombinant TRAIL3 

or treated sequentially with CDDP and TRAIL as described in the material and methods section. Compared to PBS-treated mice,

HCT116-Ctl tumor growth was inhibited in mice receiving injections of TRAIL, CDDP and by the combined treatment ( ).Fig. 5A 

However, TRAIL, and to a lesser extent CDDP, failed to induce tumor regression in TRAIL-R4 expressing cells ( ), but combinedFig. 5B 

treatments induced a marked inhibition of the tumor growth of HCT116 cells expressing TRAIL-R4 ( ), with statisticallyFig. 5B 

significant P values <0.001 as compared to PBS-treated mice. These results demonstrate that TRAIL-R4 efficiently inhibits

TRAIL-induced cell death not only , but also . However, chemotherapeutic drugs, including CDDP, can overcomein vitro in vivo 

TRAIL-R4 mediated resistance, highlighting the potential therapeutic value of these combined therapies for cancer.

Discussion

TRAIL-based combinatorial therapies are emerging paradigms for cancer treatment since synergistic activation of TRAIL-induced

apoptosis by chemotherapeutic drugs generally affords to overcome tumor cell resistance, while monotherapies are most of the time poorly

successful. Preclinical studies and clinical trials are giving promising results, supporting the potential of these combining approaches , 17 

.18 

Cell surface expression of TRAIL agonistic receptors is the first requirement in order to trigger the TRAIL apoptotic machinery but, to

date, the expression of TRAIL receptors in primary tumors remains poorly studied and the anti-apoptotic function of TRAIL-R4 remains

controversial. It was found however in a few studies that primary lymphomas could express functional TRAIL antagonistic receptors at the

cell surface . In solid tumors, analysis of TRAIL receptor expression was often performed by immunohistochemistry, and although this10 

method does not provide the information whether the receptors are expressed at the cell surface, these studies indicate that the extent of

expression of the antagonistic receptors TRAIL-R3 and TRAIL-R4 is probably underestimated , .9 19 –21 

Engagement of apoptosis upon TRAIL stimulation in a given tissue type, primary tumour or cell line, relies on the contribution of

multiple players, including proapoptotic and prosurvival factors, which ultimately determine cell fate. It has recently been demonstrated

that naturally occurring differences in the levels or states of proteins regulating TRAIL signaling are the primary causes of cell-to-cell

variability . The large variety of cellular changes in protein levels or status induced by chemotherapeutic drugs may explain why these22 
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drugs, restore TRAIL sensitivity in resistant cells, albeit targeting different signaling pathways. Sensitization to TRAIL by

chemotherapeutic drugs, has been attributed to multiple molecular mechanisms including the up-regulation of TRAIL-R2 , activation of23 

the mitochondrial pathway , , inhibition of c-FLIP expression or enhanced caspase-8 recruitment to the TRAIL DISC , .24 25 26 4 5 

We demonstrate here that chemotherapy overcomes TRAIL resistance induced by TRAIL-R4 at the level of the DISC, and provide

strong evidence that the mitochondrial pathway is dispensable for the restoration of TRAIL sensitivity by chemotherapeutic drugs ( ).Fig. 6 

Chemotherapeutic drugs afforded sensitization to TRAIL of aggressive B-cell follicular lymphomas such as VAL cells, despite

endogenous expression of functional TRAIL-R4 and Bcl-2. Likewise, these compounds restored TRAIL sensitivity of epithelial derived

tumor cell lines harboring either a deficiency for Bax expression, or engineered to express Bcl-2 or Bcl-xL, irrespective of TRAIL-R4

expression levels. Bax deficiency however, may be detrimental to some chemotherapeutic drugs in cells that express TRAIL-R4 and low

but significant levels of c-FLIP. Accordingly, restoration of TRAIL sensitivity in HCT116 Bax-deficient cells expressing TRAIL-R4 was

only observed with 5FU, but not CDDP or VP16 due to their ability to induce c-FLIP expression. These results could explain some

discrepancies regarding the lack of correlation regarding TRAIL-R4 expression and cell sensitivity to TRAIL-induced cell death. In

particular, c-FLIP expression levels have scarcely been taken into consideration in these studies.

Our results demonstrate that TRAIL-R4 can inhibit TRAIL-induced cell death both and and cooperate with c-FLIP toin vitro in vivo 

inhibit chemotherapy-mediated sensitization to TRAIL-induced apoptosis ( ). These findings have important implications for theFig. 6 

understanding of the molecular mechanisms involved in the regulation of TRAIL signaling, but also for therapeutic approaches aiming at

utilizing recombinant TRAIL to cure patients suffering from cancer.

The physiological function and relevance of TRAIL-R4 is still unclear. Our study is probably the first demonstration that TRAIL-R4

can confer TRAIL resistance , as we demonstrate that ectopic expression of this receptor in the colon carcinoma cell line HCT116in vivo 

efficiently impairs TRAIL-induced tumour killing in nude mice. At the physiological level, TRAIL-R4 could protect cells selectively from

TRAIL-induced cell death. Noteworthy, it has been demonstrated that NK and CD8  T cells are induced to express TRAIL, TRAIL-R2,+
TRAIL-R4 and c-FLIP upon activation . Despite high expression levels of TRAIL, these cells are resistant to TRAIL, but selective27 

inhibition of c-FLIP expression induced TRAIL sensitivity . It should be noted however that selective TRAIL-R4 downregulation was27 

not assessed in this study, therefore, it is conceivable that TRAIL-R4 may also play a role in protecting these cells from TRAIL-induced

cell death. While the function of TRAIL-R4 remains to be determined in a physiological context, our results indicate that this receptor in

pathological conditions, such as overexpression in primary tumor cells, could represent a problem in oncology. Our results clearly support

TRAIL-R4 s inhibitory potential and, in agreement with previous studies , , sustain the demonstration that chemotherapy sensitize’ 4 5 

tumor cells to TRAIL mainly through the regulation of caspase-8 activation at the DISC level.

The molecular mechanisms leading to the restoration of caspase-8 recruitment and enhancement of caspase-8 activation within the

TRAIL DISC after chemotherapy remains an open question. Some reports indicate that chemotherapeutic drugs could enhance TRAIL

receptor clustering at the cell surface, through ceramide production and receptor partitioning into lipid rafts , . Work is currently in28 29 

progress to address this question in our laboratory.

Remarkably, like c-FLIP , , ectopic expression of TRAIL-R4 induced cross-resistance to some chemotherapeutic drugs 30 31 in vitro 

and . How TRAIL-R4 impairs chemotherapy-induced apoptosis remain to be determined. Some reports point to the observationin vivo 

that forced aggregation of some death receptors of the TNF family including Fas, or downstream effectors like Bid, may contribute to

genotoxic drug-induced apoptosis in a ligand independent manner . Combined expression of TRAIL-R4 and c-FLIP may therefore31 –33 

not only impair TRAIL-induced cell death after chemotherapy, but may also alter chemotherapy itself. In line with this hypothesis it has

been demonstrated that c-FLIP and TRAIL-R4 are overexpressed in a growing number of primary tumors that their expression levels could

be associated with has recently been defined as a poor prognostic marker in colorectal and prostate cancer patients .34 35 

Altogether our results clearly demonstrate that TRAIL-R4 is a negative regulator of TRAIL whose inhibitory function can be

overcome using chemotherapy to restore TRAIL-induced cell death. However, we also demonstrate that TRAIL-R4 cooperates with

c-FLIP to inhibit TRAIL-induced apoptosis after chemotherapy. Their ability to cooperate and to efficiently inhibit TRAIL-induced

apoptosis needs to be taken into consideration both and in future clinical trials to assess the efficacy of combinatorial treatmentsin vitro 

associating recombinant TRAIL with chemotherapy. It is anticipated that patients expressing both TRAIL-R4 and c-FLIP may respond

better to alternative therapeutic approaches, including non-conventional chemotherapeutic drugs, TRAIL derivatives, targeting specifically

TRAIL-R2 specifically, or to strategies aiming at inhibiting c-FLIP expression or blocking TRAIL-R4.

Material and methods
Ligand production and antibodies

Flag-tagged recombinant soluble human TRAIL, his-tagged TRAIL and FasL were produced and used as described previously .36 

Anti-Flag (M2) and staurosporin were from Sigma-Aldrich (Lyon, France). For western blot analysis, anti-TRAIL-R1, anti-TRAIL-R2,
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anti-TRAIL-R3 and anti-TRAIL-R4 antibodies were purchased from Chemicon (Millipore, Molsheim, France), anti-FADD was obtained

from Transduction Laboratories (BD biosciences, Le Pont de Claix, France), anti-caspase-8 and -10 were from Medical & Biological

Laboratories (Clinisciences, Montrouge, France). Antibodies against active cleaved fragment of caspase-3, and PARP were from Cell

Signaling (Millipore, Molsheim, France), anti-GFP, Bcl-2, cytochrome c, Bax (N-20) and HSC-70 from Santa Cruz Biotechnology

(Tebu-bio, Le Perray en Yvelines, France) and anti-caspase-9 was from Upstate (Millipore, Molsheim, France). Anti-Bid, anti-Bcl-xL and

anti-FLIP (NF6) antibodies were purchased from BD Pharmingen, Transduction Lab (BD biosciences, Le Pont de Claix, France),

Calbiochem (VWR, Fontenay-sous-Bois, France) and Alexis (Coger, Paris, France) respectively. Anti-CoxII, anti-Smac/DIABLO and

anti-Omi/HtrA2 were respectively from Molecular probes (Invitrogen, Cergy Pontoise, France), Proscience (Coger, Paris, France) and

R&D systems (Lille, France). For flow cytometry experiments, the anti-TRAIL-R1, anti-TRAIL-R2, anti-TRAIL-R3 and anti-TRAIL-R4,

(clones wB-K32, B-L27, wB-B44 and wB-P30 respectively), were kindly provided by Diaclone (Besan on, France). The secondaryç
antibody was an Alexa-488 coupled-goat anti-mouse from Molecular Probes (Invitrogen, Cergy Pontoise, France). The pan caspase

inhibitor (z-VAD-fmk) and caspase-9 inhibitor (z-LEHD-fmk) were purchased from Alexis (Coger, Paris, France).

Cell culture

The HeLa (human cervix carcinoma) and SW480 (human colon adenocarcinoma) cell lines were cultured with high glucose Dulbecco’
s modified Eagle s medium medium (Lonza, Levallois-Perret, France) supplemented with 10  fetal bovine serum (Lonza,’ %
Levallois-Perret, France) and penicillin/streptomycin (100 mg/ml of each). The Jurkat (human T lymphoma) cells, VAL (human B

lymphoma), HCT116 human colon adenocarcinoma cell lines were cultured in RPMI 1640 medium (Lonza, Levallois-Perret, France)

containing 10  fetal bovine serum and penicillin/streptomycin. All these cell lines were grown in 5  CO at 37 C. HCT116 Bax /  or% % 2 ° + −

Bax /  are kind gifts of Dr. Bert Vogelstein (Johns Hopkins University School of Medicine, Baltimore, MD).− −

Retrovirus production and cell transduction

The retroviral vector pMSCV-puro for TRAIL-R4 expression and generation of viruses has been previously described . Cells were37 

transduced for 16 hours with viral supernatants containing polybrene (8 mg/ml), washed in phosphate-buffered saline, and cultured in

complete medium containing puromycin (2.5 mg/ml). EGFP, FLIP and Bcl-2 were cloned into pBabe-Blasticidin. Transduced cells wereL 

then selected with blasticidin (2.5 g/ml). pMIG-Bcl-xL expression vector was purchased from addgene (plasmid 8790, Cambridge,μ 38 

MA, USA). pMIG-FLIP was obtained as previously described . After transduction cells were sorted using a cell sorter Coulter EpicsL 14 

Elite ESP.

Treatments with chemotherapy and TRAIL

For sequential treatments, cells were treated for 3 hours with CDDP (20 M) or VP16 (10 M) in serum free medium and thenμ μ
washed. Cells were cultured 48 hours in complete medium before being treated for 6 hours with His-TRAIL (500 ng/ml). 5FU was added

in complete medium 72 hours before TRAIL treatments and the Hoechst analysis.

Hoechst analysis

Apoptosis was assessed by Hoechst staining and determination of the percentage of condensed and fragmented nuclei from at least 300

cells per conditions. Experiments were repeated at least 3 times.

Bcl-2 and TRAIL-R4 gene silencing by siRNA

TRAIL-R4 siRNA 1 (5 -UCCUUAAGUUCGUCGUCUU-3 ), TRAIL-R4 siRNA 2 (5 -UCACUACCUUAUCAUCAUA-3 ) and# ′ ′ # ′ ′
TRAIL-R4 siRNA 3 (5 -GGGUGUGGAUUACACCAUU -3 ) were purchased from Eurogentec (Angers, France). Bcl-2 siRNA was# ′ ′
purchased from Invitrogen (Cergy Pontoise, France). Cells were transfected with a scramble, Bcl-2 or TRAIL-R4 targeting siRNAs using

Amaxa cell line nucleofector kit V (Lonza, Levallois-Perret, France) with transfection program N016. 48 hours post transfection Bcl-2 and

TRAIL-R4 expression were monitored either by western blotting or by flow cytometry and sensitivity to TRAIL was assessed by Hoechst.

Bax activation by flow cytometry analysis

Cells, treated or untreated with His-TRAIL and/or chemotherapy were fixed with 4  PFA, permeabilized (PBS, BSA 1 , saponin 0.1% %
) for 10 minutes at room temperature and stained with an anti-Bax antibody which recognizes the active N-terminal form of Bax (clone%

6A7, Tebu-bio, Le Perray en Yvelines, France). 10 000 events were analysed using a LSR2 flow cytometer (BD Biosciences, Le Pont de

Claix, France).

Digitonin permeabilisation

After treatment, cells were washed in PBS and lysed in buffer containing 75 mM KCl, 1mM NaH PO , 8 mM Na HPO and 250 mM2 4 2 4 

Sucrose containing 400 g/ml digitonin. Cells were kept on ice upon to reach 90 95  of trypan blue permeabilized cells. After 5 minutesμ – %
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at 16 000g supernatants were collected as the cytosolic fraction. Pellets were then lysed in buffer containing 1  Triton-X100. After%
centrifugation for 20 minutes at 16 000 g, supernatants were collected.

Immunoprecipitations

For DISC analysis, 10 cells in 1 ml of medium were stimulated with 5 g Flag-TRAIL cross-linked with 10 g of M2 antibody for the8 μ μ
indicated times at 37 C. Cells were then washed with cold phosphate saline buffer, lysed in 1 ml of lysis buffer containing 1  NP40, 20° %
mM Tris-HCl pH 7.5, 150 mM NaCl, and 10  glycerol. Lysates were precleared with Sepharose 6B (Sigma-Aldrich), and%
immunoprecipitated overnight at 4 C with G protein Sepharose beads (Amersham Biosciences, Les Ullis, France). Beads were then°
washed four times with the respective detergent, and immunoprecipitates were eluted in lysis buffer (Tris-HCl 63 mM; SDS 2 ; phenol%
red 0.03 ; glycerol 10 ; DTT 100 mM; pH 6.8), boiled for 5 minutes and processed for immunobloting.% %

Western blotting

Immunoprecipitates or cell lysats were resolved by SDS-PAGE and transferred to nitrocellulose membranes. Nonspecific binding sites

were blocked by incubation in PBS containing 0.05  of Tween 20 and 5  of milk powder. Immunoblots were then incubated with% %
specific primary antibody followed by HRP-conjugated secondary antibody and were developed by the enhanced chemiluminescence

method according to the manufacturer s protocol (Pierce, Rockford, IL).’

evaluation of the combination of CDDP and TRAILIn vivo 

5 weeks old athymic female mice (NMRI nu/nu) were obtained from Janvier (Le Genest Saint-Isle, France). This protocol was

approved by the local Animal Ethical committee (Universit  de Bourgogne, Dijon, France). Mice were subcutaneously xenografted with 4é
10 HCT116-Ctl cells in the right flank and 4 10 HCT116-TRAIL-R4 in the left flank. Mice were weighed and tumor volume was× 6 × 6 

evaluated every two days by caliper measurement using the following formula: (l  l  L)/2, with l the lower and L the higher dimension.× ×
When the tumor volume reached 20 mm , mice were divided randomly into 4 groups with 4 mice per group (day 0). The first group served3 

as a control and received 0.2 ml PBS as vehicle at days 0 and 8 and 0.1 mL PBS containing 10 mM -mercaptoethanol at days 2, 3, 4, 5β
and 10, 11, 12, 13. The second group was injected as group 1, but received 4 mg/kg CDDP at day 0 and day 8. The third group received 8

mg/kg recombinant His-TRAIL at days 2, 3, 4, 5 and days 10, 11, 12, 13 and PBS at days 0 and 8. The fourth group received 4 mg/kg

CDDP at day 0 and day 8 and 8 mg/kg recombinant His-TRAIL at days 2, 3, 4, 5 and days 10, 11, 12, 13. All administrations were done

intraperitoneally. The initial value for each group (day 0) was arbitrarily established as 100, and all subsequent changes in tumor volume

for each group were expressed as a percentage change in comparison with the starting tumor volume (Tumor volume day 1)  100/(Tumor[ ×
volume at day 0) , and are referred as arbitrary tumor volume.]
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Abbreviation list
 5FU : 5-Fluorouracil

 CDDP : cisplatin

 DISC : Death-Inducing Signaling Complex

 TRAIL-R : TRAIL Receptor

 VP16 : etoposide
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Figure 1
Chemotherapeutic drugs restore TRAIL induced cell death in expressing cellsTRAIL-R4 
(A) and (B), HeLa, Jurkat or SW480 cancer cell lines were infected with empty vector (H-Ctl, J-Ctl or SW-Ctl) or with a vector encoding

TRAIL-R4 (H-TRAIL-R4, J-TRAIL- R4 or SW-TRAIL-R4). TRAIL receptors expression was analyzed by flow cytometry (grey line) against

an isotype control (filled curve). (C) and (D), control cells or TRAIL-R4 expressing cells were stimulated with His-TRAIL (500 ng/ml, 6

hours), Cisplain (CDDP, 20 M, 3 hours), etoposide (VP16, 10 M, 3 hours) or 5-fluorouracil (5FU, 1 g/ml, 72 hours). Apoptosis wasμ μ μ
evaluated after 6 hours (TRAIL), 48 hours (CDDP or VP16) or 72 hours (5FU) by Hoechst staining in HeLa (white), Jurkat (grey) or SW480

(black). Sequential stimulation with chemotherapeutic drugs and TRAIL was performed as follows. Cells were pretreated with CDDP or

VP16 for 3 hours, in serum free medium, then washed and allowed to recover at 37 C in complete medium for 48 hours before stimulation°
with His-TRAIL (500 ng/ml) for an additional 6 hours. Alternatively, cells were stimulated for 72 hours with 5FU, then His- TRAIL for 6

hours. (E) VAL cell sensitivity to His-TRAIL, chemotherapy or sequential treatments was analyzed as described above. (F) Deregulation of

TRAIL-R4 expression in VAL cells using three different siRNAs (scramble siRNA, Src; TRAIL-R4 siRNA, 1, 2 and 3) as analyzed by# # #
Facs for TRAIL-R4 expression using an anti-TRAIL-R4 antibody (grey line) or a control isotype (filled curved). The effect of TRAIL-R4

downregulation was assessed by Hoechst staining 6 hours after His-TRAIL treatment (500 ng/ml), scramble (white) and TRAIL-R4 siRNA (#
1 grey; 2 dashed and 3 black). (G) Bcl-2 expression in VAL cells after transfection with the scramble siRNA (Src) or the Bcl-2 siRNA# #
(Bcl-2) and corresponding Hoechst staining 6 hours after His-TRAIL treatment (500 ng/ml), Bcl-2 siRNA (in black) or a scramble siRNA (in

white). These results are representative of at least 3 independent experiments. Mean percentage of apoptotic cells and SD shown (mean  SD).±
Differences between selected groups were compared by nonparametric analysis of variance (ANOVA) with Bonferroni post hoc multiple

comparison test, P<0.001. Molecular size markers are shown on the right in kDa.***



Chemotherapy overcomes TRAIL-R4 inhibition

Cell Death Differ . Author manuscript

Page /9 14

Figure 2
Chemotherapeutic drugs activate the mitochondrial apoptotic pathway
(A) Western blot analysis of caspase-8, -9, -3, PARP, Bid, Bcl-2, Bcl-xL and hsc70 in control HeLa cells (H-Ctl) or cells expressing

TRAIL-R4 (H-TRAIL-R4) after stimulation with His-TRAIL (T) and/or chemotherapeutic pretreatments with cisplatin (C), etoposide (V) or

5FU (5). White arrows indicate cleavage fragments. Molecular size markers are shown on the left in kDa. These results are representative of

at least 3 independent experiments. (B) and (C) A digitonin based permeabilisation experiment followed by western blot analysis of the

different fractions (cytosolic or pellet) was performed to analyse the release of cytochrome c, Smac and Omi from the mitochondria. CoxII

antibody was used as a control for efficient subcellular fractionation and the actin was probed for normalization. Control HeLa cells and

H-TRAIL-R4 cells were treated as previously with cisplatin (C), etoposide (V) or 5-fluorouracil (5) plus or minus His-TRAIL (T). Molecular

size markers are shown on the left in kDa. (D) Control HeLa cells and H-TRAIL-R4 cells were pretreated as above with cisplatin (CDDP),

etoposide (VP16) or 5-fluorouracil (5FU) then subsequently stimulated or not with His-TRAIL (TRAIL), as in . After treatment, cellsfigure 1 

were permeabilised, and stained with an antibody recognizing active Bax and analyzed by flow cytometry. (E) The percentage of cells

containing active Bax was determined by FACS in control HeLa cells (H-Ctl, white bars) or TRAIL-R4 expressing cells (H-TRAIL-R4, black

bars). These results are representative of at least 3 independent experiments. Mean Active Bax values and SD are shown (mean  SD).% ±

Figure 3
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The mitochondrial pathway is dispensable for the synergy in expressing HeLa cells TRAIL-R4 
(A) H-TRAIL-R4 cells were infected using the pBabe-blasticidin retroviral vector encoding EGFP or Bcl-2. The expression of the different

transgenes was checked by western blot using an anti-Bcl-2 or anti-GFP antibody. Hsc70 was used as a loading control. Molecular size

markers are shown on the right in kDa. TRAIL-R4 HeLa cells overexpressing EGFP (EGFP, in white) or Bcl-2 (Bcl-2, in black) were

pretreated with the chemotherapeutic drugs as described in and sequentially treated with His-TRAIL (500 ng/ml for 6 hours).Figure 1 

Apoptosis was quantified by Hoechst staining. (B) H-TRAIL-R4 cells were infected with pMIG empty vector (EGFP) or pMIG-Bcl-xL and

analyzed by western blot. Molecular size markers are shown on the right in kDa. Sensitivity to apoptosis induced by His-TRAIL,

chemotherapy or sequential treatments (H-TRAIL-R4-EGFP, white; H-TRAIL-R4-Bcl-xL, black) was assessed by Hoechst staining. (C)

HCT116 parental (HCT116 wt) and HCT116 Bax /  cells were infected with an empty pMSCV-vector (HCT116 wt Ctl and HCT116 Bax /− − − −
Ctl) or with pMSCV-vector encoding TRAIL-R4 (HCT116 wt TRAIL-R4 and HCT116 Bax /  TRAIL-R4). TRAIL receptors expression was− −
analyzed by flow cytometry. (D) Apoptosis induced by His-TRAIL (500 ng/ml, 6 hours) after chemotherapeutic treatment was measured by

Hoechst staining in HCT116 parental Bax wt Ctl (white), HCT116 wt overexpressing TRAIL-R4 (HCT116 wt TRAIL-R4, dashed), HCT116

Bax /  Ctl (grey) and HCT116 Bax /  overexpressing TRAIL-R4 cells (HCT116 Bax /  TRAIL-R4, black). These results are− − − − − −
representative of three independent experiments performed in triplicate. Mean percentage of apoptotic cells values and SD are shown (mean ±
SD). Differences between selected groups were compared by nonparametric analysis of variance (ANOVA) with Bonferroni post hoc multiple

comparison test, P<0.001, compared with TRAIL stimulation alone in HCT116 Bax-deficient or HCT116 Bax-deficient expressing***
TRAIL-R4 cells, ns (not statistically significant). (E) Cells were stimulated as above for 3 hours with treatments CDDP or VP16 or 72 hours

with 5FU, and c-FLIP or TRAIL-R4 expression was analyzed by western blotting 48 hours or immediately after stimulation, respectively.

Molecular size markers are shown on the left in kDa. (F) HCT116 Bax wt and Bax /  control (Ctl) or TRAIL-R4 (TRAIL-R4) were infected− −
with pMIG-FLIP (FLIP) or an empty vector (EGFP), and sorted by flow cytometry based on GFP positivity. Sensitivity to TRAIL-inducedL 

apoptosis after a 72 h pretreatment with 5FU was measured by Hoechst staining 6 h after His-TRAIL (500 ng/mL) treatment. (G) HeLa

control (H-Ctl) and HeLa overexpressing TRAIL-R4 (H-TRAIL-R4) were infected with pBabe-EGFP or pBabe-FLIP. Expression of the

different transgenes was checked by western blot. (H) Cells overexpressing EGFP (H-Ctl-GFP in white bars and H-TRAIL-R4-GFP in grey

bars) or FLIP (H-Ctl-FLIP dashed bars and H-TRAIL-R4-FLIP in black bars) were stimulated with the chemotherapeutic agents, as described

previously, and sequentially treated with His-TRAIL (500 ng/ml) for 6 hours. Apoptotic cells were counted after Hoechst staining. These

results are representative of at least 3 independent experiments. Mean percentage of apoptotic cells and SD are shown (mean  SD).±
Differences between selected groups were compared by nonparametric analysis of variance (ANOVA) with Bonferroni post hoc multiple

comparison test. P<0.001, H-TRAIL-R4-FLIP compared with H-Ctl-Mock, H-Ctl-FLIP or H-TRAIL-R4- Mock.***
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Figure 4
Chemotherapeutic drugs restore TRAIL sensitivity at the DISC level
(A) control HeLa cells (H-Ctl), (B) TRAIL-R4 expressing HeLa cells (H-TRAIL-R4) or (C) VAL cells were pretreated with CDDP, VP16 or

5FU or left untreated as described in , then stimulated with TRAIL after for the indicated time. TRAIL DISC wasfigure 1 

immunoprecipitated (see material and method section) and analyzed by western blot. Molecular size markers are shown on the right in kDa.



Chemotherapy overcomes TRAIL-R4 inhibition

Cell Death Differ . Author manuscript

Page /13 14

Figure 5
Chemotherapeutic drugs restore TRAIL sensitivity in vivo
(A) and (B), HCT116-Ctl or HCT116-TRAIL-R4 cells were implanted into NMRI nu/nu mice and allowed to reach 20 mm . After3 

randomization (day 0), mice were either injected with PBS (white squares), His-TRAIL alone at 8 mg/kg (grey squares), CDDP at 4 mg/kg

(black squares) or sequentially with CDDP and two days later with His-TRAIL 8 mg/kg (white circle). Mice were subjected to two treatments

spaced within two days. Tumors were measured every two days using a caliper. The combination was found statistically different from single

treatments (  p<0.001) at days 14, 16, 18 and 20 as analyzed by ANOVA, two-sided. These results represent mean tumor volume in arbitrary***
units  SD of nine to ten mice per group from 3 independent experiments.±
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Figure 6
Proposed model of TRAIL-induced cell death regulation
(A) Direct activation of caspase-8 by TRAIL in type I cells. (B) A mitochondrial amplification loop of caspase activation in type II cells is

required due to reduced caspase-8 activation upon TRAIL engagement. (C) Overexpression of TRAIL-R4, FLIP-L or mitochondrial block,

protects type II cells from TRAIL-induced cell death. TRAIL-R4 and c-FLIP-L limit caspase-8 activation within the TRAIL DISC, which

impairs mitochondrial activation, leading to low caspase-3 activation and survival. Mitochondrial block in type II cells, induced by Bcl-2 or

Bcl-xL overexpression or Bax-deficiency inhibit amplification of the signal. Caspase-8 is activated but much less efficiently than in type I

cells, leading to low caspase-3 activation and survival. (D) Chemotherapeutic drugs restore TRAIL sensitivity mainly through enhanced

capase-8 recruitment to and activation at the DISC. Thus, the threshold of active caspase-8 required to induce direct caspase-3 activation can

be reached and cells undergo apoptosis, overcoming TRAIL-R4- and c-FLIP-mediated inhibition of caspase-8, but also inhibition induced by

Bcl-2 or Bcl-xL overexpression or Bax-deficiency. (E) Inhibition of the mitochondrial pathway by Bcl-2 or Bcl-xL overexpression in

TRAIL-R4 expressing cells fails to compromise chemotherapy-induced sensitization to TRAIL. (F) Forced inhibition of caspase-8 activation

in TRAIL-R4 and c-FLIP-L expressing cells abrogates apoptosis induced by TRAIL after chemotherapy. (G) Figure legends.


