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Abstract. Quantitative magnetic resonance analysis often requires accurate, 
robust and reliable automatic extraction of anatomical structures. Recently, 
template-warping methods incorporating a label fusion strategy have 
demonstrated high accuracy in segmenting cerebral structures. In this study, we 
propose a novel patch-based method using expert segmentation priors to 
achieve this task. Inspired by recent work in image denoising, the proposed 
nonlocal patch-based label fusion produces accurate and robust segmentation. 
During our experiments, the hippocampi of 80 healthy subjects were 
segmented. The influence on segmentation accuracy of different parameters 
such as patch size or number of training subjects was also studied. Moreover, a 
comparison with an appearance-based method and a template-based method 
was carried out. The highest median kappa value obtained with the proposed 
method was 0.884, which is competitive compared with recently published 
methods. 
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1   Introduction 

The crucial role of magnetic resonance (MR) imaging has been demonstrated in the 
detection of pathology, the study of brain organization and in clinical research. 
However, the vast amount of data produced everyday in clinical settings prevents the 
use of manual approaches to data analysis. The development of accurate, robust and 
reliable segmentation techniques for the automatic extraction of anatomical structures 
is becoming an important challenge in quantitative MR analysis. To achieve this task, 
several automatic methods have been proposed, such as deformable models or region 
growing [1-2], appearance-based models [3-4] and atlas/template-warping techniques 
[5-9]. Recently, template-warping techniques that use a library of templates (i.e., MR 
images with manual expert-based segmentation) have been investigated intensively 
because of their high accuracy to segment anatomical structures. Barnes et al. [5] 
proposed to register the most similar template from a library of pre-labeled subjects to 
segment the hippocampus (HC). However, the use of only one template may result in 
a biased segmentation. To avoid this problem, it is possible to use several similar 



templates [6-7, 9-11]. This requires a label fusion strategy [6, 8-9, 11] to efficiently 
merge the information derived from the selected templates. In such approaches, two 
main assumptions are made. First, constraints on structure shape are used implicitly 
due to the one-to-one correspondence between the voxels of the image to be 
segmented and those of the warped templates. This presents the advantage of forcing 
the resulting segmentation to have a similar shape to those of expert-labeled structures 
in the template library. However, according to the regularization used during 
registration, some details can be lost and local high variability cannot be captured. 
Second, label fusion techniques usually assign the same weight to all samples during 
a vote procedure and consider only the absolute number as a criterion. This approach 
is sensitive to registration error, since it does not take into account the anatomical 
relevance of each sample [10]. Therefore, we propose a patch-based scheme with a 
weighted label fusion, where the weight of each sample is only driven by the 
similarity of intensity between patches.          

In this study, we describe a fully automated patch-based method and the different 
steps required for its utilization, such as the library construction. Our method is 
applied to the HC segmentation of healthy subjects. During experiments the 
influences of different parameters were studied, and a comparison with two other 
methods was performed. Finally, we discuss further improvements and questions 
revealed by this new approach. 

2   Materials and Methods 

Overview 

First, the patch library is constructed by removing image acquisition variability and 
linearly aligning the subjects of the library in a common space. For each voxel of the 
image to be segmented, the surrounding patch is then compared to the patches 
contained in the library. Finally, the expert-based information is merged using a 
nonlocal means approach [12] to produce the final segmentation. 

Dataset  

The HC dataset consists of 80 subjects selected from 152 T1-weighted (T1w) MR 
images of young, healthy individuals acquired in the context of the International 
Consortium for Brain Mapping (ICBM) project. The volunteers were scanned with a 
1.5T Philips GyroScan imaging system (1 mm thick slices, TR = 17 ms, TE = 10 ms, 
flip angle = 30 °, 256 mm field of view). The local ethics committee approved the 
study and informed consent was obtained from all participants. The 80 selected 
subjects were manually segmented by an expert. This data subset comprises 39 males 
and 41 females of similar ages (mean age: 25.09 ± 4.9 years). The resulting 
segmentations obtained an intra-class reliability coefficient (ICC) of 0.900 for inter- 
(4 raters) and 0.925 for intra-rater (5 repeats) reliability.  

Patch library construction 

Denoising: All images in the database were first denoised with the three-
dimensional (3D) block-wise nonlocal means filter proposed for MR images in [13].  



Inhomogeneity correction: To ensure that each tissue type has the same intensity 
within a single image, the well-known N3 intensity non-uniformity correction of Sled 
et al. [14] was used.   

Linear registration to stereotaxic space: Each subject was linearly registered to the 
MNI 152 template into the stereotaxic space using ANIMAL [15].  

Intensity normalization: Finally, the intensities of the images were set in [0-100] 
and were normalized together by using the method proposed in [16]. Since our 
method involves the matching of a sub-region of anatomical structures based on 
intensity, the contrast and the luminance information are preserved by performing the 
global normalization of the entire 3D image.  

Search strategy within the library 

Initialization mask: Instead of performing the segmentation of the entire image 
under study, we define an initialization mask around the structure of interest. Many 
different strategies can be used to propose an accurate initialization, such as the 
matching of the best subject [5] followed by a morphological dilation of the mask. In 
this study, we chose a very fast and simple approach that consists in using the union 
of all the expert segmentations in the training database as the initial mask. In this way, 
we ensure that the structure is completely included in the mask and demonstrate the 
robustness of our method to coarse initialization (median Dice kappa of initial mask 
was around 0.4).  

Subject selection: A selection is also performed at the subject level. This strategy is 
similar to the selection of best subjects in label fusion methods [7]. In our method, we 
use the sum of the squared difference across the initialization mask instead of using 
normalized mutual information over the entire image, as suggested in [7]. This 
strategy was chosen because our patch comparison is based on the L2-norm. Thus, we 
want to prioritize subjects with similar anatomy as well as similar luminance and 
contrast. The N closest subjects are finally retained for use during the patch 
comparison.  

Patch pre-selection: As proposed for denoising purposes [13], we pre-select the 
patches to be compared. In fact, the main part of computational time is dedicated to 
computing the intensity-based distance between patches. By using simple statistics 
such as mean or variance, it is possible to discard a priori the most dissimilar patches 
[13]. In the proposed approach, we use luminance and contrast criteria to achieve this 
pre-selection. Based on the first and second terms of the well-known structural 
similarity measure (SSIM) [17], the pre-selection procedure can be written as follows: 
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where µ represents the means, and σ, the standard deviations of the patches 
centered on voxel xi (voxel under consideration) and voxel xs,j at location j in the 
subject s. If the value ss is superior to a given threshold th (0.95 for all experiments), 
the intensity distance between patches i and j is computed. The patch mean and 
variance are pre-computed as maps of local means and local variances, thus avoiding 
multiple computations.  

Search area definition: Initially, the nonlocal means denoising filter was proposed 
as a weighted average of all the pixels in the image, with patch-based similarity used 



to assign the weights [12]. For computational reasons, the entire image cannot be used 
and the number of pixels involved has to be reduced. As for denoising [12-13], we use 
a limited search area Vi, defined as a cube centered on the voxel xi under study. Thus, 
within each subject, we search similar patches in a cubic region around the location 
under study. This search area can be viewed as the inter-subject variability of the 
structure of interest in stereotaxic space. This variability can increase for a subject 
with pathology or according to the structure under consideration. 

Nonlocal patch-based label fusion 

Nonlocal means estimator: For all voxels xi of the image to be segmented (included 
in the initialization mask), the estimation of the final label is based on a weighted 
label fusion v(xi) of all labeled samples in the selected library (i.e., inside the search 
area Vi for the N considered subjects): 
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where ys,j is the label given by the expert to voxel xs,j at location j in subject s. The 
weight w(xi, xs,j) is computed as: 
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where ||.||2 is the L2-norm, normalized by the number of elements, computed between 
each intensity of the elements of the patches P(xi) and P(xs,j). If the structure similarity 
ss between patches is less than th, the weight is not computed and is set directly to 
zero. Finally, by considering the labels y defined as {0,1}, the final label L(xi) is 
computed as: 
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In the event that all patches in the library have ss < th, –1 is returned to indicate 
that the selected library does not allow a decision to be made. 

Local adaptation of h : As usual in estimation problems using a robust function, the 
tuning of the decay parameter h plays a crucial role. When h is very low, only a few 
samples are taken into account. When h is very high, all samples tend to have the 
same weight and the estimation is similar to a classical average. The value of h should 
depend on the distance between the patch under consideration and the library content. 
To automatically achieve this local adaptation of h, we propose an estimation of h(xi), 
based on the minimal distance between the patch under consideration and the selected 
subpart of the library: 
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where ε is a small constant to ensure numerical stability in case the patch under 
consideration is contained in the library.  



Validation framework 

A leave-one-out procedure was performed for the 80 subjects. Dice’s kappa was 
then computed by comparing the expert-based segmentations with the segmentations 
obtained with our method. The impact of the patch size, search area size and number 
of training subjects was studied. Moreover, the proposed patch-based method was 
compared with an appearance-based approach using level-set shape constraints [3], 
and a template-based technique inspired by the work of Barnes et al. [5] that uses 
ANIMAL [15] for the nonlinear registration of the best subject. For the appearance-
based method, only one modality was used during the process. We used the 79 
remaining subjects to construct the training dataset involved in PCA computation. For 
the template-based method inspired by [5], the best subject was selected using the 
normalized mutual information, as suggested in [7], and then nonlinearly warped to 
the subject under study with ANIMAL within a multi-resolution framework until a 
resolution of 2 mm.  

3   Results 

The Dice kappa values obtained with the initial standard mask was 0.44, which 
corresponds to coarse initialization.  

 

  
Figure 1: Dice Kappa values according to the patch size (left) and the search area size (right). 
The results are obtained with 20 training subjects. 

Impact of the patch size: First, we studied the impact of patch size on segmentation 
accuracy. The kappa results are presented at left in Fig. 1. The best median Dice 
kappa was obtained with a patch size of 7x7x7 voxels for the HC dataset (K = 0.882). 

Impact of the search area size: We also studied the impact of the search area size 
on segmentation accuracy. The kappa results are presented at right in Fig. 1. The best 
median kappa was obtained with a search area of 9 x 9 x 9 voxels  (K = 0.882).  

Impact of the number of training subjects: The last important parameter of the 
proposed method is the number of selected training subjects. During this experiment, 
segmentation accuracy was studied for N=2 to N=30 selected training subjects. As 
described previously, the N best training subjects are selected from the 79 remaining 
ones. The results are presented in Fig. 2. The median kappa value was 0.848 for 2 
subjects and 0.884 for 30 subjects. As expected, increasing the number of selected 
training subjects increased the accuracy of the segmentation.  



 
Figure 2: Dice Kappa values according to the number of training subjects obtained with a patch 
size of 7x7x7 voxels and search area size of 9x9x9 voxels. 

Comparison with appearance-based and template-based methods: Finally, the 
proposed patch-based method was compared with two other methods. Figure 3 
presents the kappa values obtained for each method. The results presented for our 
method were obtained with N = 20. The appearance-based method obtained a median 
kappa value of 0.800; the best template approach obtained 0.837, whereas the 
proposed method obtained 0.882. One can note that by using only 2 training subjects 
(K=0.848) our method already outperforms the two other methods. Figure 4 shows 
HC segmentations obtained by the methods compared. 

 

 
Figure 3: Kappa values obtained by the three methods. The patch-based approach obtained 
significantly better results compared to the two others methods with a  p-value << 0.001 in both 
cases using Kruskal-Wallis tests.  

Computational time: The computational time was proportional to the number of 
subjects; for each subject, around 40 seconds were required. Compared with other 



approaches, the appearance-based method [3] took around 1 minute to provide the 
segmentation of the HC. The best template-based approach inspired by [5] required 
around 6 minutes to achieve the nonlinear registration of the cropped images already 
linearly registered into stereotaxic space. However, the comparison of computational 
time is difficult since our method was coded in MATLAB © and not in C like the other 
two methods. 

 

    
Best subject Κ= 0.909 Κ= 0.852 Κ= 0.791 

    
Median subject Κ= 0.882 Κ= 0.822 Κ= 0.835 

    
Worst subject Κ= 0.802 Κ= 0.733 Κ= 0.652 

Segmentations of 
expert 

Patch-based Best Template Appearance-
based 

Figure 4: Segmentation results with the three methods compared, for the best (top), a median 
(middle) and the worst (bottom) subjects obtained with our method.  

4 Conclusion 

We proposed a novel patch-based approach to automatically segment anatomical 
structures using expert segmentation priors. Despite its simplicity, the accuracy of the 
proposed method has been demonstrated within our validation framework. The 
highest Dice kappa values obtained during experiments were 0.884 for N = 30 
training subjects. Moreover, comparison with an appearance-based [3] and a 
template-based method [5] highlighted the competitive results obtained by the 
proposed nonlocal patch-based approach. Comparing published methods is always 
difficult due to differences within the databases used for validation, the studied 
populations, the quality of expert segmentations and the reported quality metrics. 
However, tendencies in method evolution and their respective performances can be 
obtained by studying published results. Recently published results [1, 5, 7] indicated 
kappa values lower than 0.88. To the best of our knowledge, only the methods based 
on nonlinear warping of the best templates and involving a label fusion step [9-11] 
obtained a kappa value equal to or greater than 0.88. Gousias et al. [11] reported a 
mean kappa of 0.88 with the use of a b-spline-based nonlinear registration on a 2-
year-old brain. Lotjonen et al. [10] proposed two intensity-based models to improve 



label fusion. With the graph-cut-based method, they obtained a kappa of 0.88, and 
with the EM-based algorithm, a kappa of 0.885. Collins and Pruessner [9] obtained a 
median kappa of 0.886 by using nonlinear registration of 11 best templates and a 
classical voting scheme for label fusion. By comparison, our proposed method offers 
the main advantages of its simplicity for similar segmentation accuracy (K = 0.884). 
As a result of the proposed automatic adaptation of the robust function parameter, our 
approach can be used easily and implemented in a fully automatic manner. 
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