
 1 

  

 
Abstract—The derivation of moment invariants has been extensively investigated in the past decades. In this paper, we construct a 

set of invariants derived from Zernike moments which is simultaneously invariant to similarity transformation and to convolution with 

circularly symmetric point spread function (PSF). Two main contributions are provided: the theoretical framework for deriving the 

Zernike moments of a blurred image and the way to construct the combined geometric-blur invariants. The performance of the 

proposed descriptors is evaluated with various PSFs and similarity transformations. The comparison of the proposed method with the 

existing ones is also provided in terms of pattern recognition accuracy, template matching and robustness to noise. Experimental 

results show that the proposed descriptors perform on the overall better. 

 

Index Terms—Zernike moments, circularly symmetric blur, combined invariants, pattern recognition, template matching. 

I. INTRODUCTION 

Recognition of objects whatever their position, size and orientation is an important concern. In the past decades, many 

techniques including moment invariants [1]-[5], Fourier descriptors [6] and point set invariants [7]-[10] have been reported in the 

literature. Among them, moment invariants have been extensively used for image description in object recognition [11], [12], 

image classification [13] and scene matching [14]. However, much less attention has been paid to invariants with respect to 

changes of the image intensity function (known as radiometric invariants) as to joint radiometric-geometric invariants. 

Since real sensing systems are usually imperfect and environmental conditions are changing during the acquisition, the 

observed images often provide a degraded version of the true scene. Image blurring is an important class of degradations we 

have to face in practice due to the camera defocus, atmospheric turbulence, vibrations, and by sensor or scene motion [15]. 

Blurring can be usually described by a convolution of an unknown original image with a space invariant point spread function 

(PSF). A conventional way to carry out blur object recognition is first to deblur the image, and then to apply the recognition 

methods [16]-[21]. Unfortunately, the blind image deconvolution is an ill-posed problem. Moreover, the deconvolution process 
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may introduce new artifacts to the image. To avoid these disadvantages, it is of great importance to find a set of invariants that is 

not affected by blurring. This is the objective of this paper. 

The first paper on this subject was reported by Flusser and Suk [15] who derived invariants to convolution with an arbitrary 

centrosymmetric PSF. These invariants have been successfully used in pattern recognition [22]-[25], in blurred digit and 

character recognition [26], [27], in medical image registration [28], and in focus/defocus quantitative measurement [29]. Other 

sets of blur invariants have been derived for some particular kinds of PSF like the axisymmetric blur invariants [30] and motion 

blur invariants [31], [32]. More recently, Flusser and Zitova introduced the combined blur-rotation invariants [33] and applied 

them to satellite image registration [34] and camera motion estimation [35]. Zhang et al. [36] proposed a method to get a set of 

affine-blur invariants. However, in their approach, the affine invariance is achieved through a normalization process. Suk and 

Flusser derived explicitly a set of combined invariants with respect to affine transform and to blur [37]. These blur invariants 

have been further extended to N-dimensions in continuous case [38] as well as in discrete form [39]. The above mentioned 

methods are mainly based on geometric or complex moments. The resulting invariants have information redundancy and are 

more sensitive to noise. 

We [40] have recently proposed an approach based on the orthogonal Legendre moments to derive a set of blur invariants, 

and we have shown that they are more robust to noise and have better discriminative power than the existing methods. However, 

as pointed out in [40], one weak point of Legendre moment descriptors is that they are only invariant to translation, but not 

invariant under image rotation and scaling. Zhu et al. [41] and Ji and Zhu [42] proposed the use of the Zernike moments to 

construct a set of combined blur-rotation invariants. Unfortunately, there are two limitations to their methods: (1) Only the 

Gaussian blur has been taken into account, which is a special case of PSF having circularly symmetry; (2) Only a subset of 

Zernike moments of order p with repetition p, Zp, p, has been used in the derivation of invariants. Since Zp, p corresponds to the 

radial moment Dp, p or the complex moment C0, p if neglecting the normalization factor, the set of invariants constructed by Zhu 

et al. is a subset of that proposed by Flusser [43]. 

In this paper, we propose a new method to derive a set of combined geometric-blur invariants based on orthogonal Zernike 

moments. We further assume that the applied PSF is circularly symmetric. The reasons for such a choice of PSF are as follows 

[43]: (1) The majority of the PSFs occurring in real situations exhibit a circular symmetry; (2) Since the PSFs having circular 

symmetry are a subset of centrosymmetric functions, it could be expected that we can derive some new invariants. In fact, the 

previously reported convolution invariants with centrosymmetric PSF include only the odd order moments. Flusser and Zitova 

[43] have shown that there exist even order moment invariants with circularly symmetric PSF. 

The organization of this paper is as follows. In Section II, some preliminaries about the radial moments, Zernike moments and 

image blurring are given. In Section III, we first establish a relationship between the Zernike moments of the blurred image and 
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those of the original image and the PSF, and we then explain how to construct a set of blur invariants and joint 

radiometric-geometric invariants. Experimental results on the proposed descriptors’ performance are provided in Section IV. 

Section V concludes the paper. 

II. PRELIMINARIES 

This section presents the definition of radial and Zernike moments, and reviews the concept of image blurring. The radial 

moment of order p with repetition q of image intensity function f(r, θ) is defined as [44] 

   
Dp,q

( f ) = r pe− ĵqθ f (r,θ )r dr dθ
0

1

∫
0

2π

∫ ,  , 0 ≤ r ≤ 1, p ≥ 0, q = 0, ±1, ±2,….                 (1) 

The Zernike moment of order p with repetition q of f(r, θ) is defined as [44] 

   
Z p,q

( f ) = p +1
π

Rp,q (r)e− ĵqθ f (r,θ )r dr dθ
0

1

∫
0

2π

∫ ,      p ≥ 0, |q| ≤ p, p – |q| being even,               (2) 

where R p,q (r) is the real-valued radial polynomial given by 

  

Rp,q (r) = (−1)k ( p − k)!

k !
p + q

2
− k

⎛

⎝
⎜

⎞

⎠
⎟ !

p − q
2

− k
⎛

⎝
⎜

⎞

⎠
⎟ !

k=0

( p− q )/2

∑ r p−2k .                                                         (3) 

Equation (3) points out that the radial polynomial R p,q (r) is symmetric with q, that is, R p,-q (r) = R p,q (r), for q ≥ 0. Thus, we can 

consider the case where q ≥ 0. Letting p = q+2l in (3) with l ≥ 0, and substituting it into (2) yields 

   

Zq+2l ,q
( f ) = q + 2l +1

π
(−1)k (q + 2l − k)!

k !(q + l − k)!(l − k)!
rq+2( l−k )

k=0

l

∑⎡
⎣
⎢

⎤

⎦
⎥

0

1

∫
0

2π

∫ e− ĵqθ f (r,θ )rdrdθ

= q + 2l +1
π

(−1)l−k (q + l + k)!
k !(q + k)!(l − k)!

rq+2k

k=0

l

∑⎡
⎣
⎢

⎤

⎦
⎥

0

1

∫
0

2π

∫ e− ĵqθ f (r,θ )rdrdθ

= (−1)l−k q + 2l +1
π

(q + l + k)!
k !(q + k)!(l − k)!k=0

l

∑ rq+2k e− ĵqθ f (r,θ )r dr dθ
0

1

∫
0

2π

∫

= cl ,k
q Dq+2k ,q

( f ) ,
k=0

l

∑

                      (4) 

where 

  
cl ,k

q = (−1)l−k q + 2l +1
π

(q + l + k)!
k !(l − k)!(q + k)!

.                                                                          (5) 

Let be a rotated version of f, i. e. , where β is the angle of rotation, and let be the Zernike 

moments of . It can be easily seen from (2) that 

  
Zq+2l ,q

( ′f ) = e− ĵqβZq+2l ,q
( f ) .                                                                                                     (6) 
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Let g(x, y) be a blurred version of the original image f(x, y), under the condition that of imaging system being linear 

shift-invariant, the blurring can be usually described by the convolution 

                                                                                                 (7) 

where h(x, y) is the PSF of the imaging system, and * denotes the linear convolution. 

In this paper, we assume that the PSF, h(x, y), is a circularly symmetric image function, and that the imaging system is 

energy-preserving, which leads to, 

                                                                                               (8) 

                                                                                                        (9) 

Under the assumption of (8), the Zernike moments of h(r, θ) equal those of any rotated image . Combining this fact with 

(6), we get 

  
Zq+2l ,q

(h) = Zq+2l ,q
( ′h ) = e− ĵqβZq+2l ,q

(h) .                                                                                      (10) 

Equation (10) is verified if and only if either or q = 0. Thus, an important property of circularly symmetric functions 

can be stated as follows. 

Proposition 1. If q ≠ 0 and h(r, θ) is a circularly symmetric image function, then  for any non-negative integer l. 

III. METHOD 

A. Zernike Moments of the Blurred Image 

In this subsection, we establish the relationship between the Zernike moments of the blurred image and those of the original 

image and the PSF. To that end, we first consider the radial moments. Applying (1) to blurred image g(x, y), we have 

  

Dq+2k ,q
( g )

= (x − ĵy)q+k (x + ĵy)k

−∞

∞

∫
−∞

∞

∫ g(x, y)dxdy

= (x − ĵy)q+k (x + ĵy)k

−∞

∞

∫
−∞

∞

∫ h(a,b)
−∞

+∞

∫
−∞

+∞

∫ f (x − a, y − b)dadb
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dxdy

= h(a,b) ((x − ĵy) + (a − ĵb))q+k ((x + ĵy) + (a + ĵb))k

−∞

+∞

∫
−∞

+∞

∫
⎡

⎣
⎢
⎢−∞

∞

∫
−∞

∞

∫ f (x, y)dxdy⎤⎦ dadb

= q + k
m

⎛

⎝
⎜

⎞

⎠
⎟

k
n

⎛

⎝⎜
⎞

⎠⎟
(x − ĵy)m (x + ĵy)n f (x, y) dx dy

−∞

+∞

∫
−∞

+∞

∫
n=0

k

∑
m=0

q+k

∑ (a − ĵb)q+k−m (a + ĵb)k−n h(a,b) da db
−∞

∞

∫
−∞

∞

∫

= q + k
m

⎛

⎝
⎜

⎞

⎠
⎟

k
n

⎛

⎝⎜
⎞

⎠⎟n=0

k

∑
m=0

q+k

∑ Dm+n,m−n
( f ) Dq+2k−m−n,q+n−m

(h) .

     (11) 

Applying (4) to blurred image g(x, y) = g(r, θ) and using (11), we obtain 
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Zq+2l ,q

( g ) = q + k
m

⎛

⎝
⎜

⎞

⎠
⎟

k
n

⎛

⎝⎜
⎞

⎠⎟n=0

k

∑
m=0

q+k

∑ cl ,k
q Dm+n,m−n

( f ) Dq+2k−m−n,q+n−m
(h)

k=0

l

∑ .                                                   (12) 

From (4), the radial moments can also be expressed as a series of Zernike moments 

  
Dq+2l ,q

( f ) = dl ,k
q Zq+2k ,q

( f )

k=0

l

∑ ,                                                                                                    (13) 

where , 0 ≤ j ≤ i ≤ l, is the inverse matrix of . Both  and  are lower triangular matrices of size (l+1) 

× (l+1), the elements of  are given by (5). The elements of  are given by [45] 

  
di, j

q = i!(q + i)!π
(i − j)!(q + i + j +1)!

,       0 ≤ j ≤ i ≤ l.                                                                  (14) 

From (13), we have 

  
Dm+n,m−n

( f ) = dn,i
m−nZm−n+2i,m−n

( f )

i=0

n

∑ ,                                                                                         (15) 

  
Dq+2k−m−n,q+n−m

(h) = dk−n, j
q+n−mZq+n−m+2 j ,q+n−m

(h)

j=0

k−n

∑ .                                                                         (16) 

By introducing (15) and (16) into (12), we obtain 

  
Zq+2l ,q

( g ) = q + k
m

⎛

⎝
⎜

⎞

⎠
⎟

k
n

⎛

⎝⎜
⎞

⎠⎟
cl ,k

q dn,i
m−ndk−n, j

q+n−m

j=0

k−n

∑
i=0

n

∑
n=0

k

∑
m=0

q+k

∑
k=0

l

∑ Zm−n+2i,m−n
( f ) Zq+n−m+2 j ,q+n−m

(h) .                            (17) 

Based on (17), we have the following theorem. 

Theorem 1. Let f(r, θ) be the original image function and the PSF h(r, θ) be circularly symmetric, g(r, θ) be a blurred version of 

f(r, θ), then the following relation 

  
Zq+2l ,q

( g )  = Zq+2i,q
( f ) Z2 j ,0

(h) A(q, l, i, j),
j=0

l−i

∑
i=0

l

∑                                                                                   (18) 

stands for any q ≥ 0 and l ≥ 0, where the coefficients A(q, l, i, j) are given by 

  
A(q, l, i, j) =

q + k
q + n

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

k
n

⎛

⎝⎜
⎞

⎠⎟
cl ,k

q dn,i
q dk−n, j

0 .
n=i

k− j

∑
k=i+ j

l

∑                                                                 (19) 

Proof. For circularly symmetric function h(r, θ), using Proposition 1, we have 
  
Zq+n−m+2 j ,q+n−m

(h) = 0  if q+n–m ≠ 0, thus, (17) can be 

simplified as 
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Zq+2l ,q
( g ) =

q + k
q + n

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

k
n

⎛

⎝⎜
⎞

⎠⎟
cl ,k

q dn,i
q dk−n, j

0 Zq+2i,q
( f ) Z2 j ,0

(h)

j=0

k−n

∑
i=0

n

∑
n=0

k

∑
k=0

l

∑

= Zq+2i,q
( f ) Z2 j ,0

(h) q + k
q + n

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

k
n

⎛

⎝⎜
⎞

⎠⎟
cl ,k

q dn,i
q dk−n, j

0

n=i

k− j

∑
k=i+ j

l

∑
j=0

l−i

∑
i=0

l

∑ .

                                                                

The proof has been completed.                                                                                                                                                   � 

B. Blur Invariants of Zernike Moments 

Based on Theorem 1, it becomes possible to construct a set of blur invariants of Zernike moments which is described in the 

following theorem. 

Theorem 2. Let f(r, θ) be an image function. Let us define the following function : N×N→R. 

  
I(q + 2l,q)( f ) = Zq+2l ,q

( f ) − 1
Z0,0

( f )π
I(q + 2i,q)( f ) Z2 j ,0

( f ) A(q, l, i, j)
j=0

l−i

∑
i=0

l−1

∑ .                                            (20) 

Then, I(q+2l, q)(f) is invariant to circularly symmetric blur for any q ≥ 0 and l ≥ 0. The number p = q+2l is called the order of the 

invariant. 

The proof of Theorem 2 is given in Appendix A. Some remarks deserve to be made. 

Remark 1. By using the symmetric property of Rp, q(r) with q, it can be easily proven that I(|q|+2l, q)(f) for q < 0 is also invariant 

to convolution. 

Remark 2. It can be deduced from (20) that 
  
I(2l,0)( f ) = (−1)l (2l +1)Z0,0

( f ) . Thus, only 
  
I(0,0)( f ) = Z0,0

( f )  will be used as invariant for the 

case q = 0. 

Remark 3. If we use the Zernike central moments  instead of Zernike moments in (20), then we can obtain a set of 

invariants  that is invariant to both translation and to blur. 

Based on Theorem 2, we can construct a set of blur invariants of Zernike moments with arbitrary order and express them in 

explicit form. The invariants up to sixth order are listed in Appendix B. 

Lemma 1. Let  be a rotated version of f, i.e., , where β denotes the rotation angle, then the following 

relation holds for any q ≥ 0 and l ≥ 0 

  I(q + 2l,q)( ′f ) = e− ĵqβ I(q + 2l,q)( f ) .                                                                             (21) 

Proof. We demonstrate this lemma by induction about l. The proof is trivial for l = 0. Assume that the assertion is true for 1, 2, 

…, l–1, then using (6), we get 



 7 

  

I(q + 2l,q)( ′f )

= Zq+2l ,q
( ′f ) − 1

Z0,0
( ′f )π

I(q + 2i,q)( ′f ) Z2 j ,0
( ′f ) A(q, l, i, j)

j=0

l−i

∑
i=0

l−1

∑

= e− ĵqβZq+2l ,q
( f ) − 1

Z0,0
( f )π

e− ĵqβ I(q + 2i,q)( f ) Z2 j ,0
( f ) A(q, l, i, j)

j=0

l−i

∑
i=0

l−1

∑
= e− ĵqβ I(q + 2l,q)( f ) .

                                                     

The proof is thus completed.                                                                                                                                                      �

 Lemma 2. Let f(r, θ) be an image function. It holds for any q ≥ 0 and l ≥ 0 that 

  I(q + 2l,−q)( f ) = I *(q + 2l,q)( f ) ,                                                                              (22) 

where the superscript * denotes the complex conjugate. 

The proof of Lemma 2 is very similar to that of Lemma 1 and it is thus omitted. 

C. Combined Invariants of Zernike Moments 

In this subsection, we construct a set of combined geometric-blur invariants. As we have already stated, the translation 

invariance can be achieved by using the central Zernike moments. Equation (21) shows that the magnitude of I(q+2l, q)(f) is 

invariant to rotation. However, as indicated by Flusser [33], the magnitudes do not yield a complete set of the invariants. Herein, 

we provide a way to build up such a set. Let  and f be two images having the same content but distinct orientation (�) and 

scale (λ), that is, , the Zernike moment of the transformed image is given by 

  

Zq+2l ,q
( ′′f ) = q + 2l +1

π
Rq+2l ,q (r)e− ĵqθ f (r / λ,θ − β)r dr dθ

0

1

∫
0

2π

∫

            =e− ĵqβ q + 2l +1
π

λ2 Rq+2l ,q (λr)e− ĵqθ f (r,θ )r dr dθ
0

1

∫
0

2π

∫ .

                                           (23) 

Using (4) and (13), we have 

   

  

Zq+2l ,q
( ′′f ) = e− ĵqβ λq+2k+2cl ,k

q Dq+2k ,q
( f )

k=0

l

∑

= e− ĵqβ λq+2k+2cl ,k
q dk ,m

q Zq+2m,q
( f )

m=0

k

∑
k=0

l

∑

= e− ĵqβ λq+2k+2cl ,k
q dk ,m

q Zq+2m,q
( f )

k=m

l

∑
m=0

l

∑ .

                                                                            (24) 

Therefore, we have the following theorem: 

Theorem 3. Let 

                                                             (25)  
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with and . Then  is invariant to both image rotation and scaling for any non-negative integers q 

and l. 

The proof of Theorem 3 is given in Appendix A. 

Remark 4. Many other choices of θ f and Γf are possible. In fact, they can be chosen in such a way that  

where  is the transformed image of f. However, it is preferable to use the lower order moments because 

they are less sensitive to noise than the higher order ones [46]. If the central moments are used, θ f can be chosen as . 

Theorem 4. For any q ≥ 0 and l ≥ 0, let 

                                     (26) 

where I(q+2m, q)(f) is defined in (20). Then, SI(q+2l, q)(f) is both invariant to convolution and to image scaling and rotation. 

The proof is given in appendix A. For simplicity, the invariants defined in (26) are hereafter denoted by ZMIs. The combined 

invariants up to sixth order are listed in Appendix C. 

IV. EXPERIMENTAL RESULTS 

The following experiments illustrate the invariance of our ZMIs to various PSFs and similarity transformation, as its robustness 

to different kinds of noise. Comparison with existing methods in terms of recognition accuracy and template matching is also 

provided.  

Let
  
SI p = SI( p, p − 2 × p −1

2
⎢

⎣
⎢

⎥

⎦
⎥ , SI( p, p + 2 − 2 × p −1

2
⎢

⎣
⎢

⎥

⎦
⎥ ,..., SI( p, p)

⎛

⎝⎜
⎞

⎠⎟
 for p ≥ 0, where SI(p, q) is defined in (26) and  

denotes the nearest integers not greater than x, and let . The relative error between the two moment 

invariant vectors corresponding to an image f and its transformed version g is computed by 

   

Ep ( f , g) =
I ( f ) ( p) − I ( g ) ( p)
I ( f ) ( p)

,                                                                                 (27) 

where ||.|| is Euclidean norm in L2 space. 

A. Test of Invariance 

For this experiment, a set of eighteen butterfly images shown in Fig. 1, whose size is 128 × 128, has been chosen from the public 

Butterfly database [47] as the original images. In order to evaluate the invariance with respect to rotation and blurring, these 

images were rotated by different angles from 0° to 90° every 5°, and a bilinear interpolation was used when required. Then, the 

normalized uniform disk blur with different sizes from 1 × 1 (no blurring) to 31× 31 with interval 2 (sixteen masks in total) was 
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applied to every rotated image. So, the actual size of the blurred images in the experiments of this subsection is 212 × 212. Note 

that the original images have been zero padded to meet the actual size in order to avoid the boundary effect. Both the original 

images and the blurred images are then mapped inside the unit circle, and the Zernike moments are computed with the method 

reported in [48]. The combined rotation-blur invariants ZMIs defined in (26) of order up to p = 5 were computed for all 5472 

images. The relative errors of ZMIs between each transformed image and its original image were computed using (27). Fig. 2 

shows the mean values of , where fi (i = 1, 2, …, 18) denotes the images shown in Fig. 1 (a)-(r). It can be seen that 

they are very low (less than 0.0035). The mean relative error reaches its maximal value at the angle β = 450 due to the 

interpolation effect. The maximal value of the standard deviation (STD) is equal to 0.0035. We then tested the combined 

scale-blur invariance. Eighteen images were blurred with the same masks, and then were scaled by a factor varying from 0.5 to 2 

with interval 0.1, forming a set of 4608 images. Fig. 3 shows the mean values of the relative errors  (i = 1, 2, …, 18) 

(the maximal value of the standard deviation is 0.0043). It can be observed from Figs. 2 and 3 that the errors caused by blurring 

and similarity transformation are very small (less than 0.006). 

In the second experiment, the image shown in Fig. 1 (a) was convoluted with various PSFs and undergone similarity 

transformation including translation, scaling and rotation (Fig. 4). The proposed ZMIs defined in (26) of order p from 2 to 5 were 

calculated for each image (the central Zernike moments were used in this experiment, and the moment invariants of order 0 and 1 

were respectively used to achieve the scale invariance and translation invariance). Table 1 depicts the invariant values. From this 

table, it can be seen that excellent results have been obtained whatever the similarity transformation and image degradation. 

We also compared our ZMIs with the complex moment invariants (CMIs) reported in [43] and the Legendre moment 

invariants (LMIs) presented in [40] in terms of blur invariance. This is because these methods have different behavior regarding 

to similarity transformation: LMIs are invariant to translation only and CMIs are invariant to rotation and scaling. We do not 

include Zhu’s method in this comparison due to the fact that the set of invariants derived in [41], [42] is a subset of both CMIs 

and ZMIs. Eighteen images were degraded by the normalized uniform disk blur with sixteen different sizes from 1 × 1 to 31 × 

31. Three types of blur invariants of order up to p = 5 are calculated for the set of 288 images. The mean values of the relative 

errors  (i = 1, 2, …, 18)  for CMIs, LMIs and ZMIs are depicted in Fig. 5. It is clear that the errors increase 

significantly with the size of the mask going up and our ZMIs behave better than the two other types blur invariants. 

B. Classification Results 

In this evaluation, we also use the images shown in Fig. 1. The testing set was generated by adding disk blur,  averaging blur 

and Gaussian blur with zero-mean and STD = 1, 2. The mask with sizes 3 × 3, 5 × 5, 7 × 7, …, 17 × 17, 19 × 19 pixels has been 

used , forming a set of 648 images. This was followed by adding a white Gaussian noise with different standard deviations and 
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salt-and-pepper noise with different noise densities. Because the actual size of the PSF is usually unknown in practical 

application, in order to evaluate the performance of the different methods under such a situation, we take the size of the blurred 

image equal to the original image one (128 × 128) instead of its actual size (146 × 146) in this experiment even if the size of the 

mask is given. In that case, the boundary effect is then present. Fig. 6 shows some examples of the blurred and corrupted images. 

The Lance-Williams distance is used here as the classification measure. This distance between the two images f and g is defined 

by their moment invariant vectors  and  as 

                                                                                    (28) 

where ,  j = 1, 2, …, n, denote the blur invariants, n is the total number of invariants used in the experiment and |x| the 

magnitude of the complex number x.  

We have computed the ZMIs, CMIs and LMIs up to order M = 1, 3, … , 15, 17. The mean classification rates under different 

noise conditions for different values of M are shown in Fig. 7. It can be observed that the rate first increases, reaches the 

maximum value and then decreases for all three methods. In other words, there should exist an optimal order for each type of 

moment invariants. This behaviour has also been observed and pointed out by Liao and Pawlak in image reconstruction due to 

the noise influence [49]. In this experiment, the optimal order for CMIs is M = 7 (the feature vector includes 17 invariants), M = 

7 for LMIs (the feature vector has 21 invariants), and M = 9 for ZMIs (with 26 invariants). Table 2 shows the detailed 

classification rates using the different moment invariants with the optimal order. One can see from this table that in the 

noise-free scenario the recognition results are quite good whatever the method. The classification rates remain high for low and 

moderate noise levels but decrease significantly when the noise level goes up. However, the proposed descriptors ZMIs perform 

better than other methods (all the rates are higher than 75%) whatever the noise and the noise level. Although this conclusion is 

drawn from only one experiment, it is in accordance with that reported in [50] where the authors pointed out that the Zernike 

moments have on overall better performance than other moments. 

C. Template Matching  

The objective of this additional test is to evaluate the performance of our descriptors in the case of localizing templates within a 

real outdoor scene image that has undergone similarity transformation and out-of-focus blur. For that purpose, two images were 

taken by digital camera (Panasonic DMC-FZ50) with different focus and different positions by rotating the camera. Then, nine 

circular areas with radius r = 10 pixels were extracted from Fig. 8 (a) to serve as templates (numbered from 1 to 9). The scale 

factor between two images is obtained with the automatic scale selection [51]. After that, the scaled template was shifted across 
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the transformed and blurred image (Fig. 8 (b)). At each position, the invariants were calculated and compared with the invariants 

of the original template. For more detail about the matching procedure, we refer to Ref. [22]. 

Each moment descriptors with the optimal order obtained in the previous experiment (M = 9 for ZMIs and M = 7 for CMIs) 

have been used here. Note that we did not test LMIs because they are not invariant with respect to image rotation and scaling. 

The ‘matching position’ we consider corresponds to the location where the Lance-Williams distance d(f, g) reaches the minimum 

value, with f representing the template of the original image and g the template of the transformed and blurred image. The 

matching results that have been obtained based on these different moment invariants are summarized in Fig. 8 (c) and (d). It can 

be seen that the proposed descriptors ZMIs match correctly for all nine templates and that it is not the case for CMIs. 

V. CONCLUSIONS 

In this paper, we have proposed a method to construct a set of combined geometric-blur invariants using the orthogonal Zernike 

moments. The relationship between the Zernike moments of the blurred image and those of the original image and the PSF has 

been established. Based on this relationship, a set of invariants to convolution with circularly symmetric PSF has been derived. 

The advantages of the proposed method over the existing ones are the following: (1) The proposed descriptors are 

simultaneously invariant to similarity transformation and to convolution. Using these invariants, the image deblurring and 

geometric normalization process can be well avoided; (2) Like the method reported in [43], our method can also derive the even 

order invariants. The experiments conducted so far in very distinct situations demonstrated that the proposed descriptors are 

more robust to noise and have better discriminative power than the existing methods. 

APPENDIX A 

Proof of Theorem 2. We prove this theorem by mathematical induction about l. 

For l = 0, using (18), (19) and , it can be easily deduced from (20) that 

                                                                                  

Assume that Theorem 1 is valid for 1, 2, …, l–1, then we get 

  
I(q + 2l,q)( g ) − I(q + 2l,q)( f ) = (Zq+2l ,q

( g ) − Zq+2l ,q
( f ) ) − 1

Z0,0
( f )π

I(q + 2i,q)( f ) Z2 j ,0
( g ) − Z2 j ,0

( f )⎡⎣ ⎤⎦ A(q, l, i, j)
j=1

l−i

∑
i=0

l−1

∑ .     (A1) 

By using (18), we have 

  
Zq+2l ,q

( g ) − Zq+2l ,q
( f ) = Zq+2i,q

( f ) Z2 j ,0
(h) A(q, l, i, j)

j=0

l−i

∑ .
i=0

l−1

∑                                                           (A2) 

Similarly, 

  
Z2 j ,0

( g ) − Z2 j ,0
( f ) = Z2k ,0

( f ) Z2r ,0
(h) A(0, j, k, r)

r=0

j−k

∑
k=0

j−1

∑ .                                                                 (A3) 
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Substitution of (A2) and (A3) into (A1) yields 

  
I(q + 2l,q)( g ) − I(q + 2l,q)( f ) = Zq+2i,q

( f ) Z2 j ,0
(h) A(q, l, i, j)

j=0

l−i

∑
i=0

l−1

∑ − 1
Z0,0

( f )π
I(q + 2i,q)( f )

i=0

l−1

∑ Z2k ,0
( f ) Z2r ,0

(h) A(0, j, k, r)
r=0

j−k

∑
k=0

j−1

∑⎡
⎣
⎢

⎤

⎦
⎥ A(q, l, i, j)

j=0

l−i

∑ .

   

(A4) 

By using the property and , (20) can be written as

 

  
Zq+2l ,q

( f ) = 1
Z0,0

( f )π
I(q + 2i,q)( f ) Z2 j ,0

( f ) A(q, l, i, j)
j=0

l−i

∑ .
i=0

l

∑                                                     (A5) 

Substitution of (A5) into (A4), we get 

  

I(q + 2l,q)( g ) − I(q + 2l,q)( f )

= 1
Z0,0

( f )π
I(q + 2k,q)( f ) Z2r ,0

( f ) A(q, i, k, r)
r=0

i−k

∑
k=0

i

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i=0

l−1

∑ Z2 j ,0
(h) A(q, l, i, j)

j=0

l−i

∑

  − 1
Z0,0

( f )π
I(q + 2i,q)( f )

i=0

l−1

∑ Z2k ,0
( f ) Z2r ,0

(h) A(0, j, k, r)
r=0

j−k

∑
k=0

j−1

∑⎡
⎣
⎢

⎤

⎦
⎥ A(q, l, i, j)

j=0

l−i

∑

                               

  

= 1
Z0,0

( f )π
I(q + 2k,q)( f ) Z2r ,0

( f ) A(q, i, k, r)
r=0

i−k

∑
i=k

l−1

∑
k=0

l−1

∑ Z2 j ,0
(h) A(q, l, i, j)

j=0

l−i

∑

  − 1
Z0,0

( f )π
I(q + 2i,q)( f )

i=0

l−1

∑ Z2k ,0
( f ) Z2r ,0

(h) A(0, j, k, r)
r=0

j−k

∑
j=k+1

l−i

∑ A(q, l, i, j)
k=0

l−i−1

∑

= 1
Z0,0

( f )π
I(q + 2k,q)( f ) Z2r ,0

( f ) Z2 j ,0
(h)

j=0

l−k−r

∑
r=0

l−1−k

∑
k=0

l−1

∑ A(q, i, k, r)A(q, l, i, j)
i=k+r

min( l−1,l− j )

∑

  − 1
Z0,0

( f )π
I(q + 2i,q)( f )

i=0

l−1

∑ Z2k ,0
( f ) Z2r ,0

(h) A(0, j, k, r)A(q, l, i, j)
j=max(k+r ,k+1)

l−i

∑
r=0

l−i−k

∑
k=0

l−1−i

∑ .

           (A6) 

By shifting the indices in the above equation, we have 

  

I(q + 2l,q)( g ) − I(q + 2l,q)( f )

= 1
Z0,0

( f )π
I(q + 2i,q)( f ) Z2 j ,0

( f ) Z2k ,0
(h)

k=0

l−i− j

∑
j=0

l−1−i

∑
i=0

l−1

∑ A(q, r, i, j)A(q, l, r, k)
r=i+ j

min( l−1,l−k )

∑

  − 1
Z0,0

( f )π
I(q + 2i,q)( f )

i=0

l−1

∑ Z2 j ,0
( f ) Z2k ,0

(h) A(0, r, j, k)A(q, l, i, r)
r=max( j+k , j+1)

l−i

∑
k=0

l−i− j

∑
j=0

l−1−i

∑

= 1
Z0,0

( f )π
I(q + 2i,q)( f ) Z2 j ,0

( f ) Z2k ,0
(h) T (q, l, i, j, k)

i '=0

l−i− j

∑
j=0

l−1−i

∑
i=0

l−1

∑ ,

                        (A7) 

where 

  
T (q, l, i, j, k) = A(q, r, i, j)A(q, l, r, k)

r=i+ j

min( l−1,l−k )

∑ − A(0, r, j, k)A(q, l, i, r)
r=max( j+k , j+1)

l−i

∑ .       (A8) 

By using (19), we have 

      A(q, l, l,0) = A(0, j, j,0),                                                                                                   (A9) 

(A8) can thus be rewritten as 
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T (q, l, i, j, k)

= A(q, r, i, j)A(q, l, r, k)
r=i+ j

l−k

∑ − A(0, r, j, k)A(q, l, i, r)
r= j+k

l−i

∑

=
q + s
q + t

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

s
t

⎛

⎝⎜
⎞

⎠⎟
q + m
q + n

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

m
n

⎛

⎝⎜
⎞

⎠⎟t=r

s−k

∑
s=r+k

l

∑
n=i

m− j

∑
m=i+ j

r

∑
r=i+ j

l−k

∑ cl ,s
q cr ,m

q dn,i
q dt ,r

q ds−t ,k
0 dm−n, j

0

 −
q + s
q + t

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟t=i

s−r

∑
s=i+r

l

∑
n= j

m−k

∑
m= j+k

r

∑
r= j+k

l−i

∑ s
t

⎛

⎝⎜
⎞

⎠⎟
m
n

⎛

⎝⎜
⎞

⎠⎟
m
n

⎛

⎝⎜
⎞

⎠⎟
cl ,s

q cr ,m
0 dt ,i

q ds−t ,r
0 dn, j

0 dm−n,k
0

= cl ,s
q dn,i

q

n=i

m− j

∑
m=i+ j

r

∑ q + s
q + t

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

s
t

⎛

⎝⎜
⎞

⎠⎟
q + m
q + n

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

m
n

⎛

⎝⎜
⎞

⎠⎟t=r

s−k

∑
r=i+ j

s−k

∑
s=i+ j+k

l

∑ dt ,r
q cr ,m

q ds−t ,k
0 dm−n, j

0

 − cl ,s
q dt ,i

q

t=i

s−r

∑
r= j+k

s−i

∑
s=i+ j+k

l

∑ q + s
q + t

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟n= j

m−k

∑
m= j+k

r

∑ s
t

⎛

⎝⎜
⎞

⎠⎟
m
n

⎛

⎝⎜
⎞

⎠⎟
m
n

⎛

⎝⎜
⎞

⎠⎟
ds−t ,r

0 cr ,m
0 dm−n,k

0 dn, j
0

= cl ,s
q dn,i

q q + s
q + t

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

s
t

⎛

⎝⎜
⎞

⎠⎟
q + m
q + n

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

m
n

⎛

⎝⎜
⎞

⎠⎟t=r

s−k

∑
m=n+ j

r

∑
r=n+ j

s−k

∑
n=i

s− j−k

∑
s=i+ j+k

l

∑ dt ,r
q cr ,m

q ds−t ,k
0 dm−n, j

0

 − cl ,s
q dt ,i

q

t=i

s− j−k

∑
s=i+ j+k

l

∑ q + s
q + t

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟n= j

m−k

∑
m= j+k

r

∑
r= j+k

s−t

∑ s
t

⎛

⎝⎜
⎞

⎠⎟
m
n

⎛

⎝⎜
⎞

⎠⎟
m
n

⎛

⎝⎜
⎞

⎠⎟
ds−t ,r

0 cr ,m
0 dm−n,k

0 dn, j
0 .

                (A10) 

By shifting the indices in the last part of the above equation, we get 

  

T (q, l, i, j, k)

= cl ,s
q dn,i

q q + s
q + t

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

s
t

⎛

⎝⎜
⎞

⎠⎟
q + m
q + n

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

m
n

⎛

⎝⎜
⎞

⎠⎟t=r

s−k

∑
m=n+ j

r

∑
r=n+ j

s−k

∑
n=i

s− j−k

∑
s=i+ j+k

l

∑ dt ,r
q cr ,m

q ds−t ,k
0 dm−n, j

0

 − cl ,s
q dn,i

q q + s
q + n

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟t= j

m−k

∑
m= j+k

r

∑
r= j+k

s−n

∑
n=i

s− j−k

∑
s=i+ j+k

l

∑ s
n

⎛

⎝⎜
⎞

⎠⎟
m
t

⎛

⎝⎜
⎞

⎠⎟
m
t

⎛

⎝⎜
⎞

⎠⎟
ds−n,r

0 cr ,m
0 dm−t ,k

0 dt , j
0

= cl ,s
q dn,i

q

n=i

s− j−k

∑
s=i+ j+k

l

∑ T1(q, s, n, j, k),

                  (A11) 

where 

  
T1(q, s, n, j, k) =

q + s
q + t

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

s
t

⎛

⎝⎜
⎞

⎠⎟
q + m
q + n

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

m
n

⎛

⎝⎜
⎞

⎠⎟
dt ,r

q cr ,m
q

t=r

s−k

∑
m=n+ j

r

∑
r=n+ j

s−k

∑ ds−t ,k
0 dm−n, j

0 −
q + s
q + n

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

s
n

⎛

⎝⎜
⎞

⎠⎟
m
t

⎛

⎝⎜
⎞

⎠⎟
m
t

⎛

⎝⎜
⎞

⎠⎟
ds−n,r

0 cr ,m
0 dm−t ,k

0 dt , j
0

t= j

m−k

∑
m= j+k

r

∑
r= j+k

s−n

∑ .

 (A12) 

By changing the order of summation in (A12), we have 

  

T1(q, s, n, j, k)

=
q + s
q + t

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

s
t

⎛

⎝⎜
⎞

⎠⎟
q + m
q + n

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

m
n

⎛

⎝⎜
⎞

⎠⎟
dt ,r

q cr ,m
q ds−t ,k

0 dm−n, j
0

m=n+ j

r

∑
r=n+ j

t

∑
t=n+ j

s−k

∑ −
q + s
q + n

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

s
n

⎛

⎝⎜
⎞

⎠⎟
m
t

⎛

⎝⎜
⎞

⎠⎟
m
t

⎛

⎝⎜
⎞

⎠⎟
ds−n,r

0 cr ,m
0 dm−t ,k

0 dt , j
0

m=t+k

r

∑
t= j

r−k

∑
r= j+k

s−n

∑

=
q + s
q + t

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

s
t

⎛

⎝⎜
⎞

⎠⎟
q + m
q + n

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

m
n

⎛

⎝⎜
⎞

⎠⎟
ds−t ,k

0 dm−n, j
0 dt ,r

q cr ,m
q

r=m

t

∑⎡
⎣
⎢

⎤

⎦
⎥

m=n+ j

t

∑
t=n+ j

s−k

∑ −
q + s
q + n

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

s
n

⎛

⎝⎜
⎞

⎠⎟
m
t

⎛

⎝⎜
⎞

⎠⎟
m
t

⎛

⎝⎜
⎞

⎠⎟
dm−t ,k

0 dt , j
0 ds−n,r

0 cr ,m
0

r=m

s−n

∑⎡
⎣
⎢

⎤

⎦
⎥

m=t+k

s−n

∑
t= j

s−n−k

∑ .

 

(A13) 
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Since the lower triangular matrix  is the inverse of the matrix , that is,  where I is the identity matrix, we have 

  
dt ,r

q cr ,m
q

r=m

t

∑ = δ t ,m ,  
  

ds−n,r
0 cr ,m

0

r=m

s−n

∑ = δ s−n,m , where δt, m denotes the Kronecker symbol. Then, (A13) becomes  

  

T1(q, s, n, j, k) =
q + s
q + t

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

s
t

⎛

⎝⎜
⎞

⎠⎟
q + t
q + n

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

t
n

⎛

⎝⎜
⎞

⎠⎟
ds−t ,k

0 dt−n, j
0

t=n+ j

s−k

∑ −
q + s
q + n

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

s
n

⎛

⎝⎜
⎞

⎠⎟
s − n

t
⎛

⎝⎜
⎞

⎠⎟
s − n

t
⎛

⎝⎜
⎞

⎠⎟
ds−n−t ,k

0 dt , j
0

t= j

s−n−k

∑

                    =
q + s

q + n + t

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

s
n + t

⎛

⎝⎜
⎞

⎠⎟
q + n + t

q + n

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

n + t
n

⎛

⎝⎜
⎞

⎠⎟
ds−n−t ,k

0 dt , j
0

t= j

s−n−k

∑ −
q + s
q + n

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

s
n

⎛

⎝⎜
⎞

⎠⎟
s − n

t
⎛

⎝⎜
⎞

⎠⎟
s − n

t
⎛

⎝⎜
⎞

⎠⎟
ds−n−t ,k

0 dt , j
0

t= j

s−n−k

∑

                    = (q + s)!s!
n!(q + n)![t !(s − n − t)!]2 ds−n−t ,k

0 dt , j
0

t= j

s−n−k

∑ − (q + s)!s!
n!(q + n)![t !(s − n − t)!]2 ds−n−t ,k

0 dt , j
0

t= j

s−n−k

∑
                    = 0.

     (A14) 

Thus,   T (q, l, i, j, k) = 0  and   I(q + 2l,q)( g ) − I(q + 2l,q)( f ) = 0 . 

The proof has been completed.                                                                                                                                                 � 

Proof of Theorem 3. Equation (24) can be written in a matrix form as 

   

Zq,q
′′f

Zq+2,q
′′f


Zq+2l ,q

′′f

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

= e− ĵqβCl
qdiag(λq+2 ,λq+4 ,,λq+2l+2 )Dl

q

Zq,q
f

Zq+2,q
f


Zq+2l ,q

f

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

.                                                 (A15) 

Applying (25) to the transformed image , it can also be expressed in a matrix form as 

   

Lq,q
′′f

Lq+2,q
′′f


Lq+2l ,q

′′f

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

= e− ĵqθ ′′f Cl
qdiag(Γ ′′f

−(q+2) ,Γ ′′f
−(q+4) ,,Γ ′′f

−(q+2l+2) )Dl
q

Zq,q
′′f

Zq+2,q
′′f


Zq+2l ,q

′′f

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

.                                             (A16) 

Based on the definition of Γf and θf, it can be easily verified that 

  
Γ ′′f = λΓ f , θ ′′f = θ f − β.                                                                                    (A17) 

Substitution of (A15) and (A17) into (A16), and using the identity  we obtain 
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Lq,q
′′f

Lq+2,q
′′f


Lq+2l ,q

′′f

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

= e− ĵqθ f Cl
qdiag(Γ f

− ( q+2 )

,Γ f

− ( q+4 )

,,Γ f

− ( q+2 l+2 )

)diag(λ−(q+2) ,λ−(q+4) ,,λ−(q+2l+2) )Dl
qCl

q

⋅ diag(λq+2 ,λq+4 ,,λq+2l+2 )Dl
q

Zq,q
f

Zq+2,q
f


Zq+2l ,q

f

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

= e− ĵqθ f Cl
qdiag(Γ f

− ( q+2 )

,Γ f

− ( q+4 )

,,Γ f

− ( q+2 l+2 )

)Dl
q

Zq,q
f

Zq+2,q
f


Zq+2l ,q

f

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

=

Lq,q
f

Lq+2,q
f


Lq+2l ,q

f

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

.

   (A18) 

The proof has been completed.                                                                                                                                                   � 

To prove Theorem 4, we need first the following Lemma. 

Lemma 3. Let 

  
CL(q + 2l,q)( f ) = Lq+2l ,q

( f ) − 1
L0,0

( f )π
CL(q + 2i,q)( f ) L2 j ,0

( f ) A(q, l, i, j)
j=0

l−i

∑ .
i=0

l−1

∑

  

                            (A19) 

Then, CL(q+2l, q)(f) is invariant to image scaling and rotation for any q ≥ 0 and l ≥ 0. 

Lemma 3 can be easily proven by mathematical induction and it is thus omitted.

 Proof of Theorem 4. By Theorem 1, I(q+2k, q)(f) is invariant to convolution for any q ≥ 0 and k ≥ 0. Since  is also 

invariant to convolution, it is obvious that SI(q+2l, q)(f) defined in (26) is invariant to convolution. To demonstrate its invariance 

with respect to image scaling and rotation, we will prove the following result 

  
SI q + 2l,q( )( f )

= CL q + 2l,q( )( f )
,                                                                       (A20) 

where CL(q+2l, q)(f) is defined in (A19). 

We demonstrate (A20) by mathematical induction about l. 

For l = 0, using (A19), (20) and (25), we have 

 
  
SI q,q( )( f )

= e− ĵqθ f Γ f
−(q+2) I q,q( )( f )

= e− ĵqθ f Γ f
−(q+2)Zq,q

( f )

= e− ĵqθ f Γ f
−(q+2) Lq,q

( f )

= CL q,q( )( f )
.    (A21) 

Assume that the relationship (A20) is valid for 1, 2, …, l–1. Then, using (20) and (25), we have 
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SI(q + 2l,q)( f )

= e− ĵqθ f Γ f
−(q+2k+2)cl ,k

q dk ,m
q

k=m

l

∑
m=0

l

∑ Zq+2m,q
( f ) − 1

Z0,0
( f )π

I(q + 2i,q)( f ) Z2 j ,0
( f ) A(q, m, i, j)

j=0

m−i

∑
i=0

m−1

∑
⎛

⎝
⎜

⎞

⎠
⎟

= e− ĵqθ f Γ f
−(q+2k+2)cl ,k

q dk ,m
q Zq+2m,q

( f )

k=m

l

∑
m=0

l

∑ − e ĵqθ f

Z0,0
( f )π

Γ f
−(q+2k+2)

k=m

l

∑
m=0

l

∑ cl ,k
q dk ,m

q I(q + 2i,q)( f ) Z2 j ,0
( f ) A(q, m, i, j)

j=0

m−i

∑
i=0

m−1

∑

= Lq+2l ,q
( f ) −

e− ĵqθ f Γ f
−(q+2)

Z0,0
( f )π

I(q + 2i,q)( f ) Z2 j ,0
( f )

j=0

l−i

∑
i=0

l−1

∑ Γ f
−2k cl ,k

q dk ,m
q

k=m

l

∑
m=max( i+ j ,i+1)

l

∑ A(q, m, i, j).

  (A22) 

For CL(q+2l, q)(f), using the assumption CL(q+2i, q)(f) = SI(q+2i, q)(f) for i = 0, 1, …, l–1, and (26) and (25), we deduce from 

(A19) that 

  

  

CL(q + 2l,q)( f )

= Lq+2l ,q
( f ) − 1

L0,0
( f )π

SI(q + 2i,q)( f ) L2 j ,0
( f ) A(q, l, i, j)

j=0

l−i

∑
i=0

l−1

∑

= Lq+2l ,q
( f ) − 1

L0,0
( f )π

e− ĵqθ f Γ f
−(q+2k+2)ci,k

q dk ,m
q

k=m

i

∑
m=0

i

∑
i=0

l−1

∑ I(q + 2m,q)( f ) Γ f
−(2t+2)cj ,t

0 dt ,r
0

t=r

j

∑ Z2r ,0
( f )

r=0

j

∑⎛
⎝⎜

⎞

⎠⎟
A(q, l, i, j)

j=0

l−i

∑ .

   (A23) 

From (25), we have , (A23) becomes 

  

CL(q + 2l,q)( f )

= Lq+2l ,q
( f ) −

e− ĵqθ f Γ f
−(q+2)

Z0,0
( f )π

Γ f
−2k ci,k

q dk ,m
q

k=m

i

∑ I(q + 2m,q)( f )

m=0

i

∑⎛⎝⎜
⎞
⎠⎟i=0

l−1

∑ Γ f
−2tc j ,t

0 dt ,r
0

t=r

j

∑ Z2r ,0
( f )

r=0

j

∑⎛
⎝⎜

⎞

⎠⎟
A(q, l, i, j)

j=0

l−i

∑

= Lq+2l ,q
( f ) −

e− ĵqθ f Γ f
−(q+2)

Z0,0
( f )π

I(q + 2m,q)( f ) Z2r ,0
( f )

r=0

l−m

∑
m=0

l−1

∑ Γ f
−2k ci,k

q dk ,m
q

k=m

i

∑
i=m

min( l−1,l−r )

∑ Γ f
−2tc j ,t

0 dt ,r
0

t=r

j

∑ A(q, l, i, j)
j=r

l−i

∑

= Lq+2l ,q
( f ) −

e− ĵqθ f Γ f
−(q+2)

Z0,0
( f )π

I(q + 2i,q)( f ) Z
2 j ,0

( f )

j=0

l−i

∑
i=0

l−1

∑ Γ f
−2k cm,k

q dk ,i
q

k=i

m

∑
m=i

min( l−1,l− j )

∑ Γ f
−2tcr ,t

0 dt , j
0

t= j

r

∑ A(q, l, m, r)
r= j

l−m

∑ .

   (A24) 

Note that we have shifted the indices in the last step of the above equation. Subtracting (A22) from (A24), we obtain 

  

CL(q + 2l,q)( f ) − SI(q + 2l,q)( f )

=
e− ĵqθ f Γ f

−(q+2)

Z0,0
( f )π

I(q + 2i,q)( f ) Z
2 j ,0

( f )

j=0

l−i

∑
i=0

l−1

∑ Γ f

−2 k

cl ,k
q dk ,m

q

k=m

l

∑
m=max( i+ j ,i+1)

l

∑⎡

⎣
⎢ A(q, m, i, j)− Γ f

−2 k

cm,k
q dk ,i

q

k=i

m

∑
m=i

min( l−1,l− j )

∑ Γ f

−2 t

cr ,t
0 dt , j

0

t= j

r

∑ A(q, l, m, r)
r= j

l−m

∑ ⎤

⎦
⎥

=
e− ĵqθ f Γ f

−(q+2)

Z0,0
( f )π

I(q + 2i,q)( f ) Z
2 j ,0

( f )

j=0

l−i

∑
i=0

l−1

∑ T (Γ f ,q, l, i, j),

  (A25) 

where 

  
T (Γ f ,q, l, i, j) = Γ f

−2 k

cl ,k
q dk ,m

q A(q, m, i, j)
k=m

l

∑
m=max( i+ j ,i+1)

l

∑ − Γ f

−2 k

cm,k
q dk ,i

q

k=i

m

∑
m=i

min( l−1,l− j )

∑ Γ f

−2 t

cr ,t
0 dt , j

0

t= j

r

∑ A(q, l, m, r)
r= j

l−m

∑ .      (A26) 

For j ≥ 1, (A26) becomes 

  
T (Γ f ,q, l, i, j) = Γ f

−2 k

cl ,k
q dk ,m

q A(q, m, i, j)
k=m

l

∑
m=i+ j

l

∑ − Γ f

−2 k

cm,k
q dk ,i

q

k=i

m

∑
m=i

l− j

∑ Γ f

−2 t

cr ,t
0 dt , j

0

t= j

r

∑ A(q, l, m, r)
r= j

l−m

∑ .                      (A27) 

For j = 0, (A26) becomes 
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T (Γ f ,q, l, i,0) = Γ f

−2 k

cl ,k
q dk ,m

q A(q, m, i,0)
k=m

l

∑
m=i+1

l

∑ − Γ f

−2 k

cm,k
q dk ,i

q

k=i

m

∑
m=i

l−1

∑ Γ f

−2 t

cr ,t
0 dt ,0

0

t=0

r

∑ A(q, l, m, r)
r=0

l−m

∑

                      = Γ f

−2 k

cl ,k
q dk ,m

q A(q, m, i,0)
k=m

l

∑
m=i

l

∑ − Γ f

−2 k

cm,k
q dk ,i

q

k=i

m

∑
m=i

l

∑ Γ f

−2 t

cr ,t
0 dt ,0

0

t=0

r

∑ A(q, l, m, r)
r=0

l−m

∑ .
        (A28) 

Thus, (A26) can be rewritten as 

  

T (Γ f ,q, l, i, j)

= Γ f

−2 k

cl ,k
q dk ,m

q A(q, m, i, j)
k=m

l

∑
m=i+ j

l

∑ − Γ f

−2 k

cm,k
q dk ,i

q

k=i

m

∑
m=i

l− j

∑ Γ f

−2 t

cr ,t
0 dt , j

0

t= j

r

∑ A(q, l, m, r)
r= j

l−m

∑

= Γ f
−2k cl ,k

q dk ,m
q A(q, m, i, j)

m=i+ j

k

∑
k=i+ j

l

∑ − Γ f
−2k cm,k

q dk ,i
q

m=k

l− j

∑
k=i

l− j

∑ Γ f
−2tcr ,t

0 dt , j
0

r=t

l−m

∑ A(q, l, m, r)
t= j

l−m

∑

= Γ f
−2k cl ,k

q dk ,m
q A(q, m, i, j)

m=i+ j

k

∑
k=i+ j

l

∑ − Γ f
−2k Γ f

−2t cm,k
q dk ,i

q

m=k

l−t

∑ cr ,t
0 dt , j

0

r=t

l−m

∑ A(q, l, m, r)
t= j

l−k

∑
k=i

l− j

∑

= Γ f
−2u cl ,u

q du,m
q A(q, m, i, j)

m=i+ j

u

∑
u=i+ j

l

∑ − Γ−2u cm,i+v
q di+v ,i

q cr ,u−i−v
0 du−i−v , j

0

r=u−i−v

l−m

∑ A(q, l, m, r)
m=i+v

l−u+i+v

∑
v=0

u−( i+ j )

∑
u=i+ j

l

∑

= Γ f
−2u cl ,u

q du,m
q A(q, m, i, j)

m=i+ j

u

∑⎡
⎣
⎢

u=i+ j

l

∑ − cm,i+v
q di+v ,i

q cr ,u−i−v
0 du−i−v , j

0

r=u−i−v

l−m

∑ A(q, l, m, r)
m=i+v

l−u+i+v

∑
v=0

u−( i+ j )

∑ ⎤

⎦
⎥

= Γ f
−2uT1(q, l, i, j,u)

u=i+ j

l

∑ ,

    (A29) 

where 

  
T1(q, l, i, j,u) = cl ,u

q du,m
q A(q, m, i, j)

m=i+ j

u

∑ − cm,i+v
q di+v ,i

q cr ,u−i−v
0 du−i−v , j

0

r=u−i−v

l−m

∑ A(q, l, m, r)
m=i+v

l−u+i+v

∑
v=0

u−( i+ j )

∑ .           (A30) 

By using (19) and the identity  (A30) can be written as 

  

T1(q, l, i, j,u)

= cl ,u
q du,m

q q + k
q + n

⎛
⎝⎜

⎞
⎠⎟n=i

k− j

∑
k=i+ j

m

∑ k
n

⎛
⎝⎜

⎞
⎠⎟

cm,k
q dn,i

q dk−n, j
0

m=i+ j

u

∑ − cm,i+v
q di+v ,i

q cr ,u−i−v
0 du−i−v , j

0

r=u−i−v

l−m

∑
m=i+v

l−u+i+v

∑
v=0

u−( i+ j )

∑ q + k
q + n

⎛
⎝⎜

⎞
⎠⎟n=m

k−r

∑
k=m+r

l

∑ k
n

⎛
⎝⎜

⎞
⎠⎟

cl ,k
q dn,m

q dk−n,r
0

= cl ,u
q q + k

q + n
⎛
⎝⎜

⎞
⎠⎟n=i

k− j

∑ k
n

⎛
⎝⎜

⎞
⎠⎟

dn,i
q dk−n, j

0 du,m
q cm,k

q

m=k

u

∑⎡
⎣
⎢

⎤

⎦
⎥

k=i+ j

u

∑ −
q + k
q + n

⎛
⎝⎜

⎞
⎠⎟n=m

k−r

∑
r=u−i−v

k−m

∑ k
n

⎛
⎝⎜

⎞
⎠⎟k=m+u−i−v

l

∑
m=i+v

l−u+i+v

∑
v=0

u−( i+ j )

∑ cl ,k
q dn,m

q dk−n,r
0 cm,i+v

q di+v ,i
q cr ,u−i−v

0 du−i−v , j
0

=
q + u
q + n

⎛
⎝⎜

⎞
⎠⎟n=i

u− j

∑ u
n

⎛
⎝⎜

⎞
⎠⎟

cl ,u
q dn,i

q du−n, j
0 −

q + k
q + n

⎛
⎝⎜

⎞
⎠⎟

k
n

⎛
⎝⎜

⎞
⎠⎟n=i+v

k−u+i+v

∑
k=u

l

∑
v=0

u−( i+ j )

∑ cl ,k
q di+v ,i

q du−i−v , j
0 dn,m

q cm,i+v
q

m=i+v

n

∑⎡
⎣
⎢

⎤

⎦
⎥ dk−n,r

0 cr ,u−i−v
0

r=u−i−v

k−n

∑⎡

⎣
⎢

⎤

⎦
⎥

=
q + u
q + n

⎛
⎝⎜

⎞
⎠⎟n=i

u− j

∑ u
n

⎛
⎝⎜

⎞
⎠⎟

cl ,u
q dn,i

q du−n, j
0 −

q + k
q + n

⎛
⎝⎜

⎞
⎠⎟

k
n

⎛
⎝⎜

⎞
⎠⎟n=i+v

k−u+i+v

∑
k=u

l

∑
v=0

u−( i+ j )

∑ cl ,k
q di+v ,i

q du−i−v , j
0 dn,m

q cm,i+v
q

m=i+v

n

∑⎡
⎣
⎢

⎤

⎦
⎥ dk−n,r

0 cr ,u−i−v
0

r=u−i−v

k−n

∑⎡

⎣
⎢

⎤

⎦
⎥

=
q + u
q + n

⎛
⎝⎜

⎞
⎠⎟n=i

u− j

∑ u
n

⎛
⎝⎜

⎞
⎠⎟

cl ,u
q dn,i

q du−n, j
0 −

q + u
q + i + v

⎛
⎝⎜

⎞
⎠⎟

u
i + v

⎛
⎝⎜

⎞
⎠⎟

cl ,u
q di+v ,i

q du−i−v , j
0

v=0

u−( i+ j )

∑

   

  

=
q + u

q + n + i
⎛
⎝⎜

⎞
⎠⎟n=0

u−i− j

∑ u
n + i

⎛
⎝⎜

⎞
⎠⎟

cl ,u
q dn+i,i

q du−n−i, j
0 −

q + u
q + n + i

⎛
⎝⎜

⎞
⎠⎟

u
n + i

⎛
⎝⎜

⎞
⎠⎟

cl ,u
q dn+i,i

q du−n−i, j
0

n=0

u−i− j

∑
= 0.

                                                            (A31) 

By combining (A25), (A29) and (A31), we deduce . By Lemma 3, CL(q+2l, q)(f) is invariant to 

image scaling and rotation, thus, SI(q+2l, q)(f) is also invariant to image scaling and rotation. 
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The proof has been completed.                                                                                                                                                   � 

APPENDIX B (LIST OF ZERNIKE MOMENT BLUR INVARIANTS UP TO THE SIXTH ORDER) 

 Zero order 

 

 First order 

  
I(1,1) = Z1,1

 

 Second order 

 

 Third order 

  

I(3,1) = Z3,1 − 6I(1,1) − 2I(1,1)Z2,0 Z0,0

I(3,3) = Z3,3

 

 Fourth order 

  

I(4,2) = Z4,2 −10I(2,2) −10 I(2,2)Z2,0 (3Z0,0 )

I(4,4) = Z4,4

 

 Fifth order 

  

I(5,1) = Z5,1 − 54I(1,1) −15I(3,1) − 23I(1,1)Z2,0 + 3I(1,1)Z4,0 + 5I(3,1)Z2,0
⎡⎣ ⎤⎦ Z0,0

I(5,3) = Z5,3 −15I(3,3) − 5 I(3,3)Z2,0 Z0,0

I(5,5) = Z5,5

 

 Sixth order 

  

I(6,2) = Z6,2 −105I(2,2) − 21I(4,2) − 140 I(2,2)Z2,0 3+ 7I(2,2)Z4,0 + 7I(4,2)Z2,0
⎡⎣ ⎤⎦ Z0,0

I(6,4) = Z6,4 − 21I(4,4) − 7 I(4,4)Z2,0 Z0,0

I(6,6) = Z6,6

 

APPENDIX C (LIST OF ZERNIKE MOMENT COMBINED INVARIANTS UP TO THE SIXTH ORDER) 

 Second order 

  

SI(2,0) = −3Γ f
−2 I(0,0) + 3Γ f

−4 I(0,0) + Γ f
−4 I(2,0)

SI(2,2) = e−2 ĵθ f Γ f
−4 I(2,2)

 

 Third order 

  

SI(3,1) = e− ĵθ f Γ f
−5I(3,1)

SI(3,3) = e−3 ĵθ f Γ f
−5I(3,3)

 

 Fourth order 



 19 

  

SI(4,0) = 5Γ f
−2 I(0,0) −15Γ f

−4 I(0,0) +10Γ f
−6 I(0,0) − 5Γ f

−4 I(2,0) + 5Γ f
−6 I(2,0) + Γ f

−6 I(4,0)

SI(4,2) = e−2 ĵθ f −5Γ f
−4 I(2,2) + 5Γ f

−6 I(2,2) + Γ f
−6 I(4,2)⎡⎣ ⎤⎦

SI(4,4) = e−4 ĵθ f Γ f
−6 I(4,4)

 

 Fifth order 

  

SI(5,1) = e− ĵθ f −6Γ f
−5I(3,1) + 6Γ f

−7 I(3,1) + Γ f
−7 I(5,1)⎡⎣ ⎤⎦

SI(5,3) = e−3 ĵθ f −6Γ f
−5I(3,3) + 6Γ f

−7 I(3,3) + Γ f
−7 I(5,3)⎡⎣ ⎤⎦

SI(5,5) = e−5 ĵθ f Γ f
−7 I(5,5)

 

 Sixth order 

  

SI(6,0) = −7Γ f
−2 I(0,0) + 42Γ f

−4 I(0,0) − 70Γ f
−6 I(0,0) + 35Γ f

−8 I(0,0) +14Γ f
−4 I(2,0) − 35Γ f

−6 I(2,0) + 21Γ f
−8 I(2,0)

              − 7Γ f
−6 I(4,0) + 7Γ f

−8 I(4,0) + Γ f
−8 I(6,0)

SI(6,2) = e−2 ĵθ f 14Γ f
−4 I(2,2) − 35Γ f

−6 I(2,2) + 21Γ f
−8 I(2,2) − 7Γ f

−6 I(4,2) + 7Γ f
−8 I(4,2) + Γ f

−8 I(6,2)⎡⎣ ⎤⎦
SI(6,4) = e−4 ĵθ f −7Γ f

−6 I(4,4) + 7Γ f
−8 I(4,4) + Γ f

−8 I(6,4)⎡⎣ ⎤⎦
SI(6,6) = e−6 ĵθ f Γ f

−8 I(6,6)
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Fig. 1. Eighteen objects selected from a butterfly database 
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Fig. 2. The mean relative errors of our combined invariants ZMIs for different rotated and blurred versions of the images shown in Fig. 1. 
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Fig. 3. The mean relative errors of our combined invariants ZMIs for different scaled and blurred versions of the images shown in Fig. 1. 

 
 

 

(a) original butterfly 
image 

 
(b) Δx = -5, 

Δy = 7, λ = 0.5, θ = 
300, average blur 

with k=7 

 
(c)  Δx = -5, 

Δy = 7, λ = 0.75, θ 
= 1500, disk  blur 

with k= 31 

 
(d) Δx = -5, 

Δy = 7, λ = 1.0,  
θ = 600,  disk blur 

with k = 19 

 
(e) Δx = -5, Δy = 7, 

λ = 1.25, θ = 300, Gaussian blur 
with STD=2 and k= 7 

 
(f)  Δx = 5, Δy = 7, λ = 1.5, 
θ = 3300, Gaussian blur with 

STD=1 and k= 5 

 
(g) Δx = 5, Δy = 7, λ = 1.75, 
θ = 3000,  average blur with k = 3 

 
(h) Δx = 5, Δy = 7, λ = 2.0, 

θ = 900, average blur with k = 13 
Fig. 4. The similarity transformed and blurred images of Fig. 1(a) (Δx is the translation (in pixel) along the x-axis, Δy the 

translation along the y-axis, λ the scaling factor, θ the rotation angle, k × k is the mask size) 
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Fig. 5. The mean relative errors of CMIs, LMIs and ZMIs for different blurred versions of the images shown in Fig. 1. 

 

 average blur with 
mask size 15 × 15 

disk blur with mask 
size 11 × 11 

disk blur with mask 
size 19 × 19 

Gaussian blur with 
STD=1 and mask size 
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STD=2 and mask size 
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Noise-free 

     

Gaussian 
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Fig. 6. Examples of image with different blur, different mask sizes and different noises (δ is the STD of Gaussian noise , p is the density of 
salt-and-pepper noise） 
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Fig. 7. The mean classification rates (%) of the LMIs, CMIs and the proposed ZMIs in object recognition for different moment orders 

 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 8. Images of the outdoor scene. (a) The original image, (b) The transformed and blurred image, (c) The matched templates using 
CMIs, (d) The matched templates using the proposed ZMIs 

 
 

Table 1. The invariants of images showed in Fig. 4 
 Fig.4(a) Fig.4(b) Fig.4(c) Fig.4(d) Fig.4(e) Fig.4(f) Fig.4(g) Fig.4(h) 

 6.95e-03 6.95e-03 6.97e-03 6.96e-03 6.95e-03 6.94e-03 6.95e-03 6.95e-03 
 2.72e-04 2.70e-04 2.76e-04 2.73e-04 2.71e-04 2.72e-04 2.71e-04 2.71e-04 
 5.87e-04 5.88e-04 5.90e-04 5.88e-04 5.87e-04 5.88e-04 5.87e-04 5.87e-04 
 3.51e-02 3.51e-02 3.52e-02 3.51e-02 3.51e-02 3.51e-02 3.51e-02 3.51e-02 
 3.58e-05 3.59e-05 3.49e-05 3.56e-05 3.57e-05 3.58e-05 3.58e-05 3.58e-05 
 1.66e-03 1.65e-03 1.69e-03 1.67e-03 1.66e-03 1.66e-03 1.66e-03 1.66e-03 
 3.57e-03 3.57e-03 3.58e-03 3.57e-03 3.56e-03 3.57e-03 3.56e-03 3.57e-03 
 9.92e-06 9.96e-06 9.93e-06 9.93e-06 9.93e-06 9.92e-06 9.92e-06 9.92e-06 
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Table 2. The classification rates (%) of the LMIs, CMIs and the proposed ZMIs in object recognition with the optimal value of M 
 

 CMIs LMIs ZMIs 
Noise-free 98.77 99.07 99.85 

Gaussian noise with STD = 16 97.38 97.84 98.92 
Gaussian noise with STD = 25 93.83 96.91 97.84 
Gaussian noise with STD = 36 81.48 92.44 94.60 
Gaussian noise with STD = 49 63.12 81.64 85.80 
Gaussian noise with STD = 64 48.30 66.98 76.08 

Salt-and-pepper noise with noise 
density = 1% 97.84 98.61 99.69 

Salt-and-pepper noise with noise 
density = 3% 96.45 96.91 97.84 

Salt-and-pepper noise with noise 
density = 5% 87.04 93.52 94.60 

Salt-and-pepper noise with noise 
density = 7% 81.02 88.58 91.05 

Salt-and-pepper noise with noise 
density = 9% 72.69 82.10 84.57 

Mean rate 83.45 90.42 92.80 
 


