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Abstract

The derivation of moment invariants has been extensively investigated in the past decades. In this paper, we construct a set of
invariants derived from Zernike moments which is simultaneously invariant to similarity transformation and to convolution with
circularly symmetric point spread function (PSF). Two main contributions are provided: the theoretical framework for deriving the
Zernike moments of a blurred image and the way to construct the combined geometric-blur invariants. The performance of the
proposed descriptorsis evaluated with various PSFs and similarity transformations. The comparison of the proposed method with the
existing ones is also provided in terms of pattern recognition accuracy, template matching and robustness to noise. Experimental
results show that the proposed descriptor s perform on the overall better.

Author Keywor ds zerike moments ; circularly symmetric blur ; combined invariants ; pattern recognition ; template matching.

INTRODUCTION

Recognition of objects whatever their position, size and orientation is an important concern. In the past decades, many techniques
including moment invariants [1 ][5 ], Fourier descriptors [6 ] and point set invariants [7 1-[10 ] have been reported in the literature. Among
them, moment invariants have been extensively used for image description in object recognition [11 ], [12 ], image classification [13 ] and
scene matching [14 ]. However, much less attention has been paid to invariants with respect to changes of the image intensity function
(known as radiometric invariants) as to joint radiometric-geometric invariants.

Since real sensing systems are usually imperfect and environmental conditions are changing during the acquisition, the observed
images often provide a degraded version of the true scene. Image blurring is an important class of degradations we have to face in practice
due to the camera defocus, atmospheric turbulence, vibrations, and by sensor or scene motion [15 ]. Blurring can be usually described by a
convolution of an unknown original image with a space invariant point spread function (PSF). A conventional way to carry out blur object
recognition isfirst to deblur the image, and then to apply the recognition methods [16 ]-[21 ]. Unfortunately, the blind image deconvolution
isan ill-posed problem. Moreover, the deconvolution process may introduce new artifacts to the image. To avoid these disadvantages, it is
of great importance to find a set of invariants that is not affected by blurring. Thisis the objective of this paper.

The first paper on this subject was reported by Flusser and Suk [15 ] who derived invariants to convolution with an arbitrary
centrosymmetric PSF. These invariants have been successfully used in pattern recognition [22 ]-[25 ], in blurred digit and character
recognition [26 ], [27 ], in medical image registration [28 ], and in focus/defocus quantitative measurement [29 ]. Other sets of blur
invariants have been derived for some particular kinds of PSF like the axisymmetric blur invariants [30 ] and motion blur invariants [31 ], [
32 ]. More recently, Flusser and Zitova introduced the combined blur-rotation invariants [33 ] and applied them to satellite image
registration [34 ] and camera motion estimation [35 ]. Zhang et al. [36 ] proposed a method to get a set of affine-blur invariants. However,
in their approach, the affine invariance is achieved through a normalization process. Suk and Flusser derived explicitly a set of combined
invariants with respect to affine transform and to blur [37 ]. These blur invariants have been further extended to N -dimensions in
continuous case [38 ] as well asin discrete form [39 ]. The above mentioned methods are mainly based on geometric or complex moments.
The resulting invariants have information redundancy and are more sensitive to noise.

We [40 ] have recently proposed an approach based on the orthogonal Legendre moments to derive a set of blur invariants, and we
have shown that they are more robust to noise and have better discriminative power than the existing methods. However, as pointed out in
[40 ], one weak point of Legendre moment descriptors is that they are only invariant to translation, but not invariant under image rotation
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and scaling. Zhu et a. [41 ] and Ji and Zhu [42 ] proposed the use of the Zernike moments to construct a set of combined blur-rotation
invariants. Unfortunately, there are two limitations to their methods: (1) Only the Gaussian blur has been taken into account, which is a
specia case of PSF having circularly symmetry; (2) Only a subset of Zernike moments of order p with repetition p, Zy o has been used in
the derivation of invariants. Since Z,, |, corresponds to the radial moment D,  or the complex moment C, p if neglecting the normalization
factor, the set of invariants constructed by Zhu et al. is a subset of that proposed by Flusser [43].

In this paper, we propose a new method to derive a set of combined geometric-blur invariants based on orthogonal Zernike moments.
We further assume that the applied PSF is circularly symmetric. The reasons for such a choice of PSF are asfollows [43 ]: (1) The majority
of the PSFs occurring in real situations exhibit a circular symmetry; (2) Since the PSFs having circular symmetry are a subset of
centrosymmetric functions, it could be expected that we can derive some new invariants. In fact, the previously reported convolution
invariants with centrosymmetric PSF include only the odd order moments. Flusser and Zitova [43 ] have shown that there exist even order
moment invariants with circularly symmetric PSF.

The organization of this paper is as follows. In Section |1, some preliminaries about the radial moments, Zernike moments and image
blurring are given. In Section |11, we first establish a relationship between the Zernike moments of the blurred image and those of the
original image and the PSF, and we then explain how to construct a set of blur invariants and joint radiometric-geometric invariants.
Experimental results on the proposed descriptors performance are provided in Section V. Section V concludes the paper.

Preliminaries

This section presents the definition of radial and Zernike moments, and reviews the concept of image blurring. The radial moment of
order p with repetition g of image intensity functionf (r, 8 ) isdefined as[44 ]

2l

i =ffrpe—3mﬁf(h Ordrdd, J=y-1,0=sr=<1p=0g=0=+1 +2 .
oo

The Zernike moment of order p with repetition q off (r, 8 ) isdefined as[44 ]

2wl
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where Roq (r) isthereal-valued radia polynomial given by
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Equation (3) points out that the radial polynomial Roq (r) is symmetric with q, that is, R, q(r ) = pq(r) for q 2 0. Thus, we can
consider the casewhereq = 0. Letting p=q+2l in (3) with| 2 0, and substituting it into (2 ) yields
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Let f' be arotated version of f ,i.e. f' (r,0) =f (r,6 - B ), where B is the angle of rotation, and let 2824 be the Zernike moments of ' . It

can be easily seen from (2) that

z0 .~ Q—,?qﬁziﬂzm

gtalg =

Let g (x,y ) beablurred version of the original image f (x, y ), under the condition that of imaging system being linear shift-invariant,
the blurring can be usually described by the convolution

gix VI=(f * hi(x, v}

whereh (x, y) isthe PSF of the imaging system, and *denotes the linear convolution.

In this paper, we assume that the PSF, h (x , y ), is a circularly symmetric image function, and that the imaging system is
energy-preserving, which leads to,

h(x V)= hir, 8)= h(r}
[J e yidxay = 1.

Under the assumption of (8), the Zernike moments of h (r , 8) equal those of any rotated image h' . Combining this fact with (6 ), we
get

) _
q+21q =7 Ca S e—.rqlifﬁzq

Equation (10) is verified if and only if either Zga=0 or g = 0. Thus, an important property of circularly symmetric functions can be
stated as follows.
Proposition 1
Ifq=0andh(r,8)isacircularly symmetric image function, then Z&a= for any non-negative integer | .
Method
Zernike Moments of the Blurred Image

In this subsection, we establish the relationship between the Zernike moments of the blurred image and those of the original image and
the PSF. To that end, we first consider the radial moments. Applying (1) to blurred image g (x, y ), we have

g 18
2
E-EI

g+ a K
(X — Jyll (X+ 1) gix, Yidxdy

g+ A o
x=7) (x+ J}ﬁf | ha biftx—a y- b}ldadb}dxdy
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é=—=8 el

g k
hia bl[jn [(x=Ty)+@=]Jb) ((x+Jy)+(a+]b) fix Vidxdyldadb

M o g+k—m —
Z } ‘HF‘“ILII Jx- M)+ ) Fooviaxay | [a-38"  ta+ib)  ha bdadb
?’H:' v ——0d

§ + kK
Z wlq | |D[?]i:j?-H’f,???-an+2k—m—nq+n—m

Applying (4 ) to blurred image g (x , y ) =g (r, 8 ) and using (11), we obtain

+ KK
t?+23t? Zfilq | |': Wﬂm‘nﬁiﬂc—wnmn—m

k=0rm=0n=0

From (4 ), the radial moments can also be expressed as a series of Zernike moments
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f
D qr2lg = id q'+2kq

where D=0 0<j<is<|,istheinverse matrix of & =(c}). Both Ci and D! are lower triangular matrices of size (I +1) x (I +1), the
elements of G/ are given by (5). The elements of D) are given by [451]

g+l
—JMg+i+j+ 1

q
From (13 ), we have

D:??Hrgm—n _i dm_ngm—m—ﬁ m-n

D( ydmn—m
g2k ghrem T h=rJ q+n-—m+2; gH=m

By introducing (15) and (16 ) into (12 ), we obtain

+ ki -
q+21q Zfiiqu | | ndgi-m_ Z{r];g—HEiHPnZ(ﬁn—wziw:—m

k=0m=0r=0i=0 =0
Based on (17 ), we have the following theorem.
Theorem 1

Letf (r, 6 ) bethe origina image function and the PSF h (r , 8 ) be circularly symmetric, g (r , ) be ablurred version of f (r, 8 ), then
the following relation

q+21q zzqﬂ-ﬁq ZRAlg, L, j)

stands for any g =2 0 and | 2 O, where the coefficients A (g, 1 ,i,j ) are given by
i k=j
© o4 q +k k g 49 L0
alin= E Zlqmlnl KAnidli
k=Hjn=i
Proof

For circularly symmetric function h (r, 6 ), using Proposition 1, we have Zgtnemezsamm=0 jf g +n-m# 0, thus, (17 ) can be simplified as

§ 5 § a+kL
-
Q+RL
= Z5) Z Z | | dnicte-
Z' qz k=i+ n:i'fH_FE i ke

The proof has been completed.
Blur Invariants of Zernike Moments

Based on Theorem 1, it becomes possible to construct a set of blur invariants of Zernike moments which is described in the following
theorem.

Theorem 2

Letf (r, 8) be animage function. Let us define the following function | (f): NxN-R
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1
Ig+2 g =20, -
a+dg Zg}ﬁ
=0

i
Iig+2i, q}l‘ﬂz ZEoAg 1 i )
=0

Then, | (q+2!, q)(isinvariant to circularly symmetric blur for any q = 0 and | = 0. The number p = g +2| is called the order of the
invariant.

The proof of Theorem 2 isgivenin Appendix A . Some remarks deserve to be made.
Remark 1

By using the symmetric property of R, , () with g, it can be easily proven that | (|q | +2I , q) (f)for g < 0is aso invariant to
convolution.

Remark 2
It can be deduced from (20 ) that 12 0" =(~ 22+ 125 Thus, only 140" =Z& will be used asinvariant for the case g = 0.
Remark 3

If we use the Zernike central moments Zi. instead of Zernike momentsin (20 ), then we can obtain a set of invariants1 (q + 2! ,q )(f)
that isinvariant to both trandlation and to blur.

Based on Theorem 2, we can construct a set of blur invariants of Zernike moments with arbitrary order and express them in explicit
form. The invariants up to sixth order are listed in Appendix B .

Lemmal

Let f' be arotated version of f , i.e., f' (r,8 )=f (r,6-B ), where B denotes the rotation angle, then the following relation holds for any q =
Oand1 20

g+ 2L g = eGaslig+ 21 g
Proof
We demonstrate this lemma by induction about |. The proof istrivia for | = 0. Assume that the assertion istrue for 1, 2, ..., | =1, then
using (6 ), we get
lg+2, g
-1 -1
= Zinq ﬂ%ng lq+2i qu‘ﬂZ Z8oAG, 11, )
0 iy =0
-1 i
=izl =) edalig+2igP) ZDAg i
.lq éﬂn B _ 4
=0 J=0

= e-JaBl(g+ 21 )"

The proof is thus completed
Lemma 2
Letf (r, ) beanimage function. It holdsfor any q= 0 and | = O that
Ig+2 -g"="rg+21q"
where the superscript * denotes the complex conjugate.

The proof of Lemma 2 isvery similar to that of Lemma 1 and it is thus omitted.

Combined Invariants of Zernike Moments
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In this subsection, we construct a set of combined geometric-blur invariants. As we have already stated, the tranglation invariance can
be achieved by using the central Zernike moments. Equation (21) shows that the magnitude of 1 (q +21 , g )() is invariant to rotation.
However, as indicated by Flusser [33 ], the magnitudes do not yield a complete set of the invariants. Herein, we provide away to build up
such aset. Let f” and f be two images having the same content but distinct orientation () and scale (A ), that is, f" (r ,0 ) = f (r/A ,6-B ), the
Zernike moment of the transformed image is given by

2wl
2wl

ciapt 3 £ nggm(ﬁr)e‘j PF(r, Ordr de.

Using (4) and (13 ), we have
1
il Z A2 _g 1)
szz,q— eap) A ¢ Dhora

_ gH2k+2 g 49 fl
= g-Jap Z A Cz,kdk,mjwzmq

_ 3 &2 g

Q_MZ X -\ G, kdi'r,mztﬂmq
Therefore, we have the following theorem:

Theorem 3
Let

: ~@t3H2) . 4 AT)
Lq+21 g= €4 q”rz i Ly Coe "ji'-:,mzl: F+2ma

m=0k=m
with 8r=ar (Z) and 1=y Then Loza isinvariant to both image rotation and scaling for any non-negative integersq and | .

The proof of Theorem 3isgivenin Appendix A .
Remark 4

Many other choices of 6; and I" ; are possible. In fact, they can be chosenin suchaway that I = AT ,8;»= 6; - p wheref” (r,0) =f (r/

A ,0 - B) isthe transformed image of f . However, it is preferable to use the lower order moments because they are less sensitive to noise
than the higher order ones[46 ]. If the central moments are used, 6; can be chosen as % = arz 4,

Theorem 4

Foranyq=0and| =0, let

Slig+2l g —g—mﬂiif“wm 1Ay llq+2m, q

m=li=m
where | (g+2m, q)(f)isdefined in (20 ). Then, SI (q+2I , q){") is both invariant to convolution and to image scaling and rotation.
The proof is given in appendix A . For simplicity, the invariants defined in (26 ) are hereafter denoted by ZMls. The combined invariants
up to sixth order are listed in Appendix C .

Experimental Results

The following experiments illustrate the invariance of our ZMls to various PSFs and similarity transformation, as its robustness to
different kinds of noise. Comparison with existing methods in terms of recognition accuracy and template matching is also provided.

Let St=(s1n p=2x|5] 51t p+2- 24| . sip) for P2 0, where SI (p, q ) is defined in (26 ) and | x ; denotes the nearest integers not
greater thanx , andlet1 (p) = (Sl 4, Sl 4, ..., Slp). The relative error between the two moment invariant vectors corresponding to an image
f and itstransformed version g is computed by
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~=(f] =(d)
| (p) =1 (p)|
Edf, 9=
117w

where ||.|| is Euclidean norm in L 2 space.
Test of Invariance

For this experiment, a set of eighteen butterfly images shown in Fig. 1, whose size is 128 x 128, has been chosen from the public
Butterfly database [47 ] as the original images. In order to evaluate the invariance with respect to rotation and blurring, these images were
rotated by different angles from 0° to 90° every 5°, and a bilinear interpolation was used when required. Then, the normalized uniform disk
blur with different sizesfrom 1 x 1 (no blurring) to 31 x 31 with interval 2 (sixteen masks in total) was applied to every rotated image. So,
the actual size of the blurred images in the experiments of this subsection is 212 x 212. Note that the original images have been zero
padded to meet the actua size in order to avoid the boundary effect. Both the original images and the blurred images are then mapped
inside the unit circle, and the Zernike moments are computed with the method reported in [48 ]. The combined rotation-blur invariants
ZMIs defined in (26 ) of order up to p = 5 were computed for all 5472 images. The relative errors of ZMls between each transformed
image and its original image were computed using (27 ). Fig. 2 shows the mean values of E (f,.9,) wheref; (i = 1, 2, ..., 18) denotes the
images shown in Fig. 1 (8)—(r) . It can be seen that they are very low (less than 0.0035). The mean relative error reaches its maximal value
at the angle B = 45° due to the interpolation effect. The maximal value of the standard deviation (STD) is equal to 0.0035. We then tested
the combined scale-blur invariance. Eighteen images were blurred with the same masks, and then were scaled by a factor varying from 0.5
to 2 with interval 0.1, forming a set of 4608 images. Fig. 3 shows the mean values of the relative errors E (f,.g) (i=12 .., 18) (the
maximal value of the standard deviation is 0.0043). It can be observed from Figs. 2 and 3 that the errors caused by blurring and similarity
transformation are very small (less than 0.006).

In the second experiment, the image shown in Fig. 1 (a) was convoluted with various PSFs and undergone similarity transformation
including trandlation, scaling and rotation (Fig. 4 ). The proposed ZMIs defined in (26 ) of order p from 2 to 5 were calculated for each
image (the central Zernike moments were used in this experiment, and the moment invariants of order 0 and 1 were respectively used to
achieve the scale invariance and translation invariance). Table 1 depicts the invariant values. From this table, it can be seen that excellent
results have been obtained whatever the similarity transformation and image degradation.

We also compared our ZMIs with the complex moment invariants (CMIs) reported in [43 ] and the Legendre moment invariants
(LMls) presented in [40 ] in terms of blur invariance. This is because these methods have different behavior regarding to similarity
transformation: LMIs are invariant to translation only and CMIs are invariant to rotation and scaling. We do not include Zhu's method in
this comparison due to the fact that the set of invariants derived in [41 ], [42] is a subset of both CMIs and ZMls. Eighteen images were
degraded by the normalized uniform disk blur with sixteen different sizesfrom 1 x 1 to 31 x 31. Three types of blur invariants of order up
to p = 5 are calculated for the set of 288 images. The mean values of the relative errors E (f,.g;) (i=1,2 ..., 18) for CMIs, LMIs and
ZMlsaredepicted in Fig. 5. It is clear that the errors increase significantly with the size of the mask going up and our ZMl s behave better
than the two other types blur invariants.

Classification Results

In this evaluation, we also use the images shown in Fig. 1 . The testing set was generated by adding disk blur, averaging blur and
Gaussian blur with zero-mean and STD = 1,2. The mask with sizes3x 3,5x 5,7 x 7, ..., 17 x 17, 19 x 19 pixels has been used, forming a
set of 648 images. This was followed by adding a white Gaussian noise with different standard deviations and salt-and-pepper noise with
different noise densities. Because the actual size of the PSF is usually unknown in practical application, in order to evaluate the
performance of the different methods under such a situation, we take the size of the blurred image equal to the original image one (128 x
128) instead of its actual size (146 x 146) in this experiment even if the size of the mask is given. In that case, the boundary effect is then
present. Fig. 6 shows some examples of the blurred and corrupted images. The Lance-Williams distance is used here as the classification
measure. This distance between the two images f and g is defined by their moment invariant vectors 7" =uf. 14, 1) and 7° =021, 1) as

i ]
i i
dif, 9= ”f;‘r;ﬂ
I +r'8)
=1

where 7, j=1,2,...,n, denote the blur invariants, n is the total number of invariants used in the experiment and |x | the magnitude of
the complex number x .

We have computed the ZMls, CMIs and LMIsup to order M = 1, 3, ..., 15, 17. The mean classification rates under different noise
conditions for different values of M are shown in Fig. 7 . It can be observed that the rate first increases, reaches the maximum value and
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then decreases for all three methods. In other words, there should exist an optimal order for each type of moment invariants. This
behaviour has also been observed and pointed out by Liao and Pawlak in image reconstruction due to the noise influence [49 ]. In this
experiment, the optimal order for CMIsis M = 7 (the feature vector includes 17 invariants), M = 7 for LMIs (the feature vector has 21
invariants), and M = 9 for ZMls (with 26 invariants). Table 2 shows the detailed classification rates using the different moment invariants
with the optimal order. One can see from this table that in the noise-free scenario the recognition results are quite good whatever the
method. The classification rates remain high for low and moderate noise levels but decrease significantly when the noise level goes up.
However, the proposed descriptors ZMIs perform better than other methods (all the rates are higher than 75%) whatever the noise and the
noise level. Although this conclusion is drawn from only one experiment, it is in accordance with that reported in [50 ] where the authors
pointed out that the Zernike moments have on overall better performance than other moments.

Template Matching

The objective of this additional test is to evaluate the performance of our descriptors in the case of localizing templates within a real
outdoor scene image that has undergone similarity transformation and out-of-focus blur. For that purpose, two images were taken by
digital camera (Panasonic DMC-FZ50) with different focus and different positions by rotating the camera. Then, nine circular areas with
radius r = 10 pixels were extracted from Fig. 8 (a) to serve as templates (numbered from 1 to 9). The scale factor between two images is
obtained with the automatic scale selection [51 ]. After that, the scaled template was shifted across the transformed and blurred image (Fig.
8 (b) ). At each position, the invariants were calculated and compared with the invariants of the original template. For more detail about
the matching procedure, we refer to Ref. [22].

Each moment descriptors with the optimal order obtained in the previous experiment (M = 9 for ZMIsand M = 7 for CMIs) have been
used here. Note that we did not test LMIs because they are not invariant with respect to image rotation and scaling. The ‘matching position’
we consider corresponds to the location where the Lance-Williams distance d (f, g ) reaches the minimum value, with f representing the
template of the original image and g the template of the transformed and blurred image. The matching results that have been obtained
based on these different moment invariants are summarized in Fig. 8 (c) and (d) . It can be seen that the proposed descriptors ZMIs match
correctly for al nine templates and that it is not the case for CMs.

Conclusions

In this paper, we have proposed a method to construct a set of combined geometric-blur invariants using the orthogonal Zernike
moments. The relationship between the Zernike moments of the blurred image and those of the original image and the PSF has been
established. Based on this relationship, a set of invariants to convolution with circularly symmetric PSF has been derived. The advantages
of the proposed method over the existing ones are the following: (1) The proposed descriptors are simultaneously invariant to similarity
transformation and to convolution. Using these invariants, the image deblurring and geometric normalization process can be well avoided;
(2) Like the method reported in [43 ], our method can also derive the even order invariants. The experiments conducted so far in very
distinct situations demonstrated that the proposed descriptors are more robust to noise and have better discriminative power than the
existing methods.

Appendix A
Proof of Theorem 2

We prove this theorem by mathematical induction about | .

For | =0, using (18), (19) and Z5= /™ it can be easily deduced from (20 ) that

Ig q\7=2Z%=28h=1q o
Assumethat Theorem lisvalidfor 1, 2, ..., | -1, then we get
-1 -

@ _ g

Ha+2, @~ Kq+2l 0 =(2%,~ 705 ) - zgin Ig+2; g ) |28 - Z8oJa@ 11, )

i=0 J=1

By using (18), we have
q+2!q Z‘ﬂzsz q+2:q Z(z};ﬂoﬂﬂ?:“ﬁ
i=0

Page 8/21
|EEE Trans Image Process . Author manuscript



Similarly,

= ZZ‘;@ZZ LA K T

Substitution of (A2) and (A3) into (A1) yields

-1 =i -1 -
L g/ - Ig+2 m‘ﬂ=z MQZZ‘ oA L1 J)- 25— ) G+ 2i qfﬂz ZZ‘koZZ bAQ J K rzl]m:
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By using the property 9= ! and 9=, (20 ) can be written as

1 i
20 e == Y Iq+2 ™) 290G 1 i j)
g+alg — EgEﬂT
© =0 J=0

Substitution of (A5) into (A4 ), we get

Itg+21 g - Iig+ 21 g'"

i—k I—i
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= f%HZ Itq+ 2 m‘ﬂZ z‘a"’,@Z ZE*EOE Alg i knAg L i j)
10 b g =0 =0 ikt
-1 1-1-i ik 1-i
- Z%Z Ig+2i, g Z‘zm Z@,@Z A0 J k NAG L1 )
op 7T i) = = as ke k1)
By shifting the indices in the above equation, we have
Ig+2L @' - Ig+2] g
-1 I-1-1 =i mnin(-11-&
=—=) Ig+2;,g” Z‘ﬂoz E‘E,OZ AlgripAglnk
IR gy =0 =0 b=itj
-1 I-1-i e I—i
- Z Itg+2i, g)'" Z‘QQZ E%Z AT j kKAg LT
0077 ;) =0 kD b Az k1)

1-1-i I-1-i I-i-j
z”% Z Ig+2i g Z Z9y)  ZHTa i gk
=0 =0 =

where
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minfi-11-k)

.
T lij k= D AlgrijAglnk- Zam r, J, KA(G 11 )
r=thj r=m ax( fHe A1

By using (19), we have
Alg 1 1 0)=A@Q J J 0

(A8) can thus be rewritten as

Tla L g, k)

-
—ZHﬂ @Ti0AG LT R-),  AQT i KAG LiT)
A sk +s‘ +m
)Z Z Z g+1‘ Sli ﬂjq+nlrr?| ?.-: ?’m’jnﬂwdﬂ—fkdm—m
?’=i+_j M=

s=rtk

m—
m FTE
(o, B (AP s
r—;ﬂzrn:ﬂzn:_j HN_Z Cf+l“ f F’! F’E ?’mdn —ir me-nk

o+ Mym
I M |dtr rmd?—tkd

1 ~k q_l_gls
I“{?+H

m-j La
Cq Zmﬁﬂz e Ef+l“

Z
b
Z* o A+ Sysymym,
-)

q = 0
. F_HZ c:a‘“Zm:ﬁ Iq [ LA N LY.

1 s—j—k =
q+s S| .::,r+m m
C“Z d”}* sz z q+1‘ \t! q+nlnld” ?’md?—rkdom—m

::*—r-l-,r+k =]

--*—,r -k ek
'i?+ Sy
r= =it

L.:'-'
F=H =i
By shifting the indices in the last part of the above equation, we get

Tglijk
l F—j—k —k ta m
_ q a q 5 '51' T
_Zs‘—i-l-ﬁ-lcc“zn:f di“t,i rﬁztrzn;:m_jz E?+T I- g+ RN I ¥ hj”’ i"ma‘g—tkdom—ru

! ==k
Q+Ssmm
q
Yy oy Y (171 O e
ZS_HH?, re it .gr+nn 1“ t [ Henrbrmbmrk Uy
1

=]

5—j—k
_ q q o0
—LW ca,..fZ,., . dmTia s 1K)

where

A+S(sid+mm q+ 5y smym|
el EZSDGH ﬂ?+ﬂ|ﬂ|d?r 13 Chreny SZE'QWH ol e 1t e,

F=rrhjme =t T KT T=]

By changing the order of summationin (A12), we have

S nJk
i?+5'sq+m'm 0 Q+Ssmm
=1 rﬂznh*w q+1‘" ”{‘_’r+ﬂlnldw rmdg_t’kdwm r—ﬁkz EH H'Hl rl nr rmdm—i
f =~k
q+ Sis r:,r+m G+S S m m )
-=n+.r‘zm=n+,r'|.'51r +f|| thg +F1 H ldHi‘-ﬁ m—m[zr—mdtrcrm Z zrn:t+k q +H H th tldom—”'fdod[zr—mdf-?

Page 10/21
|EEE Trans Image Process . Author manuscript



Since the lower triangular matrix Dl isthe inverse of the matrix €7, that is, DmCm=1, where | is the identity matrix, we have Stn-n Sint,
where 3, denotes the Kronecker symbol. Then, (A13) becomes

ko o] -k
. q+sys(g+tit q+Sisys— nys—n
Tl(q S 'E‘::IZZ |q+r|lr|q+ H“J:qld.?—tk i—rJ ZE . |q+ ﬂlﬂl _. |d2—n—ti'cd?J
=j !

=]

+n+t ki 4+ S avg — 1S — 1
s @ |”+*u#mma@—z (T*S)sys—ny

= g+n+tin+t g+n = g+ thnh ld-*‘-ﬂ-f
_ ZHH‘ @y 0 o _ZHH‘ gt 0 o
[ A T L L
=0.
Thus, T(q,l,i,j.k)=0and! (g+2,q)9-1(g+2,q)P=0.
The proof has been compl eted.
Proof of Theorem 3
Equation (24) can be written in amatrix form as
Ziq | Zha |
Z r q q+2 q-|-4 g2 Zf
24| = g-jaBC|diag(A™, AT, -, ATTDY| T a+ea
. f
Z 2, Zg+a
Applying (25) to the transformed image f” , it can aso be expressed in a matrix form as
]p.l.l i ]I._.l_l
Lag Zaq
f” f”
Lq“qu = gJ Cldiagl F—iq+3 F_iM : F—iq+22+2]:|D qu’zq
; #
Lq+2i!, EEH-EL
Based on the definition of I ;and 6;, it can be easily verified that
[p=2} B0=0;-B
Substitution of (A15) and (A17 ) into (A16), and using the identity 2'C; =!, we obtain
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Lbg

i .
Lavaa|= o-daor COiag; ™2 170 ., [92 3 giggr @ A@4) ., @243 pica

L];+2L
0,

]ll'
diaga®™ 2™ ., A7 pd £ av2a

z£+21,
| Zia
= g—fqur(j;?dm glif]:wzi r;iqkl:lj . I;(mzz—ra] D! Z ;JFZQ
Zoa,
Liq
_|Lbs2a
Lo
The proof has been completed.
To prove Theorem 4, we need first the following Lemma.
Lemma3
Let
-1 1-i

CLg+2L qf"=L8, - Lngn CLg+2i q)"”z LA, 11, J)
10

i=0 =0
Then, CL(q+2l , q)()isinvariant to image scaling and rotation for any gz 0 and | = 0.
Lemma 3 can be easily proven by mathematical induction and it is thus omitted.

Proof of Theorem 4

By Theorem 1, | (g +2k, g )(f)isinvariant to convolution for any g = 0 and k = 0. Since L=\Z is also invariant to convolution, it is obvious
that Sl (g +21, q)(f) defined in (26 ) isinvariant to convolution. To demonstrate its invariance with respect to image scaling and rotation, we

will prove the following result

Slig+2L g/" =cLqg+2, g
where CL (q+2!, q)(P)isdefinedin (A19).

We demonstrate (A20 ) by mathematical induction about | .

For | =0, using (A19), (20) and (25), we have

Sltg, @ =e-3a0T; (g, qi = a0 T 2, = e TELE = Clig o),

Assume that the relationship (A20) isvaidfor 1, 2, ..., 1 -1. Then, using (20 ) and (25 ), we have
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g+21 g

v
n. (@243 g a0 | AR 1
z'-,qu.-Z Z It CMQ‘MJ Z(q+2mq — 70 ’TZ
D™= k=m o

I
. I —(g42h4D eIy
e zi'c=mr]_" 0, R i 2

-1

i
I(g+2i, qj‘ﬂZ 78 Ag m i j)|
0 =0

-1 i
mr’ “**Z’f”r:?kdmx Iq+2i m‘ﬂZ Z3Alg
0

i=0

»a—.ﬂvﬁ“rl"'“""EII -
iio1q ™ TZ lg+2 qmz z5) Z Y TR AG M, )
1 i=) e A+ H)

For CL (g+2l, q)(f), using the assumption CL (q +2i, q)(f)=SI (q+2i, q)(P)fori=0,1,...,1 -1, and (26 ) and (25 ), we deduce from (A19)
that
-1 =i
= 1 . .
“La+ 20 = L~ =) SHa+2i cﬂ‘ﬂz_ LfAG 11 J)
i=0 =0
-1 i )
if) 1 o i {g+2h+3) fi S
= Lfaa= 7 _=QQ-JdJr Mzmrf €2 Apml(@ +2m, qu |f zjrr‘ 2, dZfAg 1 i
i

From (25 ), we have [:=T7Z5, (A23) becomes

e:-.-'?ﬁ'rl"'[?"z
q+2,gff=1", - —”Z IE :Ekﬂrz"cq dud(@+2m, g IZ_ IZ‘LOZ‘; [72c%,d 710 |AGg
J=0
A2

BT, ” e
B‘l—f—Z I(g+2m m‘f’Z EE % rzkchdii Yy A AG L i )

=l
ey o | minil— ],E— J
AL i - 2, ot
gi2lg T T g Ig+2i, g) Z Zk_il"_ dkz zr J[’ CO d Alg [ m )
oa oy
Note that we have shifted the indices in the last step of the above eguation. Subtracting (A22) from (A24 ), we obtain

-SItg+21, g)"

! -1

, umﬂ L E—mzr
f':l':;'"' 2 miﬂZ- Ziﬂo[zm:ma:mﬂw kﬁnrzkcﬁkd mA a, m, ! JT 32”’* mcf?’-;kdgfzhj t=,i'r}EEC
! J=0

I-i

Iig +2i c,r)‘ﬂZ Z0TTCs g 1 i f)
=0

where
mini-1-j
T qlif)= 2 if}z"cfkdgnﬁ(q m i f)— Z rf?’fcq dy; E irﬁcﬂ doAlg | m
mm AR+ i) k=m =l r=ji=j
Forj =1, (A26) becomes
1 I
TCpalif=>, 2 Tl dinAlg m, i jJ—Zfrﬁf akE § 2c9,dAG, | m 1)
e jk=m e=ik=i r=ji=f

Forj =0, (A26) becomes
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AN l 4 ot
gl m_zm:m -y CE ka‘mﬁ g m, 1,0) Z Z ’“ZH)Z::@[; CodipAlg, L m, 1)
l l e
a . q
=), Qe G @?'-ngkﬁf?z"ffnk%zﬁa b, o7 utiora L m
Thus, (A26 ) can be rewritten as
Tealilj
1 ) q o I-j m q - r
=zmjzk=mrfzkcfkdw% m i j]—zﬂhfzk:ﬁzkcfnkdmgkﬁw [ deAlg L m 1)
l k -J =J -
| 2 g 4 _— 2k q zr
Z Iz Zmﬁu,f!,kdhm‘a‘m m i J) Z _I‘f Z Crm Z mz c? a‘UAqr, m r)

it

YT zcimﬂff?kd Al ™ 1 )= Z_JFE"Z 2y cgﬂdifzz:cg,d?ﬂq Lm 7

h=tJ

I . ”‘“ﬂ i+ q 0
:Zthiﬂrzkz Cludlmﬁ(q mi J) - raz )Z?‘?‘HFH r—tr—z—vcfﬂi""‘di"“”crif—i vd”‘i"'*'mi"q(q L

l tr—ir-l-jj I-LeH+
:ZLHJrjrfEt[zrrhwE?“d“’mqm MiN=2 5 2o H;ZHH y mwd o iy Aoy Al L m, r]
i E 2u 3 g
-ztﬁﬁf‘f Tyq L1 Jj u)

where

L=(H-J
Tdg liju Z Cmduw’-‘i q m i j)— S. 3 ﬁ' Cm,zw H—vi raa—z—vdta—z—vJA({?: L m, Tl

=ity w=0 ?'?‘3=E+‘P' == E—‘P'

By using (19) and the identity D'/ =!, (A30) can be written as

k= Li=(i+j)
+Kk - urHyl— +k
Z ‘Z |q |L| ‘1? d do zmiﬁv zr—Tr—z—vC;?nHvdﬂHﬂiCru—z v tr—i—v*,i' |5f "IL
k=i+j =7 H ) = b=t ":.H‘ nin
L= - LeH A
Q+ nfn e = ™ =0 =y = k=i =i n:mQ+ H M T
L=(i+i k—tHHEY
g q+kyk k-n
|Czudnid?a—nj—Zv z Z |'51'+ F’EI F"El di-l-’p'idti—!— ‘)[zmﬂ-wdﬂ i'?'nCmHvIZr:u—r—vdg ??,?’Cru—i—v]
=0 k=t=r=iv
L=(i+i k=LY |
149 P q+kjK ca 48 A a I k—h 0 ]
?lcmd tr—m'_Z/:G zk Z . |Ef+ HI ﬁ!l Ekdi""”dtH_ J[Zrn:a-l-vdnmcMHv Zr:r_a—i—vdg—nrcmr—i—v
===tV
L= (i), g+u
|C?udq d?r—m'_ | I | z EWEd?E—E—VJ
-0 Q+I+1VI I+vi e
) 11 L ..ii:l q_l_ 0
+!:|H+!-| lud i LE—?’?—E_,J e |q+ H+I||H+I| Eli EE'?’?—E-J

By combining (A25 ), (A29 ) and (A31), we deduce Sl (g+2l,q) ® = CL (g+2l,9) @ . By Lemma 3, CL(g+21, g)© is invariant to image
scaling and rotation, thus, SI(g+2l,q)® is also invariant to image scaling and rotation.

The proof has been compl eted.

Appendix B (List of Zernike Moment Blur Invariants up to the Sixth Order)
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® Zero order
1(00)=2,

® First order
)=z,

® Second order
122)=2,,

® Third order
I3 1)=23:—-6I(1 1)-2[(], DZs/ Zgo

I(3 3)=2Z33

® Fourth order

(4 2)=245-10I(2 2)- 10[(2 2220 / (3Zpp)
I(4 4)= Zy4

® Fifth order
I(5 1)=2g;— 54I(L 1)— 15I(3 1) —[231(1, DZpo+ 311 DZap+ 513 DZppl/ Zgg

I(3 3)=2Z53—13I(3 3 - 3I(3 3220/ Zgp
I(3 5)=Zgs

® Sixth order

I§ 2)=Zg,—1051(2 2)—-21(4 2)—[140I(2, 2)Zo5 /" 3+ T2 2Zyq+ 714 D250l 7/ g
16 4= Zga—21(4 4 - 7I(4 9Z30/ Zop
I(6 B)= Zgg

Appendix C (List of Zernike Moment Combined Invariantsup to the Sixth Order)

¢ Second order
SI(2 0)= —3[71(0, 0)+ 3[71(0, 0)+ I37(2 0)

SI(2 2)=eFTH(2 2)
® Third order
SI(3 1)=e 0T I3 1)
SI(3 3)=eF0T°1(3 3)
® Fourth order
SI(4 0)= 5TF7(0, 0)— 15T71(0 0)+ 1007210, 0)— 57 1(2 0)+ 5I3°1(2 00+ [71(4 0)
SIt4 2 =e=200f - ST1(2 2+ ST/°1(2 2+ %114 2)]
SI(4 4= 90T 14 4
® Fifth order
SI(S, 1)=e=30{ —6I3°1(3 V+6I771(3 D+T7 15 1]
SI(5 3)= e 3 — 8;°1(3 3)+ 67 I(3 3)+ I 1(5 3)]
SI(5, 5) = e5®TFI(5 5)
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® Sixth order

(0, 0)+ 420740 0)— 70T K0 0)+ 35T,°1(0, 0)+ 14T7°1(2 0) - 35I7°1(2 0)+2115°1(2 0)— 7T,°1(4 0)+ 7
T2 20— 350712 20+ 2115712 2)— 7T5°1(4 2)+ 7055114 2)+T°1(§ 2]

TT214 4+ T304 A+ T1(6 4]

’I(6 6)
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Fig. 1
Eighteen objects selected from a butterfly database

(C
}]

: I 3 - - (@
? *‘3 R 3 "A »\“"F’I‘ 1.. \ A \’\ /‘.
WMWY
P

0] (
Fig. 2
The mean relative errors of our combined invariants ZMIsfor different rotated and blurred versions of the images shown in Fig. 1.
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Fig. 3
The mean relative errors of our combined invariants ZMIs for different scaled and blurred versions of the images shown in Fig. 1.
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Fig. 4

The similarity transformed and blurred images of Fig. 1(a) (Ax isthe trandation (in pixel) aong the x-axis, Ay the trandlation along the y-axis,
A the scaling factor, 6 the rotation angle, k x k isthe mask size)

e

(b) Ax=-5,
Ay=7,4=0.5,0
(a) original butterfly 30°, average blur 150°, disk blur 0=60", disk blur 5 ala
image with &=7 with k=31 with & = 19 with STD=2 and k= 7

§

5, Av=7, 4= L5,
&= 330", Gaussian blur with "
STD=1 and &= 5 =300, average blur with k=3

(g) Ax=5,Av=7, i= 1.75,
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Fig.5
The mean relative errors of CMIs, LMIsand ZMIsfor different blurred versions of the images shownin Fig. 1.
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Examples of image with different blur, different mask sizes and different noises (& is the STD of Gaussian noise, p is the density of
salt-and-pepper noise)
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Fig. 7
The mean classification rates (%) of the LMIs, CMIs and the proposed ZM|sin object recognition for different moment orders
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Images of the outdoor scene. (a) The original image, (b) The transformed and blurred image, (c) The matched templates using CMIs, (d) The
matched templates using the proposed ZMls
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Tablel

Theinvariants of images showed in F19- 4
Fig. 4(a) Fig. 4(b) Fig. 4(c) Fig. 4(d) Fig. 4(e) Fig. 4(f) Fig. 4(g) Fig. 4(h)
Sl (2,2) 6.95e-03 6.95e-03 6.97e-03 6.96e-03 6.95e-03 6.94e-03 6.95e-03 6.95e-03
Sl (3,1) 2.72e-04 2.70e-04 2.76e-04 2.73e-04 2.71e-04 2.72e-04 2.71e-04 2.71e-04
Sl (3,3) 5.87e-04 5.88e-04 5.90e-04 5.88e-04 5.87e-04 5.88e-04 5.87e-04 5.87e-04
Sl (4,2) 3.51e-02 3.51e-02 3.52e-02 3.51e-02 3.51e-02 3.51e-02 3.51e-02 3.51e-02
Sl (4,4) 3.58e-05 3.59e-05 3.49e-05 3.56e-05 3.57e-05 3.58e-05 3.58e-05 3.58e-05
Sl (5,1) 1.66e-03 1.65e-03 1.69e-03 1.67e-03 1.66e-03 1.66e-03 1.66e-03 1.66e-03
Sl (5,3) 3.57e-03 3.57e-03 3.58e-03 3.57e-03 3.56e-03 3.57e-03 3.56e-03 3.57e-03
Sl (5,5) 9.92e-06 9.96e-06 9.93e-06 9.93e-06 9.93e-06 9.92e-06 9.92e-06 9.92e-06
Table2
The classification rates (%) of the LMIs, CMIs and the proposed ZMIs in object recognition with the optimal value of M
CMls LMlIs ZMls
Noise-free 98.77 99.07 99.85
Gaussian noise with STD = 16 97.38 97.84 98.92
Gaussian noise with STD = 25 93.83 96.91 97.84
Gaussian noise with STD = 36 81.48 92.44 94.60
Gaussian noise with STD = 49 63.12 81.64 85.80
Gaussian noise with STD = 64 48.30 66.98 76.08
Salt-and-pepper noise with noise density = 1% 97.84 98.61 99.69
Salt-and-pepper noise with noise density = 3% 96.45 96.91 97.84
Salt-and-pepper noise with noise density = 5% 87.04 93.52 94.60
Salt-and-pepper noise with noise density = 7% 81.02 88.58 91.05
Salt-and-pepper noise with noise density = 9% 72.69 82.10 84.57
Mean rate 83.45 90.42 92.80
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