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Abstract

The derivation of moment invariants has been extensively investigated in the past decades. In this paper, we construct a set of

invariants derived from Zernike moments which is simultaneously invariant to similarity transformation and to convolution with

circularly symmetric point spread function (PSF). Two main contributions are provided: the theoretical framework for deriving the

Zernike moments of a blurred image and the way to construct the combined geometric-blur invariants. The performance of the

proposed descriptors is evaluated with various PSFs and similarity transformations. The comparison of the proposed method with the

existing ones is also provided in terms of pattern recognition accuracy, template matching and robustness to noise. Experimental

results show that the proposed descriptors perform on the overall better.

Author Keywords Zernike moments ; circularly symmetric blur ; combined invariants ; pattern recognition ; template matching.

INTRODUCTION

Recognition of objects whatever their position, size and orientation is an important concern. In the past decades, many techniques

including moment invariants , Fourier descriptors  and point set invariants  have been reported in the literature. Among[1 ]–[5 ] [6 ] [7 ]–[10 ]
them, moment invariants have been extensively used for image description in object recognition , , image classification  and[11 ] [12 ] [13 ]
scene matching . However, much less attention has been paid to invariants with respect to changes of the image intensity function[14 ]
(known as radiometric invariants) as to joint radiometric-geometric invariants.

Since real sensing systems are usually imperfect and environmental conditions are changing during the acquisition, the observed

images often provide a degraded version of the true scene. Image blurring is an important class of degradations we have to face in practice

due to the camera defocus, atmospheric turbulence, vibrations, and by sensor or scene motion . Blurring can be usually described by a[15 ]
convolution of an unknown original image with a space invariant point spread function (PSF). A conventional way to carry out blur object

recognition is first to deblur the image, and then to apply the recognition methods . Unfortunately, the blind image deconvolution[16 ]–[21 ]
is an ill-posed problem. Moreover, the deconvolution process may introduce new artifacts to the image. To avoid these disadvantages, it is

of great importance to find a set of invariants that is not affected by blurring. This is the objective of this paper.

The first paper on this subject was reported by Flusser and Suk  who derived invariants to convolution with an arbitrary[15 ]
centrosymmetric PSF. These invariants have been successfully used in pattern recognition , in blurred digit and character[22 ]–[25 ]
recognition , , in medical image registration , and in focus/defocus quantitative measurement . Other sets of blur[26 ] [27 ] [28 ] [29 ]
invariants have been derived for some particular kinds of PSF like the axisymmetric blur invariants  and motion blur invariants , [30 ] [31 ] [

. More recently, Flusser and Zitova introduced the combined blur-rotation invariants  and applied them to satellite image32 ] [33 ]
registration  and camera motion estimation . Zhang et al.  proposed a method to get a set of affine-blur invariants. However,[34 ] [35 ] [36 ]
in their approach, the affine invariance is achieved through a normalization process. Suk and Flusser derived explicitly a set of combined

invariants with respect to affine transform and to blur . These blur invariants have been further extended to -dimensions in[37 ] N 

continuous case  as well as in discrete form . The above mentioned methods are mainly based on geometric or complex moments.[38 ] [39 ]
The resulting invariants have information redundancy and are more sensitive to noise.

We  have recently proposed an approach based on the orthogonal Legendre moments to derive a set of blur invariants, and we[40 ]
have shown that they are more robust to noise and have better discriminative power than the existing methods. However, as pointed out in 

, one weak point of Legendre moment descriptors is that they are only invariant to translation, but not invariant under image rotation[40 ]
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and scaling. Zhu et al.  and Ji and Zhu  proposed the use of the Zernike moments to construct a set of combined blur-rotation[41 ] [42 ]
invariants. Unfortunately, there are two limitations to their methods: (1) Only the Gaussian blur has been taken into account, which is a

special case of PSF having circularly symmetry; (2) Only a subset of Zernike moments of order with repetition has been used inp p, Zp, p , 

the derivation of invariants. Since corresponds to the radial moment or the complex moment if neglecting the normalizationZp, p Dp, p C , p 0 

factor, the set of invariants constructed by Zhu et al. is a subset of that proposed by Flusser .[43 ]

In this paper, we propose a new method to derive a set of combined geometric-blur invariants based on orthogonal Zernike moments.

We further assume that the applied PSF is circularly symmetric. The reasons for such a choice of PSF are as follows : (1) The majority[43 ]
of the PSFs occurring in real situations exhibit a circular symmetry; (2) Since the PSFs having circular symmetry are a subset of

centrosymmetric functions, it could be expected that we can derive some new invariants. In fact, the previously reported convolution

invariants with centrosymmetric PSF include only the odd order moments. Flusser and Zitova  have shown that there exist even order[43 ]
moment invariants with circularly symmetric PSF.

The organization of this paper is as follows. In Section II, some preliminaries about the radial moments, Zernike moments and image

blurring are given. In Section III, we first establish a relationship between the Zernike moments of the blurred image and those of the

original image and the PSF, and we then explain how to construct a set of blur invariants and joint radiometric-geometric invariants.

Experimental results on the proposed descriptors  performance are provided in Section IV. Section V concludes the paper.’

Preliminaries

This section presents the definition of radial and Zernike moments, and reviews the concept of image blurring. The radial moment of

order with repetition of image intensity function ( , ) is defined as p q f r  θ [44 ]

The Zernike moment of order with repetition off ( , ) is defined as p q r  θ [44 ]

where ( ) is the real-valued radial polynomial given byRp,q r 

points out that the radial polynomial ( ) is symmetric with , that is, ( )  ( ), for  0. Thus, we canEquation (3) Rp,q r q Rp, q − r = Rp,q r q ≥

consider the case where  0. Letting  2 in ( ) with  0, and substituting it into ( ) yieldsq ≥ p = q + l 3 l ≥ 2 

where
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Let be a rotated version of , i.e. ( )  ( ), where is the angle of rotation, and let  be the Zernike moments of . Itf  ′ f f  ′ r,  θ = f r,    θ − β  β f  ′
can be easily seen from ( ) that2 

Let ( ) be a blurred version of the original image ( ), under the condition that of imaging system being linear shift-invariant,g x, y f x, y 

the blurring can be usually described by the convolution

where ( , ) is the PSF of the imaging system, and denotes the linear convolution.h x y *

In this paper, we assume that the PSF, ( , ), is a circularly symmetric image function, and that the imaging system ish x y 

energy-preserving, which leads to,

Under the assumption of ( ), the Zernike moments of ( , equal those of any rotated image . Combining this fact with ( ), we8 h r ) θ h  ′ 6 

get

is verified if and only if either  or  0. Thus, an important property of circularly symmetric functions can beEquation (10) q =
stated as follows.

Proposition 1

If  0 and ( , ) is a circularly symmetric image function, then  for any non-negative integer .q ≠ h r  θ l 

Method
Zernike Moments of the Blurred Image

In this subsection, we establish the relationship between the Zernike moments of the blurred image and those of the original image and

the PSF. To that end, we first consider the radial moments. Applying ( ) to blurred image ( , ), we have1 g x y 

Applying ( ) to blurred image ( , )  ( , ) and using ( ), we obtain4 g x y = g r  θ 11 

From ( ), the radial moments can also be expressed as a series of Zernike moments4 
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where , 0    , is the inverse matrix of . Both  and  are lower triangular matrices of size ( 1)  ( 1), the≤ j ≤ i ≤ l l + × l +
elements of  are given by ( ). The elements of  are given by 5 [45 ]

From ( ), we have13 

By introducing ( ) and ( ) into ( ), we obtain15 16 12 

Based on ( ), we have the following theorem.17 

Theorem 1

Let ( , ) be the original image function and the PSF ( , ) be circularly symmetric, ( , ) be a blurred version of ( , ), thenf r  θ h r  θ g r  θ f r  θ
the following relation

stands for any  0 and  0, where the coefficients ( , , , ) are given byq ≥ I ≥ A q l i j 

Proof

For circularly symmetric function ( , ), using Proposition 1, we have  if  0, thus, ( ) can be simplified ash r  θ q +n m − ≠ 17 

The proof has been completed.

Blur Invariants of Zernike Moments

Based on Theorem 1, it becomes possible to construct a set of blur invariants of Zernike moments which is described in the following

theorem.

Theorem 2

Let ( , ) be an image function. Let us define the following function : f r  θ I ( f ) N N R× →
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Then, ( , ) is invariant to circularly symmetric blur for any  0 and  0. The number  is called the order of theI q +2l q ( f ) q ≥ l ≥ p = q +2l 

invariant.

The proof of Theorem 2 is given in . Some remarks deserve to be made.Appendix A 

Remark 1

By using the symmetric property of , ( ) with it can be easily proven that (| | 2 , for < 0 is also invariant toRp q r q, I q + l q) ( f ) q 

convolution.

Remark 2

It can be deduced from ( ) that . Thus, only  will be used as invariant for the case  0.20 q =

Remark 3

If we use the Zernike central moments  instead of Zernike moments in ( ), then we can obtain a set of invariants ( 2 , )20 I ̄ q  + l q ( f ) 

that is invariant to both translation and to blur.

Based on Theorem 2, we can construct a set of blur invariants of Zernike moments with arbitrary order and express them in explicit

form. The invariants up to sixth order are listed in .Appendix B 

Lemma 1

Let be a rotated version of , i.e., ( ) ( ), where denotes the rotation angle, then the following relation holds for any f  ′ f f  ′ r,  θ =f r,  θ−β  β q ≥
0 and  0I ≥

Proof

We demonstrate this lemma by induction about The proof is trivial for  0. Assume that the assertion is true for 1, 2, , 1, thenl. l = … l −
using ( ), we get6 

The proof is thus completed

Lemma 2

Let ( , ) be an image function. It holds for any  0 and  0 thatf r  θ q ≥ l ≥

where the superscript  denotes the complex conjugate.*

The proof of Lemma 2 is very similar to that of Lemma 1 and it is thus omitted.

Combined Invariants of Zernike Moments
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In this subsection, we construct a set of combined geometric-blur invariants. As we have already stated, the translation invariance can

be achieved by using the central Zernike moments. shows that the magnitude of ( 2 , ) is invariant to rotation.Equation (21) I q + l q ( f ) 

However, as indicated by Flusser , the magnitudes do not yield a complete set of the invariants. Herein, we provide a way to build up[33 ]
such a set. Let and be two images having the same content but distinct orientation ( ) and scale ( ), that is, ( , )  ( , ), thef  ″ f  π  λ f  ″ r  θ = f r/  λ  θ−β
Zernike moment of the transformed image is given by

Using ( ) and ( ), we have4 13 

Therefore, we have the following theorem:

Theorem 3

Let

with  and . Then  is invariant to both image rotation and scaling for any non-negative integers and .q l 

The proof of Theorem 3 is given in .Appendix A 

Remark 4

Many other choices of and are possible. In fact, they can be chosen in such a way that  ,  where ( , )  (θf Γ f Γ f  ″ =  λ Γ f θf  ″ =   θf − β f  ″ r  θ = f r/

, ) is the transformed image of . However, it is preferable to use the lower order moments because they are less sensitive to noise λ    θ − β f 

than the higher order ones . If the central moments are used, can be chosen as .[46 ] θf 

Theorem 4

For any  0 and  0, letq ≥ l ≥

where ( 2 , ) is defined in ( ). Then, ( 2 , ) is both invariant to convolution and to image scaling and rotation.I q + m q ( f ) 20 SI q + l q ( f ) 

The proof is given in . For simplicity, the invariants defined in ( ) are hereafter denoted by ZMIs. The combined invariantsappendix A 26 

up to sixth order are listed in .Appendix C 

Experimental Results

The following experiments illustrate the invariance of our ZMIs to various PSFs and similarity transformation, as its robustness to

different kinds of noise. Comparison with existing methods in terms of recognition accuracy and template matching is also provided.

Let  for  0, where ( , ) is defined in ( ) and   denotes the nearest integers notP ≥ SI p q 26 ⌊ x ⌋
greater than , and let ( )  ( , , , ). The relative error between the two moment invariant vectors corresponding to an imagex I ̃ p = SI 0 SI 1 … SIp 

and its transformed version is computed byf g 
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where ||.|| is Euclidean norm in space.L 2 

Test of Invariance

For this experiment, a set of eighteen butterfly images shown in , whose size is 128  128, has been chosen from the publicFig. 1 ×
Butterfly database  as the original images. In order to evaluate the invariance with respect to rotation and blurring, these images were[47 ]
rotated by different angles from 0  to 90  every 5 , and a bilinear interpolation was used when required. Then, the normalized uniform disk° ° °
blur with different sizes from 1  1 (no blurring) to 31  31 with interval 2 (sixteen masks in total) was applied to every rotated image. So,× ×
the actual size of the blurred images in the experiments of this subsection is 212  212. Note that the original images have been zero×
padded to meet the actual size in order to avoid the boundary effect. Both the original images and the blurred images are then mapped

inside the unit circle, and the Zernike moments are computed with the method reported in . The combined rotation-blur invariants[48 ]
ZMIs defined in ( ) of order up to  5 were computed for all 5472 images. The relative errors of ZMIs between each transformed26 p =
image and its original image were computed using ( ). shows the mean values of ( ) where (  1, 2, , 18) denotes the27 Fig. 2 Ep f ,gi i fi i = …

images shown in . It can be seen that they are very low (less than 0.0035). The mean relative error reaches its maximal valueFig. 1 (a) (r) –
at the angle  45  due to the interpolation effect. The maximal value of the standard deviation (STD) is equal to 0.0035. We then tested β = °
the combined scale-blur invariance. Eighteen images were blurred with the same masks, and then were scaled by a factor varying from 0.5

to 2 with interval 0.1, forming a set of 4608 images. shows the mean values of the relative errors ( ) (  1,2, , 18) (theFig. 3 Ep f ,gi i i = …

maximal value of the standard deviation is 0.0043). It can be observed from and that the errors caused by blurring and similarityFigs. 2 3 

transformation are very small (less than 0.006).

In the second experiment, the image shown in was convoluted with various PSFs and undergone similarity transformationFig. 1 (a) 

including translation, scaling and rotation ( ). The proposed ZMIs defined in ( ) of order from 2 to 5 were calculated for eachFig. 4 26 p 

image (the central Zernike moments were used in this experiment, and the moment invariants of order 0 and 1 were respectively used to

achieve the scale invariance and translation invariance). depicts the invariant values. From this table, it can be seen that excellentTable 1 

results have been obtained whatever the similarity transformation and image degradation.

We also compared our ZMIs with the complex moment invariants (CMIs) reported in  and the Legendre moment invariants[43 ]
(LMIs) presented in  in terms of blur invariance. This is because these methods have different behavior regarding to similarity[40 ]
transformation: LMIs are invariant to translation only and CMIs are invariant to rotation and scaling. We do not include Zhu s method in’
this comparison due to the fact that the set of invariants derived in ,  is a subset of both CMIs and ZMIs. Eighteen images were[41 ] [42 ]
degraded by the normalized uniform disk blur with sixteen different sizes from 1  1 to 31  31. Three types of blur invariants of order up× ×
to  5 are calculated for the set of 288 images. The mean values of the relative errors ( ) (  1, 2, , 18) for CMIs, LMIs andp = Ep f ,gi i i = …

ZMIs are depicted in . It is clear that the errors increase significantly with the size of the mask going up and our ZMIs behave betterFig. 5 

than the two other types blur invariants.

Classification Results

In this evaluation, we also use the images shown in . The testing set was generated by adding disk blur, averaging blur andFig. 1 

Gaussian blur with zero-mean and STD  1,2. The mask with sizes 3  3, 5  5, 7  7, , 17  17, 19  19 pixels has been used, forming a= × × × … × ×
set of 648 images. This was followed by adding a white Gaussian noise with different standard deviations and salt-and-pepper noise with

different noise densities. Because the actual size of the PSF is usually unknown in practical application, in order to evaluate the

performance of the different methods under such a situation, we take the size of the blurred image equal to the original image one (128 ×
128) instead of its actual size (146  146) in this experiment even if the size of the mask is given. In that case, the boundary effect is then×
present. shows some examples of the blurred and corrupted images. The Lance-Williams distance is used here as the classificationFig. 6 

measure. This distance between the two images and is defined by their moment invariant vectors  and  asf g 

where ,  1, 2, , , denote the blur invariants, is the total number of invariants used in the experiment and | | the magnitude ofj = … n n x 

the complex number .x 

We have computed the ZMIs, CMIs and LMIs up to order  1, 3, , 15, 17. The mean classification rates under different noiseM = …
conditions for different values of are shown in . It can be observed that the rate first increases, reaches the maximum value andM Fig. 7 
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then decreases for all three methods. In other words, there should exist an optimal order for each type of moment invariants. This

behaviour has also been observed and pointed out by Liao and Pawlak in image reconstruction due to the noise influence . In this[49 ]
experiment, the optimal order for CMIs is  7 (the feature vector includes 17 invariants),  7 for LMIs (the feature vector has 21M = M =
invariants), and  9 for ZMIs (with 26 invariants). shows the detailed classification rates using the different moment invariantsM = Table 2 

with the optimal order. One can see from this table that in the noise-free scenario the recognition results are quite good whatever the

method. The classification rates remain high for low and moderate noise levels but decrease significantly when the noise level goes up.

However, the proposed descriptors ZMIs perform better than other methods (all the rates are higher than 75 ) whatever the noise and the%
noise level. Although this conclusion is drawn from only one experiment, it is in accordance with that reported in  where the authors[50 ]
pointed out that the Zernike moments have on overall better performance than other moments.

Template Matching

The objective of this additional test is to evaluate the performance of our descriptors in the case of localizing templates within a real

outdoor scene image that has undergone similarity transformation and out-of-focus blur. For that purpose, two images were taken by

digital camera (Panasonic DMC-FZ50) with different focus and different positions by rotating the camera. Then, nine circular areas with

radius  10 pixels were extracted from to serve as templates (numbered from 1 to 9). The scale factor between two images isr = Fig. 8 (a) 

obtained with the automatic scale selection . After that, the scaled template was shifted across the transformed and blurred image ([51 ] Fig.

). At each position, the invariants were calculated and compared with the invariants of the original template. For more detail about8 (b) 

the matching procedure, we refer to Ref. .[22 ]

Each moment descriptors with the optimal order obtained in the previous experiment (  9 for ZMIs and  7 for CMIs) have beenM = M =
used here. Note that we did not test LMIs because they are not invariant with respect to image rotation and scaling. The matching position‘ ’
we consider corresponds to the location where the Lance-Williams distance ( ) reaches the minimum value, with representing thed f, g f 

template of the original image and the template of the transformed and blurred image. The matching results that have been obtainedg 

based on these different moment invariants are summarized in . It can be seen that the proposed descriptors ZMIs matchFig. 8 (c) and (d) 

correctly for all nine templates and that it is not the case for CMIs.

Conclusions

In this paper, we have proposed a method to construct a set of combined geometric-blur invariants using the orthogonal Zernike

moments. The relationship between the Zernike moments of the blurred image and those of the original image and the PSF has been

established. Based on this relationship, a set of invariants to convolution with circularly symmetric PSF has been derived. The advantages

of the proposed method over the existing ones are the following: (1) The proposed descriptors are simultaneously invariant to similarity

transformation and to convolution. Using these invariants, the image deblurring and geometric normalization process can be well avoided;

(2) Like the method reported in , our method can also derive the even order invariants. The experiments conducted so far in very[43 ]
distinct situations demonstrated that the proposed descriptors are more robust to noise and have better discriminative power than the

existing methods.

Appendix A
Proof of Theorem 2

We prove this theorem by mathematical induction about .l 

For  0, using ( ), ( ) and , it can be easily deduced from ( ) thatl = 18 19 20 

Assume that Theorem 1 is valid for 1, 2, , 1, then we get… l −

By using ( ), we have18 



IEEE Trans Image Process . Author manuscript

Page /9 21

Similarly,

Substitution of ( ) and ( ) into ( ) yieldsA2 A3 A1 

By using the property  and , ( ) can be written as20 

Substitution of ( ) into ( ), we getA5 A4 

By shifting the indices in the above equation, we have

where
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By using ( ), we have19 

( ) can thus be rewritten asA8 

By shifting the indices in the last part of the above equation, we get

where

By changing the order of summation in ( ), we haveA12 
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Since the lower triangular matrix  is the inverse of the matrix , that is, , where is the identity matrix, we have ,I 

where denotes the Kronecker symbol. Then, ( ) becomesδt,m A13 

Thus, ( , , , , )  0 and ( 2 )  ( 2 )  0.T q l i j k = I q + l, q ( g ) − I q + l, q ( f ) =

The proof has been completed.

Proof of Theorem 3

can be written in a matrix form asEquation (24) 

Applying ( ) to the transformed image , it can also be expressed in a matrix form as25 f  ″

Based on the definition of and , it can be easily verified thatΓ f θf 

Substitution of ( ) and ( ) into ( ), and using the identity , we obtainA15 A17 A16 



IEEE Trans Image Process . Author manuscript

Page /12 21

The proof has been completed.

To prove Theorem 4, we need first the following Lemma.

Lemma 3

Let

Then, 2 , ) is invariant to image scaling and rotation for any  0 and  0.CL(q + l q ( f ) q ≥ l ≥

Lemma 3 can be easily proven by mathematical induction and it is thus omitted.

Proof of Theorem 4

By Theorem 1, ( 2 ) is invariant to convolution for any  0 and  0. Since  is also invariant to convolution, it is obviousI q + k, q ( f ) q ≥ k ≥
that ( 2 ) defined in ( ) is invariant to convolution. To demonstrate its invariance with respect to image scaling and rotation, weSI q + l, q ( f ) 26 

will prove the following result

where ( 2 , ) is defined in ( ).CL q + l q ( f ) A19 

We demonstrate ( ) by mathematical induction about .A20 l 

For  0, using ( ), ( ) and ( ), we havel = A19 20 25 

Assume that the relationship ( ) is valid for 1, 2, , 1. Then, using ( ) and ( ), we haveA20 … l − 20 25 
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For ( 2 ) , using the assumption ( 2 )  ( 2 ) for  0, 1, , 1, and ( ) and ( ), we deduce from ( )CL q + l, q ( f ) CL q + i, q ( f ) = SI q + i, q ( f ) i = … l − 26 25 A19 

that

From ( ), we have , ( ) becomes25 A23 

Note that we have shifted the indices in the last step of the above equation. Subtracting ( ) from ( ), we obtainA22 A24 

where

For  1, ( ) becomesj ≥ A26 

For  0, ( ) becomesj = A26 
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Thus, ( ) can be rewritten asA26 

where

By using ( ) and the identity , ( ) can be written as19 A30 

By combining ( ), ( ) and ( ), we deduce ( )  ( ) . By Lemma 3, is invariant to imageA25 A29 A31 SI q 2l,q +  (f) = CL q 2l,q +  (f) CL(q 21, q)+ (f) 

scaling and rotation, thus, is also invariant to image scaling and rotation.SI(q 2l,q)+ (f) 

The proof has been completed.

Appendix B (List of Zernike Moment Blur Invariants up to the Sixth Order)
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Zero order

(0,0)  I = Z 0,0

First order

(1,1)  I = Z 1,1

Second order

(2,2)  I = Z 2,2

Third order

Fourth order

Fifth order

Sixth order

Appendix C (List of Zernike Moment Combined Invariants up to the Sixth Order)

Second order

Third order

Fourth order

Fifth order
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Sixth order
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Fig. 1
Eighteen objects selected from a butterfly database

Fig. 2
The mean relative errors of our combined invariants ZMIs for different rotated and blurred versions of the images shown in .Fig. 1 
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Fig. 3
The mean relative errors of our combined invariants ZMIs for different scaled and blurred versions of the images shown in .Fig. 1 

Fig. 4
The similarity transformed and blurred images of ( is the translation (in pixel) along the x-axis, the translation along the y-axis,Fig. 1(a) Δx Δy 

the scaling factor,  the rotation angle,  is the mask size) λ θ k × k 
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Fig. 5
The mean relative errors of CMIs, LMIs and ZMIs for different blurred versions of the images shown in .Fig. 1 

Fig. 6
Examples of image with different blur, different mask sizes and different noises ( is the STD of Gaussian noise, is the density of δ p 

salt-and-pepper noise)
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Fig. 7
The mean classification rates ( ) of the LMIs, CMIs and the proposed ZMIs in object recognition for different moment orders%

Fig. 8
Images of the outdoor scene. (a) The original image, (b) The transformed and blurred image, (c) The matched templates using CMIs, (d) The

matched templates using the proposed ZMIs
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Table 1

The invariants of images showed in Fig. 4

Fig. 4(a) Fig. 4(b) Fig. 4(c) Fig. 4(d) Fig. 4(e) Fig. 4(f) Fig. 4(g) Fig. 4(h)

(2,2)SI 6.95e-03 6.95e-03 6.97e-03 6.96e-03 6.95e-03 6.94e-03 6.95e-03 6.95e-03
(3,1)SI 2.72e-04 2.70e-04 2.76e-04 2.73e-04 2.71e-04 2.72e-04 2.71e-04 2.71e-04
(3,3)SI 5.87e-04 5.88e-04 5.90e-04 5.88e-04 5.87e-04 5.88e-04 5.87e-04 5.87e-04
(4,2)SI 3.51e-02 3.51e-02 3.52e-02 3.51e-02 3.51e-02 3.51e-02 3.51e-02 3.51e-02
(4,4)SI 3.58e-05 3.59e-05 3.49e-05 3.56e-05 3.57e-05 3.58e-05 3.58e-05 3.58e-05
(5,1)SI 1.66e-03 1.65e-03 1.69e-03 1.67e-03 1.66e-03 1.66e-03 1.66e-03 1.66e-03
(5,3)SI 3.57e-03 3.57e-03 3.58e-03 3.57e-03 3.56e-03 3.57e-03 3.56e-03 3.57e-03
(5,5)SI 9.92e-06 9.96e-06 9.93e-06 9.93e-06 9.93e-06 9.92e-06 9.92e-06 9.92e-06

Table 2
The classification rates ( ) of the LMIs, CMIs and the proposed ZMIs in object recognition with the optimal value of % M

CMIs LMIs ZMIs

Noise-free 98.77 99.07 99.85
Gaussian noise with STD  16= 97.38 97.84 98.92

Gaussian noise with STD  25= 93.83 96.91 97.84

Gaussian noise with STD  36= 81.48 92.44 94.60

Gaussian noise with STD  49= 63.12 81.64 85.80

Gaussian noise with STD  64= 48.30 66.98 76.08

Salt-and-pepper noise with noise density  1= % 97.84 98.61 99.69

Salt-and-pepper noise with noise density  3= % 96.45 96.91 97.84

Salt-and-pepper noise with noise density  5= % 87.04 93.52 94.60

Salt-and-pepper noise with noise density  7= % 81.02 88.58 91.05

Salt-and-pepper noise with noise density  9= % 72.69 82.10 84.57

Mean rate 83.45 90.42 92.80


