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The derivation of moment invariants has been extensively investigated in the past decades. In this paper, we construct a set of invariants derived from Zernike moments which is simultaneously invariant to similarity transformation and to convolution with circularly symmetric point spread function (PSF). Two main contributions are provided: the theoretical framework for deriving the Zernike moments of a blurred image and the way to construct the combined geometric-blur invariants. The performance of the proposed descriptors is evaluated with various PSFs and similarity transformations. The comparison of the proposed method with the existing ones is also provided in terms of pattern recognition accuracy, template matching and robustness to noise. Experimental results show that the proposed descriptors perform on the overall better.

INTRODUCTION

Recognition of objects whatever their position, size and orientation is an important concern. In the past decades, many techniques including moment invariants , Fourier descriptors and point set invariants have been reported in the literature. Among

[1 ]- [START_REF] Abu-Mostafa | Recognitive aspects of moment invariants[END_REF] [6 ]

[7 ]- [START_REF] Lowe | Distinctive image features from scale-invariant key points[END_REF] them, moment invariants have been extensively used for image description in object recognition , , image classification and [START_REF] Khotanzad | Invariant image recognition by Zernike moments[END_REF] [12 ] [START_REF] Yang | Classification of rotifers with machine vision by shape moment invariants[END_REF] scene matching . However, much less attention has been paid to invariants with respect to changes of the image intensity function [START_REF] Lin | Template matching using the parametric template vector with translation, rotation and scale invariance[END_REF] (known as radiometric invariants) as to joint radiometric-geometric invariants.

Since real sensing systems are usually imperfect and environmental conditions are changing during the acquisition, the observed images often provide a degraded version of the true scene. Image blurring is an important class of degradations we have to face in practice due to the camera defocus, atmospheric turbulence, vibrations, and by sensor or scene motion . Blurring can be usually described by a [START_REF] Flusser | Recognition of blurred images by the method of moments[END_REF] convolution of an unknown original image with a space invariant point spread function (PSF). A conventional way to carry out blur object recognition is first to deblur the image, and then to apply the recognition methods . Unfortunately, the blind image deconvolution [START_REF] Savakis | Blur identification by residual spectral matching[END_REF]- [START_REF] Jung | A novel multiple image deblurring technique using fuzzy projection onto convex sets[END_REF] is an ill-posed problem. Moreover, the deconvolution process may introduce new artifacts to the image. To avoid these disadvantages, it is of great importance to find a set of invariants that is not affected by blurring. This is the objective of this paper.

The first paper on this subject was reported by Flusser and Suk who derived invariants to convolution with an arbitrary [START_REF] Flusser | Recognition of blurred images by the method of moments[END_REF] centrosymmetric PSF. These invariants have been successfully used in pattern recognition , in blurred digit and character [START_REF] Flusser | Degraded image analysis: an invariant approach[END_REF]- [START_REF] Stern | Recognition of motion-blurred images by use of the method of moments[END_REF] recognition , , in medical image registration , and in focus/defocus quantitative measurement . Other sets of blur [START_REF] Lu | Blurred image recognition based on phase invariants[END_REF] [27 ]

[28 ] [START_REF] Zhang | A new focus measure method using moments[END_REF] invariants have been derived for some particular kinds of PSF like the axisymmetric blur invariants and motion blur invariants , [START_REF] Flusser | Image feature invariant with respect to blur[END_REF] [31 ] [

. More recently, Flusser and Zitova introduced the combined blur-rotation invariants and applied them to satellite image 32 ] [START_REF] Flusser | Combined invariants to linear filtering and rotation[END_REF] registration and camera motion estimation . Zhang et al. proposed a method to get a set of affine-blur invariants. However, [START_REF] Flusser | Invariant-based registration of rotated and blurred images[END_REF] [35 ] [START_REF] Zhang | Determination of blur and affine combined invariants by normalization[END_REF] in their approach, the affine invariance is achieved through a normalization process. Suk and Flusser derived explicitly a set of combined invariants with respect to affine transform and to blur . These blur invariants have been further extended to -dimensions in [START_REF] Suk | Combined blur and affine moment invariants and their use in pattern recognition[END_REF] N continuous case as well as in discrete form . The above mentioned methods are mainly based on geometric or complex moments.

[38 ] [START_REF] Candocia | Moment relations and blur invariant conditions for finite-extent signals in one, two and N-dimensions[END_REF] The resulting invariants have information redundancy and are more sensitive to noise.

We have recently proposed an approach based on the orthogonal Legendre moments to derive a set of blur invariants, and we [START_REF] Zhang | Blurred image recognition by Legendre moment invariants[END_REF] have shown that they are more robust to noise and have better discriminative power than the existing methods. However, as pointed out in , one weak point of Legendre moment descriptors is that they are only invariant to translation, but not invariant under image rotation [START_REF] Zhang | Blurred image recognition by Legendre moment invariants[END_REF] and scaling. [43 ]

In this paper, we propose a new method to derive a set of combined geometric-blur invariants based on orthogonal Zernike moments.

We further assume that the applied PSF is circularly symmetric. The reasons for such a choice of PSF are as follows :

(1) The majority [START_REF] Flusser | Invariants to convolution with circularly symmetric PSF[END_REF] of the PSFs occurring in real situations exhibit a circular symmetry; (2) Since the PSFs having circular symmetry are a subset of centrosymmetric functions, it could be expected that we can derive some new invariants. In fact, the previously reported convolution invariants with centrosymmetric PSF include only the odd order moments. Flusser and Zitova have shown that there exist even order [START_REF] Flusser | Invariants to convolution with circularly symmetric PSF[END_REF] moment invariants with circularly symmetric PSF.

The organization of this paper is as follows. In Section II, some preliminaries about the radial moments, Zernike moments and image blurring are given. In Section III, we first establish a relationship between the Zernike moments of the blurred image and those of the original image and the PSF, and we then explain how to construct a set of blur invariants and joint radiometric-geometric invariants.

Experimental results on the proposed descriptors performance are provided in Section IV. Section V concludes the paper.

'

Preliminaries

This section presents the definition of radial and Zernike moments, and reviews the concept of image blurring. The radial moment of order with repetition of image intensity function ( , ) is defined as p q f r θ [START_REF] Mukundan | Moment Functions in Image Analysis Theory and Applications[END_REF] The Zernike moment of order with repetition off ( , ) is defined as p q r θ [START_REF] Mukundan | Moment Functions in Image Analysis Theory and Applications[END_REF] where ( ) is the real-valued radial polynomial given by R p,q r points out that the radial polynomial ( ) is symmetric with , that is, ( ) ( ), for 0. Thus, we can Equation (3) R p,q r q R p, q -r = R p,q r q ≥ consider the case where 0. Letting 2 in ( ) with 0, and substituting it into ( ) yields q ≥ p = q + l 3 l ≥ 2

where Let be a rotated version of , i.e. ( ) ( ), where is the angle of rotation, and let be the Zernike moments of . It

f ′ f f ′ r, θ = f r, θ -β β f ′
can be easily seen from ( ) that 2

Let ( ) be a blurred version of the original image ( ), under the condition that of imaging system being linear shift-invariant, g x, y f x, y the blurring can be usually described by the convolution where ( , ) is the PSF of the imaging system, and denotes the linear convolution. h x y

*

In this paper, we assume that the PSF, ( , ), is a circularly symmetric image function, and that the imaging system is h x y energy-preserving, which leads to, Under the assumption of ( ), the Zernike moments of ( , equal those of any rotated image . Combining this fact with ( ), we 8 h r )

θ h ′ 6
get is verified if and only if either or 0. Thus, an important property of circularly symmetric functions can be Equation [START_REF] Lowe | Distinctive image features from scale-invariant key points[END_REF] q = stated as follows.

Proposition 1

If 0 and ( , ) is a circularly symmetric image function, then for any non-negative integer . q ≠ h r θ l

Method Zernike Moments of the Blurred Image

In this subsection, we establish the relationship between the Zernike moments of the blurred image and those of the original image and the PSF. To that end, we first consider the radial moments. Applying ( ) to blurred image ( , ), we have 1 g x y

Applying ( ) to blurred image ( , ) ( , ) and using ( ), we obtain 4 g x y = g r θ 11

From ( ), the radial moments can also be expressed as a series of Zernike moments where , 0 , is the inverse matrix of . Both and are lower triangular matrices of size ( 1) ( 1), the ≤ j ≤ i ≤ l l + × l + elements of are given by ( ). The elements of are given by 5 [START_REF] Shu | A general method to derive the relationship between two sets of Zernike coefficients corresponding to different aperture sizes[END_REF] From ( ), we have 13

By introducing ( ) and ( ) into ( ), we obtain 15 [START_REF] Savakis | Blur identification by residual spectral matching[END_REF] 12

Based on ( ), we have the following theorem. 17

Theorem 1

Let ( , ) be the original image function and the PSF ( , ) be circularly symmetric, ( , ) be a blurred version of ( , ), then f r θ h r θ g r θ f r θ the following relation stands for any 0 and 0, where the coefficients ( , , , ) are given by q ≥ I ≥ A q l i j

Proof

For circularly symmetric function ( , ), using Proposition 1, we have if 0, thus, ( ) can be simplified as h r θ q +n m -≠

17

The proof has been completed.

Blur Invariants of Zernike Moments

Based on Theorem 1, it becomes possible to construct a set of blur invariants of Zernike moments which is described in the following theorem.

Theorem 2

Let ( , ) be an image function. Let us define the following function :

f r θ I ( f ) N N R × →
Then, ( , ) is invariant to circularly symmetric blur for any 0 and 0. The number is called the order of the I q +2l q ( f ) q ≥ l ≥ p = q +2l invariant.

The proof of Theorem 2 is given in . Some remarks deserve to be made. Appendix A

Remark 1

By using the symmetric property of , ( ) with it can be easily proven that (| | 2 , for < 0 is also invariant to R p q r q, I q + l q) ( f ) q convolution.

Remark 2

It can be deduced from ( ) that . Thus, only will be used as invariant for the case 0. 20 q = Remark 3

If we use the Zernike central moments instead of Zernike moments in ( ), then we can obtain a set of invariants ( 2 , ) 20

I ̄q + l q ( f )
that is invariant to both translation and to blur.

Based on Theorem 2, we can construct a set of blur invariants of Zernike moments with arbitrary order and express them in explicit form. The invariants up to sixth order are listed in . Appendix B

Lemma 1

Let be a rotated version of , i.e., ( ) (

), where denotes the rotation angle, then the following relation holds for any

f ′ f f ′ r, θ =f r, θ-β β q ≥ 0 and 0 I ≥

Proof

We demonstrate this lemma by induction about The proof is trivial for 0. Assume that the assertion is true for 1, 2, , 1, then l. l = … lusing ( ), we get 6

The proof is thus completed

Lemma 2

Let ( , ) be an image function. It holds for any 0 and 0 that f r θ q ≥ l ≥ where the superscript denotes the complex conjugate.

*

The proof of Lemma 2 is very similar to that of Lemma 1 and it is thus omitted.

Combined Invariants of Zernike Moments

In this subsection, we construct a set of combined geometric-blur invariants. As we have already stated, the translation invariance can be achieved by using the central Zernike moments.

shows that the magnitude of ( 2 , ) is invariant to rotation. Equation [START_REF] Jung | A novel multiple image deblurring technique using fuzzy projection onto convex sets[END_REF] I q + l q ( f ) However, as indicated by Flusser , the magnitudes do not yield a complete set of the invariants. Herein, we provide a way to build up [START_REF] Flusser | Combined invariants to linear filtering and rotation[END_REF] such a set. Let and be two images having the same content but distinct orientation ( ) and scale ( ), that is, ( , ) ( ,

), the f ″ f π λ f ″ r θ = f r/ λ θ-β
Zernike moment of the transformed image is given by Using ( ) and ( ), we have 4 13

Therefore, we have the following theorem:

Theorem 3
Let with and . Then is invariant to both image rotation and scaling for any non-negative integers and . q l

The proof of Theorem 3 is given in . Appendix A

Remark 4

Many other choices of and are possible. In fact, they can be chosen in such a way that , where ( , ) (

θ f Γ f Γ f ″ = λ Γ f θ f ″ = θ f -β f ″ r θ = f r/ ,
) is the transformed image of . However, it is preferable to use the lower order moments because they are less sensitive to noise λ θ -β f than the higher order ones . If the central moments are used, can be chosen as .

[46 ] θ f

Theorem 4

For any 0 and 0, let q ≥ l ≥ where ( 2 , ) is defined in ( ). Then, ( 2 , ) is both invariant to convolution and to image scaling and rotation. I q + m q ( f ) 20 SI q + l q ( f )

The proof is given in . For simplicity, the invariants defined in ( ) are hereafter denoted by ZMIs. The combined invariants appendix A 26 up to sixth order are listed in . Appendix C

Experimental Results

The following experiments illustrate the invariance of our ZMIs to various PSFs and similarity transformation, as its robustness to different kinds of noise. Comparison with existing methods in terms of recognition accuracy and template matching is also provided.

Let

for 0, where ( , ) is defined in ( ) and denotes the nearest integers not P ≥ SI p q 26 ⌊ x ⌋ greater than , and let ( ) ( , , ,

). The relative error between the two moment invariant vectors corresponding to an image x I ̃p = SI 0 SI 

Test of Invariance

For this experiment, a set of eighteen butterfly images shown in , whose size is 128 128, has been chosen from the public Fig. 1 × Butterfly database as the original images. In order to evaluate the invariance with respect to rotation and blurring, these images were rotated by different angles from 0 to 90 every 5 , and a bilinear interpolation was used when required. Then, the normalized uniform disk °°°b lur with different sizes from 1 1 (no blurring) to 31 31 with interval 2 (sixteen masks in total) was applied to every rotated image. So,

× ×
the actual size of the blurred images in the experiments of this subsection is 212 212. Note that the original images have been zero

× padded to meet the actual size in order to avoid the boundary effect. Both the original images and the blurred images are then mapped inside the unit circle, and the Zernike moments are computed with the method reported in . The combined rotation-blur invariants [START_REF] Xin | Accurate computation of Zernike moments in polar coordinates[END_REF] ZMIs defined in ( ) of order up to 5 were computed for all 5472 images. The relative errors of ZMIs between each transformed 26 p = image and its original image were computed using ( ).

shows the mean values of ( ) where ( 1, 2, , 18) denotes the 27 Fig. 2 E p f ,g i i

f i i = …
images shown in . It can be seen that they are very low (less than 0.0035). The mean relative error reaches its maximal value Fig. 1 (a) (r) at the angle 45 due to the interpolation effect. The maximal value of the standard deviation (STD) is equal to 0.0035. We then tested β = °the combined scale-blur invariance. Eighteen images were blurred with the same masks, and then were scaled by a factor varying from 0.5 to 2 with interval 0.1, forming a set of 4608 images.

shows the mean values of the relative errors ( ) ( 1,2, , 18) (the Fig. 3 E p f ,g

i i i = …
maximal value of the standard deviation is 0.0043). It can be observed from and that the errors caused by blurring and similarity Figs. 2 3 transformation are very small (less than 0.006).

In the second experiment, the image shown in was convoluted with various PSFs and undergone similarity transformation Fig. 1 (a) including translation, scaling and rotation (

). The proposed ZMIs defined in ( ) of order from 2 to 5 were calculated for each Fig. 4 26 p image (the central Zernike moments were used in this experiment, and the moment invariants of order 0 and 1 were respectively used to achieve the scale invariance and translation invariance). depicts the invariant values. From this table, it can be seen that excellent Table 1 results have been obtained whatever the similarity transformation and image degradation.

We also compared our ZMIs with the complex moment invariants (CMIs) reported in and the Legendre moment invariants [START_REF] Flusser | Invariants to convolution with circularly symmetric PSF[END_REF] (LMIs) presented in in terms of blur invariance. This is because these methods have different behavior regarding to similarity [START_REF] Zhang | Blurred image recognition by Legendre moment invariants[END_REF] transformation: LMIs are invariant to translation only and CMIs are invariant to rotation and scaling. We do not include Zhu s method in ' this comparison due to the fact that the set of invariants derived in , is a subset of both CMIs and ZMIs. Eighteen images were ZMIs are depicted in . It is clear that the errors increase significantly with the size of the mask going up and our ZMIs behave better Fig. 5 than the two other types blur invariants.

Classification Results

In this evaluation, we also use the images shown in . The testing set was generated by adding disk blur, averaging blur and Fig. 1 Gaussian blur with zero-mean and STD 1,2. The mask with sizes 3 3, 5 5, 7 7, , 17 17, 19 19 pixels has been used, forming a

= × × × … × ×
set of 648 images. This was followed by adding a white Gaussian noise with different standard deviations and salt-and-pepper noise with different noise densities. Because the actual size of the PSF is usually unknown in practical application, in order to evaluate the performance of the different methods under such a situation, we take the size of the blurred image equal to the original image one (128 × 128) instead of its actual size (146 146) in this experiment even if the size of the mask is given. In that case, the boundary effect is then

× present.
shows some examples of the blurred and corrupted images. The Lance-Williams distance is used here as the classification Fig. 6 measure. This distance between the two images and is defined by their moment invariant vectors then decreases for all three methods. In other words, there should exist an optimal order for each type of moment invariants. This behaviour has also been observed and pointed out by Liao and Pawlak in image reconstruction due to the noise influence . In this [START_REF] Liao | On image analysis by moments[END_REF] experiment, the optimal order for CMIs is 7 (the feature vector includes 17 invariants), 7 for LMIs (the feature vector has 21 M = M = invariants), and 9 for ZMIs (with 26 invariants).

shows the detailed classification rates using the different moment invariants M = Table 2 with the optimal order. One can see from this table that in the noise-free scenario the recognition results are quite good whatever the method. The classification rates remain high for low and moderate noise levels but decrease significantly when the noise level goes up.

However, the proposed descriptors ZMIs perform better than other methods (all the rates are higher than 75 ) whatever the noise and the % noise level. Although this conclusion is drawn from only one experiment, it is in accordance with that reported in where the authors [START_REF] Teh | On image analysis by the method of moments[END_REF] pointed out that the Zernike moments have on overall better performance than other moments.

Template Matching

The objective of this additional test is to evaluate the performance of our descriptors in the case of localizing templates within a real outdoor scene image that has undergone similarity transformation and out-of-focus blur. For that purpose, two images were taken by digital camera (Panasonic DMC-FZ50) with different focus and different positions by rotating the camera. Then, nine circular areas with radius 10 pixels were extracted from to serve as templates (numbered from 1 to 9). The scale factor between two images is r = Fig. 8 (a)

obtained with the automatic scale selection . After that, the scaled template was shifted across the transformed and blurred image (

Fig.

)

. At each position, the invariants were calculated and compared with the invariants of the original template. For more detail about 8 (b) the matching procedure, we refer to Ref.

. [START_REF] Flusser | Degraded image analysis: an invariant approach[END_REF] Each moment descriptors with the optimal order obtained in the previous experiment ( 9 for ZMIs and 7 for CMIs) have been M = M = used here. Note that we did not test LMIs because they are not invariant with respect to image rotation and scaling. The matching position

' '
we consider corresponds to the location where the Lance-Williams distance ( ) reaches the minimum value, with representing the d f, g f template of the original image and the template of the transformed and blurred image. The matching results that have been obtained g based on these different moment invariants are summarized in . It can be seen that the proposed descriptors ZMIs match Fig. 8 (c) and (d) correctly for all nine templates and that it is not the case for CMIs.

Conclusions

In this paper, we have proposed a method to construct a set of combined geometric-blur invariants using the orthogonal Zernike moments. The relationship between the Zernike moments of the blurred image and those of the original image and the PSF has been established. Based on this relationship, a set of invariants to convolution with circularly symmetric PSF has been derived. The advantages of the proposed method over the existing ones are the following: [START_REF] Hu | Visual pattern recognition by moment invariants[END_REF] The proposed descriptors are simultaneously invariant to similarity transformation and to convolution. Using these invariants, the image deblurring and geometric normalization process can be well avoided;

(2) Like the method reported in , our method can also derive the even order invariants. The experiments conducted so far in very [START_REF] Flusser | Invariants to convolution with circularly symmetric PSF[END_REF] distinct situations demonstrated that the proposed descriptors are more robust to noise and have better discriminative power than the existing methods. ( 2 ) 0. T q l i j k = I q + l, q ( g ) -I q + l, q ( f ) =

The proof has been completed.

Proof of Theorem 3

can be written in a matrix form as Equation [START_REF] Flusser | Recognition of images degraded by linear motion blur without restoration[END_REF] Applying ( ) to the transformed image , it can also be expressed in a matrix form as 25 f ″

Based on the definition of and , it can be easily verified that

Γ f θ f
Substitution of ( ) and ( ) into ( ), and using the identity , we obtain A15 A17 A16 12 21 The proof has been completed.

To prove Theorem 4, we need first the following Lemma.

Lemma 3

Let Then, 2 , ) is invariant to image scaling and rotation for any 0 and 0. CL(q + l q ( f ) q ≥ l ≥ Lemma 3 can be easily proven by mathematical induction and it is thus omitted.

Proof of Theorem 4

By Theorem 1, ( 2) is invariant to convolution for any 0 and 0. Since is also invariant to convolution, it is obvious I q + k, q ( f ) q ≥ k ≥ that ( 2 ) defined in ( ) is invariant to convolution. To demonstrate its invariance with respect to image scaling and rotation, we SI q + l, q ( f ) 26

will prove the following result where ( 2 , ) is defined in ( ). CL q + l q ( f ) A19

We demonstrate ( ) by mathematical induction about . A20 l For 0, using ( ), ( ) and ( ), we have l = A19 20 25

Assume that the relationship ( ) is valid for 1, 2, , 1. Then, using ( ) and ( ), we have A20

… l - 20 25 
For ( 2 ) , using the assumption ( 2 )

( 2 ) for 0, 1, , 1, and ( ) and ( ), we deduce from ( ) CL q + l, q ( f ) CL q + i, q ( f ) = SI q + i, q ( f ) i = … l - By combining ( ), ( ) and ( ), we deduce ( ) ( ) . By Lemma 3, is invariant to image A25 A29 A31 SI q 2l,q

+ (f) = CL q 2l,q + (f) CL(q 21, q) + (f)
scaling and rotation, thus, is also invariant to image scaling and rotation. SI(q 2l,q)

+ (f)
The proof has been completed. Eighteen objects selected from a butterfly database Fig. 2 The mean relative errors of our combined invariants ZMIs for different rotated and blurred versions of the images shown in . Fig. 1 Fig. 3 The mean relative errors of our combined invariants ZMIs for different scaled and blurred versions of the images shown in . Fig. 1 Fig. 4 The similarity transformed and blurred images of ( is the translation (in pixel) along the x-axis, the translation along the y-axis, Fig. 1 The invariants of images showed in Fig. 4 Fig. 4(a 

[ 41 ] [ 42 ]

 4142 degraded by the normalized uniform disk blur with sixteen different sizes from 1 1 to 31 31. Three types of blur invariants of order up × × to 5 are calculated for the set of 288 images. The mean values of the relative errors (

  , , , denote the blur invariants, is the total number of invariants used in the experiment and | | the magnitude of j = … n n x the complex number . x We have computed the ZMIs, CMIs and LMIs up to order 1, 3, , 15, 17. The mean classification rates under different noise M = … conditions for different values of are shown in . It can be observed that the rate first increases, reaches the maximum value and M Fig.

7

 7 

  can be written as 20 Substitution of ( ) into ( ), we get A5 A4 By shifting the indices in the above equation, we have where By using ( ), we have 19 ( ) can thus be rewritten as A8 By shifting the indices in the last part of the above equation, we get where By changing the order of summation in ( ), we have A12 Since the lower triangular matrixis the inverse of the matrix , that is, , where is the identity matrix, we have ,

  have shifted the indices in the last step of the above equation. Subtracting (
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  Zhu et al. and Ji and Zhu proposed the use of the Zernike moments to construct a set of combined blur-rotation

	[41 ]		[42 ]				
					p	with repetition	p, Z p, p ,	has been used in
	the derivation of invariants. Since	Z p, p	corresponds to the radial moment	D p, p	or the complex moment	C , p	if neglecting the normalization

invariants. Unfortunately, there are two limitations to their methods: (1) Only the Gaussian blur has been taken into account, which is a special case of PSF having circularly symmetry; (2) Only a subset of Zernike moments of order 0 factor, the set of invariants constructed by Zhu et al. is a subset of that proposed by Flusser .

Table 2

 2 The classification rates ( ) of the LMIs, CMIs and the proposed ZMIs in object recognition with the optimal value of

	4(h)
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Appendix A Proof of Theorem 2

We prove this theorem by mathematical induction about . l For 0, using ( ), ( ) and , it can be easily deduced from ( ) that l = 18 19 20 Assume that Theorem 1 is valid for 1, 2, , 1, then we get … l -By using ( ), we have