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Abstract 

 

The goal of Dynamic Causal Modelling (DCM) of neuroimaging data is to study 

experimentally induced changes in functional integration among brain regions. This requires 

(i) biophysically plausible and physiologically interpretable models of neuronal network 

dynamics that can predict distributed brain responses to experimental stimuli and (ii) efficient 

statistical methods for parameter estimation and model comparison. These two key 

components of DCM have been the focus of more than thirty methodological articles since 

the seminal work of Friston and colleagues published in 2003. 

 

In this paper, we provide a critical review of the current state-of-the-art of DCM. We inspect 

the properties of DCM in relation to the most common neuroimaging modalities (fMRI and 

EEG/MEG) and the specificity of inference on neural systems that can be made from these 

data. We then discuss both the plausibility of the underlying biophysical models and the 

robustness of the statistical inversion techniques. Finally, we discuss potential extensions of 

the current DCM framework, such as stochastic DCMs, plastic DCMs and field DCMs. 
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1. Introduction 

 

Neuroimaging studies of perception, cognition and action have traditionally focused on the 

functional specialisation of individual areas for certain components of the processes of 

interest (Friston 2002). Following a growing interest in contextual and extra-classical 

receptive fields effects in invasive electrophysiology (i.e. how the receptive fields of sensory 

neurons change according to context; Solomon et al. 2002), a similar shift has occurred in 

neuroimaging. It is now widely accepted that functional specialization can exhibit similar 

extra-classical phenomena; for example, the specialization of cortical areas may depend on 

the experimental context. These phenomena can be naturally explained in terms of functional 

integration, which is mediated by context-dependent interactions among spatially segregated 

areas (see, e.g., McIntosh 2000). In this view, the functional role played by any brain 

component (e.g. cortical area, sub-area, neuronal population or neuron) is defined largely by 

its connections (c.f. Passingham et al. 2002). In other terms, function emerges from the flow 

of information among brain areas. This has led many researchers to develop models and 

statistical methods for understanding brain connectivity. Three qualitatively different types of 

connectivity have been at the focus of attention (see e.g., Sporns 2007): (i) structural 

connectivity, (ii) functional connectivity and (iii) effective connectivity. Structural connectivity, 

i.e. the anatomical layout of axons and synaptic connections, determines which neural units 

interact directly with each other (Zeki and Shipp, 1988). Functional connectivity subsumes 

non-mechanistic (usually whole-brain) descriptions of statistical dependencies between 

measured time series (e.g., Greicus 2002). Lastly, effective connectivity refers to causal 

effects, i.e. the directed influence that system elements exert on each other (see Friston et 

al. 2007a for a comprehensive discussion). 

 

This article is concerned with effective connectivity.  It provides a critical review of Dynamic 

Causal Modelling (DCM), a relatively novel approach that was introduced in a seminal paper 

by Friston et al. 2003. The DCM framework has two main components: biophysical modelling 

and probabilistic statistical data analysis. Realistic neurobiological modelling is required to 

relate experimental manipulations (e.g., sensory stimulation, task demands) to observed 

brain network dynamics. However, highly context-dependent variables of these models 

cannot be known a priori, e.g., whether or not experimental manipulation did induce specific 

short-term plasticity. Therefore, statistical techniques (embedding the above biophysical 

models) are necessary for statistical inference on these context-dependent effects, which are 

the experimental questions of interest. 
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Taken together, these “two sides of the DCM coin” invite us to exploit biophysical quantitative 

knowledge to statistically assess context-specific effects of experimental manipulation onto 

brain dynamics and connectivity. This level of broad understanding of the DCM approach is 

tightly related to the mere definition of effective connectivity, in a physical and control 

theoretical sense. This also intuitively justifies why it might be argued that in its most generic 

form, DCM embraces most (if not all) effective connectivity analyses.  

Nevertheless, existing implementations of DCM restrict the application of this generic 

perspective to more specific questions that are limited either by the unavoidable simplifying 

assumptions of the underlying biophysical models and/or by the bounded efficiency of the 

associated statistical inference techniques. This has motivated the development of many 

variants of DCM, focusing on either of the two DCM components. To date, about thirty DCM 

methodological articles have been published in the peer-reviewed literature. This makes 

them amenable to exhaustive reviewing, which we will expose in the first section of this 

article. In the second section, we will discuss the main criticisms that have (or could have) 

been raised against the existing DCM approach. Specifically, we will debate the plausibility of 

the underlying biophysical models, the robustness of the statistical inversion techniques and 

the practical issues related to its routine application. Finally, the third section discusses 

potential extensions of the current framework that address some of the issues discussed in 

this critical review and may further enhance the applicability and inferential power of DCM. 

 



DCM: a critical review 

 5 

2. Dynamic Causal Modelling: review. 

 

2.1. DCM: basics. 

 

All variants of DCMs are based on so-called “generative models”, i.e. a quantitative 

description of the mechanisms by which observed data are generated. Typically, both 

hemodynamic (fMRI) and electromagnetic (EEG/MEG) signals arise from a network of 

functionally segregated sources, i.e. brain regions or neuronal populations. This network can 

be thought of as a directed graph, where sources correspond to nodes and conditional 

dependencies among the hidden states of each node are mediated by effective connectivity 

(edges). More precisely, DCMs are causal in at least two senses: 

 

• DCMs describe how experimental manipulations ( ) influence the dynamics of 

hidden (neuronal) states of the system ( ), using ordinary differential equations (so-

called evolution equations): 

 

,         (1) 

 

where  is the rate of change of the system’s states ,  summarizes the 

biophysical mechanisms underlying the temporal evolution of , and  is a set of 

unknown evolution parameters. The structure of the evolution function  determines 

both the presence/absence of edges in the graph and how these influence the 

dynamics of the system’s states (see Figure 1). 

 

• DCMs map the system’s hidden states ( ) to experimental measures ( ). This is 

typically written as the following static observation equation: 

 

,          (2) 

 

where  is the instantaneous mapping from system states to observations, and  is 

a set of unknown observation parameters. 

 

[Figure 1 about here] 
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This hierarchical chain of causality ( ) is critical for model inversion (i.e., 

estimation of unknown parameters  and  given ), since it (ideally) accounts for potential 

“spurious” covariations of measured time series that are due to the observation process  

(e.g. spatial mixing of sources at the level of the EEG/MEG sensors). This means that the 

neurobiological/biophysical validity of both the evolution ( ) and the observation ( ) 

functions is important for correctly identifying the presence/absence of the edges in the 

graph, i.e. the effective connectivity structure. We will refer to equations 1 and 2 as the 

“modelling component” of DCM.  

 

The need for neurobiological plausibility can sometimes make DCMs fairly complex, at least 

compared to conventional regression-based models of effective connectivity, such as 

Structural Equation Modelling (SEM; McIntosh et al. 1994; Büchel & Friston 1997; Horwitz et 

al. 1999) or autoregressive models (Harrison et al. 2003; Roebroeck et al. 2005). This 

complexity, with potential non-identifiability problems, requires sophisticated model inversion 

techniques which are typically cast within a Bayesian framework: 

 

• Using statistical assumptions about residual errors in the observation process, 

equations 1 and 2 are compiled to derive a likelihood function . This 

specifies how likely it is to observe a particular set of observations , given 

parameters  of  model . 

 

• One defines priors  on the model parameters  which reflect knowledge 

about their likely range of values. Such priors can be (i) principled (e.g. certain 

parameters cannot have negative values), (ii) conservative (e.g. “shrinkage” priors 

that express the assumption that coupling parameters are zero), or (iii) empirical 

(based on previous, independent measurements). 

 

• Combining the priors and the likelihood function allows one, via Bayes' Theorem, to 

derive both the marginal likelihood of the model (the so-called model evidence) 

 

       (3) 
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and e.g., an estimator  of model parameters , through the posterior probability 

density function  over : 

 

,       (4) 

 

where the estimator  is the first order moment of the posterior density1 (the 

expected value of , given experimental data ). 

 

The model evidence is used for model comparison (e.g., different network structures 

embedded in different evolution functions ). The posterior density is used for inference on 

model parameters (e.g., context-dependent modulation of effective connectivity). We will 

refer to equations 3 and 4 as the “statistical (or model inversion) component” of DCM. 

 

This completes the description of the basic ingredients of the DCM framework. We now turn 

to the different variants of DCM for both fMRI and electrophysiological (EEG, MEG, LFP) 

data. Finally, we will examine the rationale behind the variational Bayesian method that is 

used to derive approximations to Eqs. 3 and 4. 

 

2.2. DCM for fMRI 

 

In fMRI, DCMs typically rely on two classes of states, namely “neuronal” and “hemodynamic” 

states. The latter encode the neurovascular coupling that is required to model variations in 

fMRI signals generated by neural activity. 

 

In the seminal DCM article (Friston et al. 2003), the authors choose to reduce the “neuronal” 

evolution function to the most simple and generic form possible, i.e. a bilinear interaction 

between states  and inputs . This form allows for quantitative inference on input-state 

and state-state (within-region) coupling parameters. Critically, it also enables one to infer on 

input-dependent state-state coupling modulation. This context-dependent modulation of 

                                                 
1 This estimator minimizes the expected sum of squared error . But other estimators could be 

defined on the basis of another decision theoretic cost function (see e.g., Robert, 1992). 
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effective connectivity can be thought of as dynamic formulation of the so-called “psycho-

physiological interactions” (Friston et al. 1997)2. The hemodynamic evolution function was 

originally based on an extension of the so-called “Balloon model” (Buxton et al. 1998; Friston 

et al. 2000). In brief, neuronal state changes drive local changes in blood flow, which inflates 

blood volume and reduces deoxyhemoglobin content; the latter enter a (weakly) nonlinear . 

observation equation. This observation equation was subsequently modified to incorporate 

new knowledge on biophysical constants and account for MRI acquisition parameters, such 

as echo time (Stephan et al., 2007) and slice timing (Kiebel et al. 2007). 

 

Two further extensions of the modelling component of DCM for fMRI data concerned the 

neuronal state equations. Marreiros et al. (2008a) adopted an extended neuronal model, with 

excitatory and inhibitory subpopulations in each region, allowing for an explicit description of 

intrinsic (between subpopulations) connectivity within a region. In addition, by using positivity 

constraints, the model reflects the fact that extrinsic (inter-regional) connections of cortical 

areas3 are purely excitatory (glutamatergic). Another approach by Stephan et al. 2008b 

accounts for nonlinear interactions among synaptic inputs (e.g. by means of voltage-sensitive 

ion channels), where the effective strength of a connection between two regions is 

modulated by activity in a third region. Authors argue that this nonlinear gating of state-state 

coupling represent a key mechanism for various neurobiological processes, including top-

down (e.g. attentional) modulation, learning and neuromodulation. The ensuing evolution 

function  is quadratic in the states , where the quadratic gating terms act as “physio-

physiological interactions”, effectively allowing one to specify the anatomical origin of 

context-dependent modulation of connectivity. 

 

 

2.3. DCM for EEG/MEG/LFP 

 

Biophysical models in DCMs for EEG/MEG/LFP data are typically considerably more 

complex than in DCMs for fMRI. This is because the exquisite richness in temporal 

information contained by electrophysiologically measured neuronal activity can only be 

captured by models that represent neurobiologically quite detailed mechanisms. 

The DCM paper introducing DCM for EEG/MEG data (David et al. 2006) relied on a so-called 

“neural mass” model, whose explanatory power for induced and evoked responses had been 

                                                 
2 A comparison between dynamic (DCM) and static (SEM: structural equation modelling) effective connectivity 
analyses can be found in Penny et al., 2004. 
3 Regions of the basal ganglia and the brain stem have projection neurons that use inhibitory (GABA) and 
modulatory (e.g. dopamine) transmitters. 
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evaluated previously (David and Friston 2003, David et al. 2005). This model assumes that 

the dynamics of an ensemble of neurons (e.g., a cortical column) can be well approximated 

by its first order moment, i.e., the neural mass. Typically, the system’s states  are the 

expected (over the ensemble) post-synaptic membrane depolarization and current. Each 

region is assumed to be composed of three interacting subpopulations (pyramidal cells, 

spiny-stellate excitatory and inhibitory interneurons) whose (fixed) intrinsic connectivity was 

derived from an invariant meso-scale cortical structure (Jansen and Rit, 1995). The evolution 

function of each subpopulation relies on two operators: a temporal convolution of the 

average presynaptic firing rate yielding the average postsynaptic membrane potential and an 

instantaneous sigmoidal mapping from membrane depolarization to firing rate4. Critically, 

three qualitatively different extrinsinc (excitatory) connections types are considered (c.f. 

Felleman and Van Essen 1991): (i) bottom-up or forward connections that originate in 

agranular layers and terminate in layer 4, (ii) top-down or backward connections that connect 

agranular layers and (iii) lateral connections that originate in agranular layers and target all 

layers (see Figure 2). Lastly, the observation function  models the propagation of 

electromagnetic fields through head tissues (see e.g., Mosher et al. 1999). This “volume 

conduction” phenomenon is well known to result in a spatial mixing of the respective 

contributions of cortically segregated sources in the measured scalp EEG/MEG data5. This 

forward model enables DCM to model differences in condition-specific evoked responses 

and explain them in terms of context-dependent modulation of connectivity (see e.g. Kiebel 

et al. 2007). 

 

[Figure 2 about here] 

 

Following the initial paper by David et al. (2006), a number of extensions to this “neural 

mass” DCM were proposed relating to both spatial and temporal aspects of MEG/EEG data. 

Concerning the spatial domain, one problem is that the position and extent of cortical 

sources are difficult to specify precisely a priori.  Kiebel et al. 2006 proposed to estimate the 

positions and orientations  of “equivalent current dipoles” (point representations of cortical 

sources) in addition to the evolution parameters . Fastenrath et al. 2008 introduce soft 

symmetry constraints which are useful to model bilateral homotopic sources. Daunizeau et 

al. 2009a included two sets of observation parameters : the unknown spatial profile of 

spatially extended cortical sources and the relative contribution of neural subpopulations 

                                                 
4 Marreiros et al. 2008b interpret this sigmoid mapping as the consequence of the stochastic dispersion of 
membrane depolarization (and action potential thresholds) within the neural ensemble. 
5 This volume conduction is neglected for LFP data obtained by intracerebral electrodes. 
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within sources. With these extensions, DCM for EEG/MEG data can be considered a 

neurobiologically and biophysically informed source reconstruction method. 

Concerning the temporal domain, computational problems can arise when dealing with 

recordings of enduring brain responses (e.g. trials extending over several seconds). In these 

cases it is more efficient to summarize the measured time series in terms of their spectral 

profile. This is the approach developed by Moran et al. (2007, 2008, 2009), which models 

local field potential (LFP) data based on the neural mass model described above, using a 

linearization of the evolution function  around its steady-state (Moran et al. 2007). This 

approach is valid whenever brain activity can be assumed to consist of small perturbations 

around steady-state (background) activity. In Marreiros et al. 2008, the neural mass 

formulation was extended to second-order moments of neural ensemble dynamics, thereby 

enabling to model the dispersion over the ensembles. This mean-field6 formulation rests on 

so-called “conductance-based” models a la Morris-Lecar (Moris & Lecar, 1981), which allow 

one to model gating effects at the neural ensemble level explicitly. Finally, David, 2007 

proposed a phenomenological extension of DCM similar to the gating effects in the model by 

Stephan et al. 2008b. In brief, large-scale networks are thought to “self-organize” through a 

state-dependent modulation of the evolution parameters , which can change the structure 

of the attractor manifold of neural ensembles and induce dynamical bifurcations (c.f. 

Breakspear et al. 2005). 

 

Beyond the neurophysiologically inspired formulations of DCM for electrophysiological data 

described above, two further DCM variants are noteworthy that rest on a more 

phenomenological perspective on EEG/MEG data. Chen et al. 2008 presented a DCM for so-

called “induced responses”, i.e. a stimulus- or task-related increase in frequency-specific 

power of measured cortical activity. That is, both the data features  and neuronal states  

are time series of power within frequency bands of interest. In this model, the emphasis is on 

linear versus nonlinear interactions among regions, which are expressed in terms of within-

frequency and between-frequency couplings, respectively. Penny et al. 2009 extended the 

DCM framework to the analysis of phase-coupling, where the data features  consist of 

narrowband filtered EEG/MEG measurements. In this work, the hidden states  are the 

instantaneous phase of weakly coupled oscillators whose synchronization steady-state is 

(linearly) modulated by the experimental manipulation . 

                                                 
6 Mean-field theory originally derives from statistical physics. In our context, it consists of approximating the 
interactions among all neurons within the ensemble by a (mean) field, thereby expressing the effective influence 
of the ensemble onto each of its members. Note that neural mass models are also derived from a mean-field 
treatment of ensemble dynamics (truncated to first-order moments of the ensemble density). See Harrison et al. 
2005 for a seminal application of mean-field theory to conductance-based models of neural ensembles dynamics. 
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2.4. Approximate probabilistic (Bayesian) inference 

 

According to equations 1 and 2, the measured data  are a nonlinear function of unknown 

parameters , therefore the likelihood  is not conjugate to the Gaussian priors on 

the parameters. This implies that the high-dimensional integrals required for Bayesian 

parameter estimation and model comparison (equations 3 and 4) cannot usually be 

evaluated analytically. Also, it is computationally very costly to evaluate them using 

numerical brute force or Monte-Carlo sampling schemes. This is the reason why the seminal 

DCM paper (Friston et al. 2003) introduced a variational Bayesian (VB) technique (c.f. Beal 

2003). This method had previously been evaluated (c.f. Friston 2002) for the (weakly) 

nonlinear hemodynamic model that is used for the neuro-vascular coupling in DCM for fMRI 

(see section 2.2).  

 

In brief, VB is an iterative algorithm that indirectly optimizes an approximation to both the 

model evidence  and the posterior density . The key trick is to decompose 

the log model evidence into: 

 

,       (5) 

 

where  is any density over the model parameters,  is the Kullback-Leibler 

divergence and the so-called free energy  is defined as: 

 

,       (6) 

 

where  is the Shannon entropy of  and the expectation  is taken under . From 

equation 5, maximizing the functional  with respect to  indirectly minimizes the 

Kullback-Leibler divergence between  and the exact posterior . This 

decomposition is complete in the sense that if , then . 
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The iterative maximization of free energy is done under two simplifying assumptions about 

the functional form of , rendering  an approximate posterior density over model 

parameters and  an approximate log model evidence (see Figure 3): 

• Posterior interactions between first-order moment parameters  and second-order 

moment hyperparameters  (e.g. the precision of the residual error in the 

observation process) are neglected. Consequently,  factorizes into the product of 

the two marginal densities: . This assumption of “mean-field” 

separability is also implicit in the celebrated “Expectation-Maximization” (EM) 

algorithm (Yedidia 2000). 

• The approximate marginal posterior densities above have a Gaussian fixed form. In 

turn, the first two moments (mean and covariance) of the (potentially multimodal) 

exact posterior density will be matched with those of the approximate marginal 

densities above (Figure 3). This is referred to as the “Laplace approximation” (see 

Friston et al. 2007b for full details) and the moments are called sufficient statistics, 

since they completely parameterize the approximate density.  

The ensuing VB algorithm is amenable to semi-analytical treatment (the free energy 

optimization is made with respect to the sufficient statistics), which makes it generic, quick 

and efficient.  

 

[Figure 3 about here] 

 

Critically, no major improvement of the above VB framework was proposed so far. The main 

complementary statistical contribution has been dealing with the issue of Bayesian model 

comparison for group studies7. More precisely, Stephan and collaborators (Stephan et al. 

2009) propose an additional VB algorithm addressing random effects at the between-

subjects level, i.e. accounting for group heterogeneity or outliers. This second-level analysis 

provides the posterior probability of each model and a so-called “exceedance probability” of 

one model being more likely than any other model, given the group data. It also introduced 

model space partitioning, which allows one to compare subsets of all models considered, 

integrating out uncertainty about any aspect of model structure other than the one of interest.  

Penny et al. (submitted) extended this work to allow for comparisons between model families 

of arbitrary size and for Bayesian model averaging within model families. 

 

 

                                                 
7 Not to mention the evaluation of model comparison metrics for DCM (Penny et al. 2004, Stephan et al., 2007). 
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2.5. Summary 

 

Taken together, these contributions allow for statistical inference on context-specific 

modulation of effective connectivity, based on biophysically informed models of macro-scale 

neuronal dynamics. Both components of DCM rely on specific assumptions that may or may 

not be violated when analysing empirical data. In the following, we review the main criticisms 

that have (or could have) been levelled against DCM and its underlying assumptions. 

 

 

 

3. Dynamic Causal Modelling: criticisms. 

 

3.1. Plausibility of the biophysical modelling 

 

Neuroanatomical and neurophysiological studies have been crucial in motivating the basic 

modelling assumptions that underlie DCMs for fMRI and electrophysiological data (for 

references, see the original DCM papers). However, one may question whether all 

neurobiological facts relevant for explaining neuronal population dynamics are already 

represented by existing DCMs. This question is of particular importance for DCMs of 

electrophysiological data, which have much more fine-grained representations of neuronal 

mechanisms than DCM for fMRI. 

 

For example, macro-scale propagation effects, mediated by distance-dependent lateral 

connections, have not been properly accounted for8. These effects can be thought of as 

wave propagation in a complex medium, leading to spatiotemporal pattern formation or self-

organization. Since the early work by Amari (Amari 1977), much effort has been invested in 

developing a neural field theory (e.g., see Deco et al. 2008 and references therein); 

incorporating these ideas into the DCM framework may prove fruitful. 

 

Also, it is well known that neurons are subject to internal (e.g., thermal) noise, which may still 

have an impact at the population scale (see e.g., Soula and Chow, 2007 for “finite size” 

effects). If this is the case, the neural ensemble dynamics would deviate from the mean-field 

theoretical treatment that underlies most current modelling efforts in macro-scale neural 

dynamics (including DCMs). 

 

                                                 
8 But see Daunizeau et al, 2009a for a “standing wave” (0th-order) approximation to local propagation effects. 
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Perhaps most importantly, there are several neurophysiological processes at the micro-scale 

that have been neglected in the current DCMs, including: 

• Activity-dependent plasticity, i.e. continuously modified activity-dependent efficacy of 

synaptic transmission. These include different forms of short-term plasticity, such as 

synaptic depression/facilitation or spike-timing dependent plasticity, and long-term 

plasticity, such as long-term potentiation (LTP)- and depression (LTD). 

• Dendritic backpropagation, i.e. the backpropagation of action potentials from the axon 

hillock back to the end of the dendritic tree (through active sodium conductances and 

voltage-gated calcium channels, which are not activated by normal excitatory 

postsynaptic potentials). This mechanism might be important for various phenomena, 

such as Hebbian-like learning, dendro-dendritic inhibition and conditional axonal 

output (Magee & Johnston 1997; Larkum et al. 2005; London & Häusser 2004). 

An important task for the future will be to evaluate whether the above processes are 

necessary for explaining neuronal population dynamics as observed with presently available 

recording techniques, and whether their parameters can actually be identified from the data. 

 

Concerning DCM for fMRI, the above phenomena are not explicitly modelled9. This may (or 

may not) be a lesser concern as for electrophysiological DCMs, since it is unlikely that these 

fine-grained mechanisms are accurately reflected in and can be inferred from BOLD data. 

Instead, physiological details of the neuro-vascular coupling are perhaps more important 

(see Stephan et al. 2004 for review). So far, it neglects the potential influence of inhibitory 

activity on the hemodynamic response, which is a likely explanation for deactivations (Sotero 

and Trujillo, 2007; Shmuel et al. 2006). Furthermore, there is no realistic account of the 

metabolic cascade that relates synaptic activity and neuronal metabolism to the 

vasodilatation kinetics (Riera et al. 2006). This is mainly due to the simplistic account of 

neuronal activity in DCMs for fMRI, which does not disambiguate between e.g., postsynaptic 

membrane depolarization and presynaptic firing rate. Also, DCM for fMRI has also ignored 

the important role of glial cells (Takano et al., 2006; Iadecola & Nedergaard, 2007). Finally, a 

possible extension of the biophysical forward model in DCM is to take into account task-

related physiological influences, e.g. of an endocrine, peripheral-autonomic or 

neuromodulotory sort (see Gray et al., 2009 for a review and Reyt et al., submitted for a first 

experimental description of this issue in the context of DCM). 

 

Clearly, given the complexity of the models and the range of additional physiological 

mechanisms that may yet have to be accounted for, validation is an important issue for DCM 

                                                 
9 But see David 2007 & 2008 and Stephan et al, 2008b for phenomenological accounts of activity-dependent 
plasticity effects. 
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(as for any other model of neuroimaging data). Simulations and experimental studies in 

humans and animals have been performed to address the reliability (Schuyler et al. 2009), 

face validity (e.g. Friston et al. 2003, Stephan et al. 2008b), construct validity (e.g. Penny et 

al. 2004a) and predictive validity (David et al. 2008; Moran et al. 2008) of different DCMs. 

Arguably, the hardest, but also most important challenge is to establish predictive validity.  

Animal studies will be indispensable for this task.  For example, Moran et al. (2008) 

demonstrated that a DCM of steady-state electrophysiological responses correctly inferred 

changes in synaptic physiology, following a neurochemical manipulation, which were 

predicted from concurrent microdialysis measurements.  In a next step, ongoing rodent 

studies test whether DCMs can infer selective changes in specific neuronal mechanisms that 

result from controlled experimental manipulations; e.g. changes in synaptic plasticity and 

spike-frequency adaption following application of both agonists and antagonists of the same 

transmitter receptor.  

 

Perhaps the most far-reaching experimental assessment of the validity of DCM analyses so 

far was done by David et al. (2008), who performed concurrent fMRI and intracerebral EEG 

measurements to measure the spread of excitation in a genetically defined type of epilepsy 

in rodents.  This study was the starting point for a methodological discussion, resulting in a 

series of articles in this issue (see the companion papers by Roebroeck et al. and Friston 

and Valdes). In brief, the study by David et al. (2008)  (i) provides supportive evidence for the 

validity of DCM for inferring network structure from fMRI data and (ii) stresses the importance 

of having a model of neurovascular coupling.  Clearly, this preliminary validation of DCM for 

fMRI is not fully sufficient and further dedicated experimental studies will be needed. Further 

invasive in vivo measurements of electrical (e.g. implantable miniaturized probes) and optical 

(e.g. two-photon laser scanning microscopy) signals are likely to be very useful for such an 

experimental validation (Riera et al., 2008).  

 

 

3.2. Robustness of the statistical inference techniques 

 

Criticisms can also be raised against the statistical component of DCM, which we will 

categorize into two subgroups, namely “frequentist” and “technical” criticisms. We will quickly 

address the former (which might have arisen from a misunderstanding of the Bayesian 

framework) and then focus on the latter (which are valid). 

 

 “Frequentist” concerns typically oppose the mere Bayesian approach in DCM: 
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• It has been argued that both the number of parameters and the complexity of the 

models prevent any robust parameter estimation. Within a Bayesian framework, the 

role of the priors is to regularize or finesse the “ill-posedness” of the inverse problem. 

Informative priors basically reduce the effective degrees of freedom by constraining 

the parameters within a plausible range. This means that it is always possible to 

quantify the plausibility of any parameter value, given the data  (i.e. the posterior 

density). If two parameters are redundant (as they have similar effects on the data), 

then they will have a high posterior covariance, which signals a non-identifiability 

issue. In turn, the model evidence diminishes towards zero10. This is important, since 

such a model will be penalized for being non-identifiable, when compared with a 

simpler model (that is more identifiable). 

• It has been argued that the proposed statistical framework cannot be used to formally 

test DCMs, in the sense that it cannot falsify them. Within a Bayesian framework, 

model comparison is formally a relative falsification approach, whereby less likely 

models are rejected against a more plausible one (given the data ). In other words, 

rather than testing against the (improbable) null hypothesis, the Bayesian formalism 

invites us to compare an arbitrarily large set of potentially plausible models (of 

relatively similar a priori plausibility). To relate this to the first point, a non-

identifiability issue can (and should) cause the (relative) falsification (c.f. “Occam’s 

razor”). 

• It has been argued that selecting a model based on the model evidence does not 

ensure that it has the greatest generalizability (as measured by e.g., cross-validation 

techniques). Within a Bayesian framework, models are compared on the basis of 

their plausibility, given all available data. Using informative priors actually prevents 

overfitting (i.e. fitting the noise), which is the cause of incorrect predictions on yet 

unobserved data. Furthermore, while a mathematically formal relationship between 

model evidence and generalisation error has yet to be established, previous studies 

have demonstrated a close correlation between the two indices (e.g. MacKay 1992). 

 

Beyond these general criticisms of Bayesian approaches, “technical” (but founded) concerns 

can be raised specifically against the variational Bayesian scheme that is used to derive 

approximate Bayesian inference. 

 

First of all, the free energy optimization might be difficult, because the free energy itself can 

have multiple local maxima. This is important, since a local optimization scheme could 
                                                 
10 This is because the entropy term in the decomposition of the log model evidence (see equations 5 and 6) grows 
towards minus infinity when the posterior correlation (normalized covariance) increases towards to 1. 
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unpredictably bias both the approximate posterior density and the approximate model 

evidence. In turn, this could be manifest as inconsistent parameter estimations and model 

comparisons across a set of repeated experiments (e.g. across trials or subjects). Several 

experimental studies have provided an experimental validation of the reproducibility of DCM 

inference within (Schuyler et al. 2009) or across subjects (Garrido et al., 2007, David et al., 

2008 and Reyt et al., submitted). Nevertheless, the significance of this potential local optima 

issue has not been extensively assessed so far. Critically, the choice of the priors may 

drastically change the landscape of the free energy: more informative priors will dampen the 

local maxima that are away from the a priori plausible regions. This is important, since the 

free energy landscape determines the convergence of the free energy optimization 

scheme11. For example, updating the parameters  of the evolution function  (from their 

prior to their posterior expectation) might induce a bifurcation, i.e. a qualitative change in the 

dynamics of the system’s states . If this is the case, then the iterative update of the free 

energy will also experience a bifurcation, which may or may not confound the optimization 

scheme. Taken together, these potential concerns suggest that a thorough analysis of the 

free energy optimization procedure would be useful, in relation to both the dynamical 

repertoire of the modelled systems and the choice of the priors. 

 

Second, even when the global maximum of the free energy is reached, a risk of biased 

inference still remains, due to the approximations in the posterior density (see section 2.4). 

For simple generative models12, it is known that VB approximate posterior densities have a 

bias towards overconfidence (c.f. Beal 2003), i.e. VB posterior confidence intervals are 

correctly centred, but are too tight13. However, the presence of nonlinearities in either the 

evolution ( ) or the observation ( ) function significantly changes the original VB tendency 

to be overconfident (Daunizeau et al., 2009b)14. Chumbley et al. 2007 validated posterior 

confidence intervals on low-dimensional parameter vectors obtained with the above VB 

scheme, by comparing them to those derived from standard sampling schemes. This 

investigation gave reassuring results in that DCM parameter estimation was not significantly 

compromised by the (potentially crude) mean-field/Laplace approximation. However, one 

might still wonder how much model comparison based on a lower bound to the model 

                                                 
11 For example, the Newton optimization scheme can enter limit cycles if the iterative updates bounce between 
different local maxima. 
12 That is, models belonging to the exponential family. 
13 This is because the mean-field approximation neglects probabilistic dependencies between sets of model 
parameters. 
14 Under the mean-field/Laplace approximation. 
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evidence15 (and not on the model evidence per se) can be trusted. From equation 5, it can be 

seen that the tightness of the bound scales with the statistical resemblance between the true 

and the approximate posterior densities. Therefore, the mean-field/Laplace approximation 

might be more problematic for model comparison than for parameter estimation. An informal 

consensus in the machine learning community is that VB algorithms should be numerically 

evaluated (using both simulated and real data) for each class of generative models. For 

DCMs, this extensive evaluation currently proceeds by the progressive accumulation of 

methodological and experimental studies. 

 

Altogether, these properties of the variational Bayesian approach make it potentially sensitive 

to the above “frequentist” concerns. Model identifiability is such a subtle issue. Consider the 

case where (partial) parameter redundancy is common to all compared models (as, e.g., 

arising from the neurovascular coupling in DCM for fMRI, see Stephan et al., 2007). In this 

situation, the entropy term in Eq. 6 might dominate (see footnote 11). As a consequence, 

model comparisons might become inconclusive (no pronounced difference in the log model 

evidences). This means that parameter identifiability issues could potentially impact on 

model identifiability, and, in turn, lead to an overly conservative assessment of model 

generalizability. The situation would be different if the free energy was computed without the 

mean-field/Laplace approximation. This is because more global forms of posterior 

uncertainty could be accounted for (e.g., monomodal versus multimodal posterior densities), 

which would increase the statistical efficiency of model comparison.  

 

Considering the potential problems discussed above, one might suggest using an “exact” 

sampling scheme instead of a VB algorithm. Theoretically indeed, this would be an 

acceptable solution, had the numerical curse of dimensionality16 no practical implications 

whatsoever. But actually, experimental DCM studies now typically involve comparing a few 

hundreds models.  In the case of inverting a relatively sparse DCM with, say, four regions, 

VB optimizes about four hundred (scalar) sufficient statistics to approximate the joint 

posterior density17. In comparison, a sampling algorithm would require approximately 1040 

samples to represent it. 

 

 

                                                 
15 In DCM, the evaluation of the free energy under the mean-field/Laplace approximation is itself approximated 
using a third-order truncation of the expectations involved (see e.g., Friston et al., 2007b). The resulting value for 
the free energy might not be a lower bound to the free energy. However, this says nothing about the tightness of 
the approximation. 
16 If it takes n samples or bins to correctly represent a 1-dimensional probability density function, then it takes nd 
samples or bins to represent a d-dimensional density. 
17 Assuming n=100 and d=20. 
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3.3. Practical issues 

 

In addition to the potential modelling and statistical concerns above, a DCM user will face 

many practical issues.  Here, we summarize only some of the most crucial conceptual points; 

for more details, see Stephan et al. (in press). 

 

In a nutshell, DCM requires the scientist to make two choices: an experimental design for 

measuring brain responses and a set of alternative models  for explaining these data.   

 

A question frequently encountered in practice is whether there exists a way to optimize the 

experimental design for a DCM study. Theoretically, the answer is yes: (i) define the question 

of interest in terms of a model comparison problem and (ii) choose an experimental paradigm 

that maximizes the discriminability between the different models in . The first step is 

particularly important: it stresses that good experiments should enable one to decide 

between competing hypotheses and thus models. It also highlights that DCM is not a tool for 

exploratory analyses of data; even when hundreds or thousands of models are compared, 

the dimensions of model space are always related to a priori hypotheses about which 

neuronal populations and which mechanisms are important for explaining the phenomenon 

of interest. Concerning the second step, statistical approaches for solving this problem are 

conceivable, but are still under development (Daunizeau et al., in preparation). 

 

Choosing the model set  in a principled and hypothesis-driven way is crucial because any 

inference on model structure, via model comparison, depends on  (c.f. Rudrauf et al., 

2008; Stephan et al. 2009). This definition of model space, representing competing 

hypothesis, is the “art” of scientific inquiry. A subtle issue is that the comparison set   is 

constrained by the current implementations of DCM. This means that there might not be one 

model in  that corresponds, stricto sensu, to the scientific question of interest. For 

example, questions such as “Is this network processing information in a serial or parallel 

fashion?” might be answered best by defining and comparing two families of models (two 

subsets of  ; c.f.  Penny et al., submitted). In general anyway, the choice of the model set 

 is the most subjective part of any DCM analysis and has to be carefully motivated. 

 

Beyond model space, further choices have to be made by the user.  
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First, prior to DCM, critical decisions about data pre-processing and feature selection have to 

be made. For example, in fMRI, the regions of interest must be chosen; here, inter-subject 

variability might be problematic for defining consistent regions of interest across subjects. In 

EEG/MEG, a DCM user has to choose between analyses of evoked responses, induced 

responses, phase transformed data, etc. This choice is often dictated by the question of 

interest, i.e. the specific feature of the data the user wants to model or computational 

constraints (e.g. long recordings of steady-state responses are difficult to analyse in the time 

domain). But in general, feature selection (size of the regions of interest in fMRI18, number of 

spatial modes in EEG/MEG, etc…) influences the results of statistical inference in ways that 

can be difficult to assess. Critically, model selection cannot be invoked for optimizing feature 

selection. This is because feature selection determines the “data” that are analyzed with 

DCM and model selection (Bayesian or frequentist) is only valid when different models are 

evaluated using the same dataset. In fMRI, this turns out to be a critical problem when willing 

to compare networks with different regions of interests19. 

 

 

Second, users have to decide whether the underlying assumptions of both the modelling and 

statistical components of DCM are valid in their specific context. This is obviously a very 

general data analysis issue, but the sophistication of DCM makes it very acute. Just to 

mention one example, let us consider the “missing region” problem: is the unmodelled 

activity in the rest of brain actually sufficiently weak or unspecific not to invalidate the DCM 

analysis20? More generally, how can DCM users check that the whole analysis stream is 

valid, i.e. that the inference on the network of interest is robust? Future solutions to this 

problem may arise from diagnostic procedures that examine the model residuals for structure 

indicative of the existence of unmodelled processes. 

 

Last but not least, the user might simply wonder which neuroimaging modality (EEG, MEG or 

fMRI) is appropriate to assess effective connectivity (and its context-specific modulation). 

This touches upon each and every aspect of any DCM (and the like) analysis, and is 

obviously not a simple question. To our knowledge, among the abundant literature about 

DCM (and, more generally, brain connectivity), there is not a single study about this issue. 

One might argue that, loosely speaking, fMRI (respectively, EEG/MEG) is well suited for 

identifying the nodes (respectively, the edges) in the graph. This would basically question the 

                                                 
18 See Woolrich et al., 2009 for this specific issue. 
19 This is not a problem in EEG/MEG, since the number and position of the regions determines the generative 
model , not the data feature . 
20 The “missing region” problem has actually been raised as a potential deep methodological confound. 
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motivation for both fMRI connectivity analyses and EEG/MEG source localization. Obviously, 

neither is this perspective an established consensus, nor has it been really debated21.  

 

 

3.4. Summary 

 

DCM is so far the only existing framework that attempts to embed realistic biophysical 

models of neural networks dynamics into statistical data analysis tools that target key 

experimental neuroscientific questions. However, as outlined in this review, there are a 

number of caveats and limitations to the DCM approach that require attention. Critically, 

finessing the approach might overcome some challenges, while aggravating others at the 

same time. For example, extending the generative models towards further biophysical 

realism (and hence increasing their complexity) might introduce identifiability problems and 

render their inversion unstable. Generally speaking, the DCM approach must strike at a 

compromise between biophysical realism and model identifiability; both are required to 

answer difficult questions about brain function.  

 

 

 

4. Discussion 

 

The core principle of the DCM approach is to propose a quantitative tool for defining a 

context-dependent structure-function relationship. As is hopefully apparent from this critical 

review, the validity of DCM relies upon a careful balance between the realism of the 

underlying biophysical models and the feasibility of the statistical inversion. Along these 

lines, several potentially important extensions of the existing DCM framework can be 

envisaged: 

• Field DCMs:  By incorporating elements of neural field theory, field DCMs could 

account for local macro-scale propagation effects. Among other phenomena, this 

could be helpful to assess within-region local specificity (e.g. columnar specificity in 

primary visual cortex) and interaction through locally multivariate effects. 

• Stochastic DCMs:  Accounting for stochastic inputs to the network and their 

interaction with task-specific processes may be of particular importance for studying 

                                                 
21 This sort of question is somehow related to the so-called “EEG/FMRI fusion” problem, in which one tries to 
infer some common parameters from joint EEG/FMRI datasets (see e.g., Daunizeau et al. 2007 or Valdes-Sosa et 
al., 2009). 
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state-dependent processes, e.g. short-term plasticity and trial-by-trial variations of 

effective connectivity. In addition, provided that the probabilistic inversion schemes 

are properly extended (c.f. Friston et al., 2008; Daunizeau et al. 2009b), this could 

also increase the stability of the statistical treatment of DCM (e.g. robustness to 

“missing regions”). 

• Plastic DCMs: Long- and short-term synaptic plasticity plays a key role for many 

cognitive processes, such as learning and decision-making (c.f. Den Ouden et al., in 

revision). An attractive goal is to extend the current DCM framework and, under due 

consideration of the limits of statistical inversion, represent different neurobiological 

mechanisms of synaptic plasticity more explicitly, such that their relative importance 

for a particular cognitive or neurophysiological process can be disambiguated by 

model selection. Since aberrant plasticity is a central pathomechanism in many brain 

diseases, developing DCMs that can distinguish between different aspects of synaptic 

plasticitiy would have an immense potential for establishing physiologically 

interpretable diagnostic markers in e.g., psychiatry (Stephan et al., 2009b) and 

epilepsy (David et al, 2008). 

 

 

In addition to these future directions of DCM development, we would like to highlight a 

number of questions that are relevant for any effective connectivity analysis (not just DCM) 

but, to our knowledge, have not been thoroughly investigated yet: 

• Generally, what are the most promising experimental strategies for validating 

biophysical (and other) models of effective connectivity and neural ensemble 

dynamics? More specifically, how do we better integrate theoretical modelling work 

on macro-scale models and electrophysiological animal studies on neuronal functions 

at the micro-scale22?  Can we exploit recent advances in measuring neural population 

activity, e.g. by two-photon imaging (Göbel et al. 2007), or for manipulating specific 

elements of neural circuits through optogenetic methods (Airan et al. 2007)?  

• Can we provide users with diagnostic tools concerning the validity of their model 

inversion? Modellers know the critical assumptions and potential pitfalls of their 

methods, but theoretically less educated users would benefit from guidance. 

                                                 
22 The subtle issue here is that there is a priori no reason to believe that properties that are “interesting” at the 
micro-scale are responsible for the emergent properties at the macro-scale… 
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• Can we identify the best (combination of) neuroimaging modalities to assess effective 

connectivity? In other words, can we identify the respective sensitivity of, for example, 

EEG and fMRI to different biophysical phenomena that underlie macro-scale network 

dynamics? 

 

Addressing questions like these will be important for future progress in inferring mechanisms 

in neuronal systems, such as effective connectivity, from non-invasively recorded brain 

responses.  We believe that DCM will play a major role in this endeavour.  Its biophysically 

grounded representation (i) enables a more fine-grained interpretation of inferred 

mechanisms in neural systems than purely statistical models of effective connectivity, going 

beyond the mere detection of coupling effects at the macro-scale, (ii) stimulates 

communication with experimentalists working with other methods and at other scales than 

human neuroimaging, such as animal electrophysiologists, and (iii) facilitates specification of 

neurophysiological experiments for model validation. In this paper, we have discussed the 

strengths and caveats of both the conceptual and statistical foundations of DCM.  We hope 

to have illustrated that its potential rests on maintaining a balance between increasingly 

realistic biophysical models and advances in sophisticated statistical methods for model 

inversion and comparison; both lines of progress must be given a solid basis through 

systematic validation studies. As an open conclusion, we would like to quote F. Egan and 

R.J. Matthews, who in their remarkably synthetic epistemological essay about cognitive 

neuroscience (Egan and Matthews, 2006) state: 

“What is attractive about neural dynamic systems approaches such as DCM is the possibility 

that through causal modelling of various cognitive tasks, neuroscience might develop a set of 

simultaneous dynamical equations that, like the dynamic equations for other physical 

systems (e.g., the Navier-Stokes equations for fluids), would enable us to predict the 

dynamic behaviour of the brain under different sensory perturbations and various non-

stimulatory contextual inputs (such as attention). […] Of course, the structure-function 

relationships in question will not necessarily be those that so-called ‘cognitivists’ have in 

mind, since neither structure nor function will be of the sort they have in mind. But it will be a 

kind of structure-function relationship that will do what we expect an explanation of cognition 

to do, namely explain how cognition is possible in biological creatures like us.” 
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Figure legends 

 

 
 

Figure 1: Two equivalent graphical representations of a DCM structure. A: time-

dependent directed acyclic graph (DAG), which depicts the (time-dependent) conditional 

dependencies between hidden states. Nodes 1, 2 and 3 represent brain regions. Edges are 

shown, which connect the current state of e.g., region 2 to the state of region 1,  later in 

time. This state-space representation explicitly relies on temporal precedence to express the 

influence regions exert on one another. This prevents any instantaneous state-state coupling 

(within regions). The continuous evolution equation of a DCM (see equation 1 in the text) 

arises from taking the limit . B: equivalent time-invariant effective connectivity graph, 

which summarizes (possibly) cyclic structure of the conditional dependencies. State-state 

effective connectivity is here quantified using parameters . In addition, input-

state coupling ( ) and input-dependent state-state coupling modulation ( ) are shown. In 

all variants of DCM, these three coupling and modulatory effects are modelled as unknown 

parameters. 
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Figure 2: DCM for EEG/MEG data.  Right: neuronal features at the micro-scale that affect 

the level of the neural ensemble, i.e. at the mesoscale (centre): (i) sigmoidal transformation, 

describing how mean postsynaptic membrane potential is linked to mean presynaptic firing 

rate, and (ii) temporal convolution (kernel shown) of mean presynaptic firing rate yielding 

mean postsynaptic membrane depolarization. Centre: the meso-scale properties that affect 

the macro-scale (left), i.e. within-region invariant connectivity structure between pyramidal 

cells (PC), excitatory interneurons (EI) and inhibitory interneurons (II) subpopulations across 

cortical layers. Left: the macro-scale effective connectivity structure. 

 



DCM: a critical review 

 35 

 

 
 

Figure 3: The mean-field/Laplace approximation. The variational Bayesian approach 

furnishes an approximation to the marginal posterior densities of subsets of unknown model 

parameters . Here, the 2D landscape depicts a (true) joint posterior density  and 

the two black lines are the subsequent marginal posterior densities of  and , 

respectively. The mean-field approximation basically describes the joint posterior density as 

the product of the two marginal densities. In turn, stochastic dependencies between 

parameter subsets are replaced by deterministic dependencies between their posterior 

sufficient statistics (Beal 2003), The Laplace approximation further assumes that the 

marginal densities can be described by Gaussian densities (red dotted lines).  


