1	NRMICRO-09-068V3
2	
3	
4	
5	A look behind closed doors:
6	Interaction of persistent viruses with dendritic cells
7	
8	
9	
10	
11	Mélanie Lambotin ^{‡, §} , Sukanya Raghuraman [#] , Françoise Stoll-Keller ^{‡, §} ,
12	Thomas F. Baumert ^{‡, §, ¶} , and Heidi Barth ^{‡, §,} *
13	
14	
15	[‡] Inserm, U748, Strasbourg, France; [§] University of Strasbourg, France; [¶] Service
16	d'Hépatogastroénterologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France;
17	[#] Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases,
18	National Institutes of Health, Bethesda, USA
19	
20	
21	* Corresponding author: Dr. Heidi Barth, Inserm, U748, Strasbourg, France.
22	E-mail: barth@unistra.fr
23	
24	Abstract word count: 99
25	Text word count: 5167
26	
27	

1 Abstract

2 Persistent infections with human immunodeficiency viruses and hepatitis B and C viruses are a 3 major cause of morbidity and mortality world-wide. Dendritic cells (DCs), as sentinels of the 4 immune system are crucial in the generation of protective antiviral immunity. Recent advances 5 in the study of the role of DCs during infection with these viruses provide insights into the 6 mechanisms used by these viruses to exploit DC function to evade innate and adaptive 7 immunity. In this review we highlight current knowledge on the interaction between DCs and 8 these viruses and the underlying mechanisms that might influence the outcome of viral 9 infections.

1 Introduction

The immune response to viral infections is a complex interplay between the virus and the 2 innate and adaptive immune response and is aimed at eradicating the pathogen with minimal 3 damage to the host. Dendritic cells (DCs) are a specialized family of antigen-presenting cells 4 (APCs) that effectively link innate recognition of viruses to the generation of the appropriate 5 type of adaptive immune response ¹. DCs are continuously produced from hematopoietic stem 6 7 cells within the bone marrow and positioned at the different portals of the human body, such as 8 the skin, mucosal surfaces and the blood, giving them the opportunity to instantaneously encounter invading pathogens early in the course of an infection². 9

10

11 DCs comprise a heterogeneous family. This heterogeneity arises at several levels, including their anatomical location, phenotype, and function (Table 1)². Langerhans cell (LCs) 12 form a long-lived population of stellate DCs in the epidermis. Interstitial DCs comprise the DCs 13 found in all peripheral tissues, excluding the LCs of the epidermis. The hematopoietic stem cell 14 also gives rise to two other main DC subsets in the blood: myeloid (mDCs) and plasmacytoid 15 DCs (pDCs). DCs are equipped with a set of varied pattern recognition receptors (PRRs), such 16 as Toll-like receptors (TLRs), through which they sense and process viral information and 17 become activated (Table 1). Following activation, DCs migrate to the regional lymph nodes 18 where they appear as mature interdigitating DCs within the T cell-dependent areas. As a result 19 20 of viral antigen uptake and presentation on the surface in complex with major histocompatibility 21 complex (MHC) class I and II molecules, DCs trigger an immune response in any T cell that possesses a cognate receptor specific for the viral-peptide-MHC complexes being presented 22 on the DC surface ¹. 23

24

The different DC subsets appear to have evolved over time to acquire both distinct and overlapping functions in order to better defend the host. Myeloid DCs and pDCs function in both innate and adaptive immunity and provide a critical link between the two arms of immunity upon viral infection ³. Following activation, mDCs produce IL-12 and IL-15 that in turn stimulate

IFN-y secretion by natural killer (NK) cells, promote the differentiation of CD4+ T helper (Th) 1 2 cells into Th type 1 cells and CD8+ T cells into cytotoxic T cells that contribute to viral 3 clearance either by killing infected cells directly through the release of cytolytic mediators, e.g. granzyme, or indirectly by secreting Th1-type cytokines that inhibit viral replication (Figure 1). 4 In contrast to mDCs, which may have mainly evolved to prime and activate anti-viral T-cells, 5 pDCs represent the key effector cells in the early anti-viral innate immune responses by 6 7 producing large amounts of type I interferon upon viral infection. Type I interferons (IFN- α/β) released by pDCs have not only potent antiviral activity but also support subsequent steps of 8 antiviral immunity including activation of natural killer (NK) cell-mediated cytotoxicity and CD4+ 9 and CD8+ T cell differentiation and survival⁴. In addition, pDCs also have an overlapping role 10 11 as antigen-presenting cells ⁵.

12

13 The importance of DCs in the clearance of viral infection has been shown in several viral infections, such as the common respiratory viral pathogens respiratory syncytial virus 14 (RSV) and influenza virus ^{6,7}. DCs also play an important part in the control of blood-borne 15 viruses, of which the most common and deadly are the hepatitis B virus (HBV), hepatitis C 16 virus (HCV), and human immunodeficiency viruses (HIV-1,-2). Patients who spontaneously 17 18 clear HBV and HCV infection exhibit a strong multi-epitope specific CD4+ and CD8+ T cell response that probably reflects efficient priming and activation of anti-viral T cells by DCs⁸⁻¹¹. 19 However, viral clearance after HBV, HCV or HIV infection is not always possible and together 20 21 these viruses have created a global health problem of substantial proportions. Not only do they establish asymptomatic persistent infections with potential oncogenic sequelae, but they also 22 cause significant morbidity and mortality (Table 2). HIV infection causes AIDS (acquired 23 24 immune deficiency syndrome) that is characterized by profound immunosuppression and a diverse variety of associated opportunistic infections ¹². Worldwide, HBV and HCV have 25 infected more than 370 and 130 million people respectively ¹³ and are the two major causes of 26 chronic liver disease with its associated complications including liver cirrhosis, liver failure and 27

hepatocellular carcinoma ¹⁴. A common denominator in all these persistent infections is the
 weak and narrowly focused anti-viral T-cell response ⁸⁻¹¹.

3

4 Due to their central role in the initiation of the anti-viral immune response, DCs are 5 ideal targets for viruses to exercise their immune evasion strategies and in fact viruses that 6 cause persistent infection appear to have perfected the art of evading the pathogen recognition 7 and elimination properties of the DC (Box 1). Gaining a better understanding of these 8 mechanisms in virus-infected DCs may enable us to better understand virus-host interaction 9 and in turn provide newer perspectives for the therapy of persistent infections as well as the 10 design of vaccines.

11

This review highlights the latest advances in our understanding of the interplay between DCs and viruses that cause persistent viral infections. We will focus on the interaction of HBV, HCV and HIV with different subtypes of DCs, outlining diverse outcomes of the virus-DC interaction and its relevance to viral pathogenesis and the mechanisms that the viruses have developed to interfere with the normal response of the host.

1 Do persistent viruses infect DCs?

The presence of DCs within the skin, the blood and particularly within the mucosal surfaces 2 and their ability to take up antigen at these sites predisposes DCs to function as primary target 3 4 cells for viruses. It is therefore possible that viruses establish persistence by directly infecting DCs. It is not unreasonable to assume that replication of the viral genome along with the 5 expression of viral antigens would interfere with signaling pathways in DC or directly impair DC 6 7 function, rendering infected DCs less able to stimulate T cell responses. For example, herpes 8 simplex virus 1 ICP47 protein and human cytomegalovirus US6 protein are known to inhibit loading of antigenic peptides onto MHC class I molecules, thereby interfering with the ability of 9 infected DCs to prime naive T cells efficiently ¹⁵. 10

11

12 HIV. Langerhans cells, the professional APCs of the epidermis, were the first DCs reported to be susceptible to HIV-1 infection. Since then mDCs and pDCs isolated from the blood of HIV-13 infected patients have been shown to be infected by HIV-1 (reviewed in ¹⁶). However, HIV 14 replication in DCs is generally less productive, and the frequency of HIV-infected DCs in vivo is 15 often 10-100 times lower ¹⁷ when compared to HIV infection rates observed in CD4+ T cells. In 16 vitro studies indicated that on average only 1-3% of mDCs and pDCs from healthy blood 17 18 donors can be productively infected by both primary and laboratory-adapted HIV, as detected by intracellular staining of HIV p24 protein ¹⁸. Immature DCs have been reported to be more 19 susceptible to productive infection than mature DCs ¹⁹ which can be partly explained by the 20 enhanced capacity of immature DCs to acquire viral antigen. During maturation of DCs the 21 ability to capture antigens through macropinocytosis and receptor-mediated endocytosis, 22 rapidly declines and the DCs instead assemble complexes of antigen with either MHC class I 23 24 and MHC II¹. Furthermore, HIV replication in pDCs was observed to increase substantially following CD40 ligation ²⁰, a signal physiologically delivered by CD4+ T cells. Thus, HIV 25 replication in pDCs may be triggered through the interaction with activated CD4+ T cells within 26 the extrafollicular T-cell zones of the lymphoid tissue, suggesting that pDCs serve as viral 27 reservoirs for CD4+ T cells. 28

1 HCV. HCV genomic RNA has been detected in pDCs and mDCs directly isolated from the blood of HCV-infected patients ^{21, 22} and it was initially believed that DCs were susceptible to 2 HCV infection. However, using a strand-specific semi-quantitative reverse transcriptase-3 polymerase chain reaction (RT-PCR), Goutagny and colleagues observed the replicative 4 intermediate in only a small percentage of DCs isolated from HCV-infected patients (3 of 24 5 HCV-infected patients) indicating that HCV replication in DCs occurs at a lower frequency 6 when compared to hepatocytes, the main reservoir of HCV²¹. Studying HCV in vitro is difficult 7 due to the lack of a robust in vitro propagation system (Box 2). To study HCV infection of DCs 8 in vitro, monocyte-derived DCs (MoDCs) of healthy individuals were incubated with HCV RNA 9 10 positive serum. The replicative intermediate was subsequently detected in MoDCs, indicating that DCs may support at least the first steps of the viral life-cycle ²³. However, following 11 incubation of MoDCs and subsets of blood DC with infectious recombinant HCV neither viral 12 replication nor HCV protein synthesis could be detected ²⁴⁻²⁸ suggesting that HCV may infect 13 DCs but does not result in a productive infection. 14

15

HBV. Although detection of HBV-DNA in subsets of isolated blood DCs from HBV-infected patients has been proposed to indicate HBV infection ²⁹, additional studies have not revealed the presence of the HBV RNA replicative intermediates in either the blood DC subsets of HBVinfected patients or from DCs infected *in vitro* with wildtype or recombinant HBV ^{30, 31}. Thus, it is likely that DCs do not support replication and production of HBV viral particles and that the detection of HBV-DNA merely reflects the attachment of the virus to the cell surface or the natural antigen-uptake function of DCs.

23

In summary, DCs can support the production of HIV particles, although at much lower levels than the CD4+ T cells (the primary targets for HIV), but not HCV and HBV particles, even though HCV may be able to initiate replication. There are three possible explanations for this. First, viral receptors or co-receptors may be absent or present only at a low frequency on DCs. DCs express relatively low levels of the HIV receptor CD4 and the co-receptors CCR5

and CXCR4 ³² and very low levels of the HCV co-entry factor claudin-1 ²⁸. Unlike HIV and HCV,
 functional receptors mediating entry of HBV have not yet been identified.

3 Second, the virus may be degraded in intracellular compartments in DCs before it 4 completes its replicative cycle. Antigens can be targeted to different processing pathways 5 after internalization through receptor-mediated endocytosis where the endocytosed antigen undergoes extensive degradation prior to its presentation on the cell surface in association 6 with MHC class I and II molecules ³³. DC-SIGN (dendritic cell-specific intercellular adhesion 7 molecule-3-grabbing non-integrin), a C-type lectin receptor ³⁴, has been shown to promote 8 HIV antigen presentation by MHC class I and II molecules ^{35, 36}. Scavenger receptor class B 9 type I (SR-BI) is known to mediate uptake and presentation of HCV particles by DCs ³⁷. 10

11 Third, host factors may block viral replication, or host factors required for replication 12 may be missing in DCs. A family of cellular restriction factors, the APOBEC cytidine 13 deaminase family, functions as a restriction factor that blocks replication of HIV after viral entry ³⁸. Expression levels of APOBEC3G in myeloid DCs correlate with HIV resistance ³⁹, 14 15 suggesting that cytidine deaminases represent a potent innate barrier to HIV infection. Tang 16 and MacLachlan demonstrated the dependency of HBV replication on the presence of liver specific transcription factors belonging to a family of nuclear hormone receptors ⁴⁰. The 17 18 presence of host restrictions factors may be a crucial factor in determining the susceptibility 19 of DC populations to productive infection with persistent viruses.

20

21 The role of DCs in viral dissemination

After uptake of viral antigen, activated DCs can traffic extensively from peripheral tissues to secondary lymphoid organs in an effort to present viral antigens to naïve T cells. It is therefore not surprising that persistent viruses exploit this migratory property of DCs to disseminate to more favorable sites of replication.

HIV. It has been known for more than a decade that DCs efficiently transmit HIV to CD4+ T
 cells. One potential mechanism of HIV transfer from DCs to T cells involves DC-SIGN
 (reviewed in ¹⁶). Binding of HIV by DC-SIGN requires the interaction of the HIV-1 envelope

1 glycoprotein gp120 with the carbohydrate-recognition domain of DC-SIGN. HIV is 2 subsequently internalized into non-lysosomal compartments and transported within DCs 3 before it is transferred to CD4+ T cells in a process termed trans-infection. The sequential 4 endocytosis and exocytosis of intact HIV virions, without viral replication, is called the "trojan 5 horse" model. In this model, virion transmission is thought to occur via the infectious synapse 6 ⁴¹, a structure that is formed between the DC and T cells, along with viral receptors, co-7 receptors and DC-SIGN or other C-type lectins. Because DCs can sequester infectious virus 8 for several days in their endosomal compartments, DCs can carry HIV to interacting T cells in the lymph node, which is the most important site for viral replication and spread ⁴². Though 9 10 direct HIV infection of DCs is less efficient than infection of CD4+ T cells, several reports 11 indicate that HIV dissemination may be aided by the transfer of progeny virus from infected DCs to T cells ^{43, 44}, a process known as *cis*-infection. It is possible that DCs form a long-lived, 12 13 motile HIV reservoir that helps to disseminate infectious virus through peripheral blood and in 14 lymphoid and non-lymphoid tissues.

15

16 The differences between the DC subsets (Table 1) raise the possibility that they have 17 distinct roles in HIV transmission. pDCs have been found to be less efficient in HIV 18 transmission when compared to mDCs ⁴⁵. In addition, although myeloid DC subsets are 19 known to transfer HIV to activated CD4+ T cells efficiently ¹⁶, Langerhans cells appear to 20 prevent HIV transmission by degrading captured HIV particles ⁴⁶, suggesting that distinct DC 21 subsets can either mediate or prevent HIV-1 transmission.

22

HCV. Compared to HIV research, studies analyzing the *in vivo* dissemination of hepatotropic viruses by DCs are in their infancy. The HCV envelope glycoprotein E2, HCV virions derived from HCV infected patient serum samples and retroviruses pseudotyped with HCV envelope glycoproteins (HCV pseudovirus) have been shown to bind specifically to DC-SIGN ⁴⁷⁻⁴⁹. Thus, it may be possible that *in vivo* blood DCs or hepatic DCs within the liver sinusoids bind circulating HCV particles through a DC-SIGN mediated mechanism. Of note,

1 HCV pseudovirus, bound to DC-SIGN expressed on MoDCs, was transmitted efficiently when cocultured with the human hepatocellular carcinoma cell line Huh7, a cell line that supports 2 HCV pseudovirus entry and productive viral replication of recombinant infectious HCV ^{49, 50}. 3 Furthermore, Ludwig and colleagues observed that virus-like particles bound by DC-SIGN, 4 representative of HCV envelope glycoproteins, are targeted to early endosomal vesicles or 5 non-lysosomal compartments in MoDCs. The HCV particles resided in these compartments for 6 over 24h⁵¹, suggesting that HCV can bypass viral antigen processing and presentation 7 pathways in DCs, thereby escaping degradation. Possibly, HCV retained in the non-lysosomal 8 compartments of DCs plays a role in HCV transmission from DCs to hepatocytes. HCV 9 10 captured by blood DCs or hepatic DCs within the liver sinusoids may allow transfer of the virus to the underlying hepatocytes when DCs traverse the sinusoidal lumen to the hepatic lymph. 11 Besides DCs, liver sinusoidal endothelial cells (LSECs), which form the lining endothelium of 12 the hepatic sinusoid (Fig. 2), have been shown to bind recombinant HCV E2 protein through 13 the interaction of DC-SIGN and DC-SIGNR that are expressed on the cell surface of LSECs ⁵². 14 However, LSECs have been shown to be unable to support HCV pseudovirus entry and 15 infection with cell-culture derived HCV, suggesting that LSECs are not permissive for HCV 16 infection ⁵². However, binding of HCV to LSECs may support a model where DC-SIGN 17 mediated binding of HCV on LSECs provides a mechanisms for high affinity binding of 18 circulating HCV within the liver sinusoid that may allow subsequent transfer to the underlying 19 20 hepatocyte and thereby may increase the rate and efficiency of virus infection of the underlying 21 hepatocytes.

22

HBV. Although DC-SIGN recognizes a broad range of pathogens ranging from bacteria to viruses, binding of recombinant hepatitis B surface antigen or cell-culture derived HBV particles to DC-SIGN has not been observed so far ⁵³. Interestingly, studies have shown that the enzymatic modification of the N-linked oligosaccharide structures of the HBV antigen appears to prevent recognition by the carbohydrate-recognition domain of DC-SIGN ⁵³, although other mechanisms may also play a role.

1

2 Impact of persistent viruses on DC function

3 Effects of persistent viruses on DCs in vivo

4 Virus-mediated impairment of DC function is a strategy to attenuate the multiple downstream
5 immune effector mechanisms that depend on optimal DC function and may facilitate
6 establishing viral persistence.

7

8 At the primary level, viruses can modulate the frequency of DC subsets by interfering with DC development, causing aberrant trafficking or inducing apoptosis. Significantly lower 9 numbers of blood mDCs and pDCs have been observed in patients infected with HIV ⁵⁴⁻⁵⁹, HCV 10 ⁶⁰⁻⁶⁵, and HBV ⁶⁶ when compared to healthy individuals. In HIV infection, DC depletion appears 11 12 to be due to migration of pDCs to the inflamed lymph nodes, where pDCs have been found to be activated and apoptotic, and frequently infected with virus 67, 68, suggesting that HIV-13 mediated cell death may account for the decreased number of circulating pDCs. In patients 14 infected with HCV or HBV, blood DC subsets have been found to be enriched in the liver ^{64, 69-71}, 15 suggesting that DC migration to the liver results in the observed paucity of circulating DCs. 16 However, lower numbers of circulating DCs have also been observed in patients with non-viral 17 related liver diseases, e.g. granulomatous hepatitis or primary biliary cirrhosis 27, 61, 72 18 suggesting that low DC counts in virus related liver diseases is a common non-specific feature 19 20 of inflammatory hepatitis. Interestingly, in vitro studies revealed that sera from HCV-infected patients and HCV envelope glycoprotein E2 itself inhibited in vitro migration of DCs towards 21 CCL21, a CCR7-binding chemokine important for homing to lymph nodes ⁶⁴. This leads to the 22 hypothesis that after HCV uptake DCs may experience impairment in their ability to migrate to 23 the draining lymph node, causing them to be trapped in the liver and thereby become less able 25 to prime T cell responses. However, the in vivo relevance of this hypothesis remains to be 26 investigated.

The differentiation and activation of virus-specific Th1 type CD4+ T cells and cytotoxic 1 CD8+ T cells are regulated by DC-mediated production of IL-12. DC-mediated production of IL-2 10, on the other hand, is capable of inhibiting these responses ³. Upregulation of IL-10 3 production and suppression of Th1-response-promoting IL-12 as well as IFN-α have been 4 documented in MoDCs, mDCs and pDCs isolated from HIV-73-75, HCV-63, 65, 76, 77 and HBV-5 infected patients ²⁹ in response to various maturation stimuli. Dysregulated cytokine production 6 7 by DCs may furthermore affect the early anti-viral host defense mediated by NK cells (Fig. 1). 8 Several lines of evidence indicate that NK cell activity is impaired during HIV infection, in part due to a defective pDC function ^{78, 79}. In particular, defective IFN-_γ production by NK cell was 9 attributable to impaired pDC function ⁷⁹. Whether the impaired IFN- γ producing activity by NK 10 cells derived from chronically infected HCV-patients⁸⁰ relies also on impaired cell cross talk 11 between DCs and NK remains to be investigated . 12

13

DCs isolated from patients infected with HIV ⁷³⁻⁷⁵, HCV ^{63, 81-83} and HBV ²⁹ were less 14 15 able to stimulate T cell activation and proliferation as seen in a mixed lymphocyte reaction. Less efficient allogeneic T cell stimulation by DCs from HIV-⁸⁴ or HCV-infected patients⁸² 16 17 could be reversed by the neutralization of IL-10, suggesting that virus-induced production of IL-10 by DCs may limit T cell proliferation and activation, skewing the immune response towards 18 19 tolerance. However, several investigators failed to detect an impaired capacity to stimulate allogeneic T cells by DCs ex vivo isolated from HCV-,^{60-62, 72, 85} and HBV-⁸⁶ infected patients. 20 Possible reasons for these contradictory results could be the different experimental and 21 technical settings used (e.g. different isolation protocols, maturation cocktails), differences in 22 23 response by the DCs depending on their maturation status and uptake of viral antigen and the 24 viral load in the infected patients. In addition, DC dysfunction in hepatotropic viruses may be restricted to the virus-specific response since the strong global immune dysfunction seen in 25 26 HIV/AIDS is not observed with HBV and HCV infection.

1 To gain a different perspective on the impact of persistent viruses on DCs, DC 2 numbers and function have been studied before and during antiviral therapy. Highly Active Anti-Retroviral Therapy (HAART) for HIV infection resulted in an increase in pDC number and 3 restoration of IFN- α production to normal levels ^{78, 87} indicating that anti-retroviral therapy that 4 5 reduces viral load has the capacity to reconstitute the function of DCs. Likewise, following pegylated-interferon-α and ribavirin therapy for HCV infection, the frequency of pDCs in 6 individuals with viral clearance increased significantly, and reached levels observed in healthy 7 controls ⁸⁸. Therapy for HBV infection with the nucleotide analogue adefovir dipivoxil increased 8 9 the frequency of mDCs, the T-cell stimulatory capacity and the capacity to produce IL-12 by mDC, whereas the production of IL-10 decreased ³⁰. This functional recovery of mDCs 10 coincided with a significant reduction in viral load underscoring the importance of viral load 11 12 reduction in antiviral regimens which serves as the first step in a multistep process that 13 culminates in the restoration of impaired immune responses during recovery from persistent 14 viral infections.

15

16 In vitro studies to investigate molecular mechanisms of virus-DC interaction

17 To clarify the impact of persistent viruses on DC function and to identify the molecular 18 mechanisms involved in this interaction, DC subsets isolated from healthy individuals have been exposed directly to recombinant infectious virus or viral proteins. In contrast to HIV ⁸⁹ and 19 other viruses, such as influenza and human herpesvirus type 1^{25, 90-92}, recombinant and 20 serum-derived HCV and HBV have been shown to be poor inducers of IFN- α production in 21 pDCs^{24, 25, 65, 90} suggesting that these viruses may use this mechanism to downregulate 22 downstream effector functions dependent on pDC-mediated IFN-a production. In pDCs, TLR7 23 24 and TLR9 detect viral RNA and DNA, respectively, in endosomal compartments, leading to the activation of nuclear factor kappaB (NF-kappaB) and IFN regulatory factors (IRFs)⁴. IFN-a 25 production induced by the TLR9 agonist CpG, but not by the TLR7 agonist resiguimod, was 26 27 inhibited by HCV ^{24, 25, 90} and HBV ⁹³. Similarly, HIV inhibited TLR9-mediated IFN-α production

 $^{59, 94}$ indicating that impairment of IFN- α production in pDCs is a universally used strategy by 1 persistent viruses. What are the underlying mechanisms responsible for the virus-mediated 2 interference of the IFN-α pathway in pDCs? A possible mechanism could be related to virus 3 cross-linkage of cell surface receptors that down-regulate IFN-α production, such as the C-type 4 lectins BDCA2 (blood dendritic cell antigen 2) and DCIR (dendritic cell immuno receptor). It has 5 been shown that BDCA-2 and DCIR ligation and cross-linking results in the inhibition of CpG-6 mediated induction of IFN-α by pDCs ^{95, 96}. The viral envelope proteins HBsAg and HIV gp120 7 can directly impair TLR9-mediated IFN-α production by pDCs through binding of BDCA2 ^{93, 94}. 8 Although HCV core ²⁴ and recombinant non-infectious HCV particles ^{24, 25, 90}, composed of HCV 9 core and the envelope glycoproteins E1 and E2, also blocked TLR9-mediated IFN-α production 10 it is not known whether the interaction occurs also via BDCA2. 11

12

Recent studies indicate that persistent viruses may target immunosuppressive enzymes in 13 DCs to actively suppress anti-viral T cell immune responses. The tryptophan catabolizing 14 enzyme indoleamine 2,3-dioxygenase (IDO), seems to be a central feature of the suppressive 15 function of DCs. DC-mediated IDO activity has been associated with inhibition of T cell 16 proliferation and function ⁹⁷. In vitro activated human T cells underwent cell-cycle arrest when 17 deprived of tryptophan⁹⁸ and T cells became susceptible to apoptosis in vitro and in vivo in 18 response to the toxic metabolites generated during tryptophan degradation ⁹⁹. Direct exposure 19 of DCs to HIV induces IDO leading to the inhibition of CD4+ T cell proliferation in vitro ¹⁰⁰. 20 Moreover, HIV-stimulated IDO activity in pDCs induced the differentiation of naïve T cells into 21 Tregs with suppressive function ¹⁰¹, suggesting that HIV induced IDO activity may contribute to 22 viral persistence by suppressing virus-specific T cell responses. In SIV-infected macaques 23 24 peak IDO activity coincided with an increase in plasma viremia and the transient expansion of the regulatory FoxP3⁺CD25⁺CD8⁺ T-cell subset that may participate in dampening the CD4⁺ T-25 cell SIV-specific response ¹⁰². Since enhanced IDO activity has been observed in patients 26 infected with HIV, HCV and HBV 103-105, the role of DC-mediated IDO production in viral 27 persistence merits further investigation. 28

1

2 In summary, several lines of evidence indicate that viruses efficiently target DC 3 function to attenuate the anti-viral host immune response and establish persistence. However, is there also a role for DCs in disease progression? Chronic HBV and HCV infections are 4 major risk factors for hepatocellular carcinoma (HCC) development ¹⁴. There is increasing 5 evidence that a long-standing, inflammatory injury is an important procarcinogenic factor in 6 many different cancer types, including HCC ¹⁰⁶. The host immune responses to hepatitis 7 8 viruses by DCs are fairly weak and often fail to control or completely clear infection, resulting in chronic stimulation of the antigen-specific immune response in persistently infected patients. 9 10 Chronic antigen-stimulation at the infection sites and continuous infiltration of DCs into liver tissue may perpetuate a long-lasting chronic inflammatory process by the continued 11 expression of pro-inflammatory cytokines, the attendant activation of liver NK cells and 12 recruitment of T cells. These events may affect many cellular pathways that ultimately result in 13 fibrosis, cirrhosis, and/or HCC. In HIV infection, it is widely accepted that chronic immune 14 activation has a central role in driving progression to AIDS ¹⁰⁷. Recent reports indicate that 15 16 chronic pDC stimulation and IFN-a production are associated with a higher risk for HIV disease progression ^{108, 109}, underscoring the role of pDCs in disease progression. A detailed 17 comparison of the complex processes that govern homeostasis and immune activation 18 19 mechanisms in health and persistent viral infection may help define the contribution of DCs to 20 disease pathogenesis.

21

22 The role of hepatic APCs in HBV and HCV infection

The liver has several cell populations that can act as APCs. Besides liver-resident DCs, liver sinusoidal endothelial cells (LSECs), stellate cells and Kupffer cells (KCs) ¹¹⁰ (Figure 2), can also present antigens and influence the generation and maintenance of the anti-viral immune responses. However, the liver –specific immune system is maintained at a baseline state of tolerance as evidenced by the spontaneous acceptance of liver allografts ¹¹¹. Several liver APCs exist in a state of active tolerance and contribute to the tolerogenic liver environment by

1 the continuous secretion of immunosuppressive cytokines, e.g. IL-10 and TGF-ß ¹¹². This 2 raises the question of whether the tolerogenic properties of the liver APCs contribute to the 3 persistence of hepatotropic viruses and whether the liver presents unique environments for 4 immune evasion.

5

Due to the difficulty in gaining access to liver biopsies and the challenge of isolating 6 7 adequate numbers of APCs from tissue with high purity, limited information is available regarding the role of the hepatic APCs in viral infection. Royer and colleagues incubated 8 isolated KCs with sera from patients containing HCV RNA ¹¹³. Genomic HCV RNA disappeared 9 10 within a few days of infection and the replicative intermediate could not be detected, suggesting that KCs do not support HCV replication. Similarly, isolated LSECs were unable to 11 support infection by cell-culture derived HCV and HBV, suggesting that LSEC are not 12 permissive for hepatotropic viruses ^{52,114}. 13

14

15 Analysis of liver biopsy samples obtained from patients with chronic HCV infection demonstrated that most KCs express high levels of co-stimulatory molecules and MHC class I 16 and II molecules and formed clusters with CD4+ T cells, thereby acquiring the phenotype of an 17 effective APC ¹¹⁵. Since KCs are able to move across the sinusoidal wall into the liver 18 19 parenchyma, activation of KCs might likely reflect phagocytosis of HCV-infected apoptotic 20 hepatocytes. Even though there is little doubt that liver resident DCs can take up viral particles, available evidence indicates that this may not necessarily translate to efficient T cell priming 21 and activation. In vivo studies have revealed that while hepatic DCs and LSECs present 22 exogenous antigen to naive T cells, the resulting activated T cells either fail to differentiate into 23 effector T cells or acquire an immunosuppressive phenotype (For reviews, see ref ^{112, 116}). It is 24 possible that uptake of viral particles by liver APCs primes regulatory CD4+ T cells and impairs 25 CD8+ T cells that finally fails to eradicate the virus from the liver. Since antigen-specific CD8+ 26 27 T cells in the liver of patients with chronic HCV infection frequently become dysfunctional and

unable to secrete IFN-γ or IL-2 ¹¹⁷, the role of hepatic DCs in HCV-specific T cell priming merits
 further investigations.

3

4 Current research has not focused on the ability of the hepatocyte to act as an antigen presenting cell in HCV infection. In general, hepatocytes are not easily accessible to naïve T 5 cells because LSECs may form an effective barrier between hepatocytes and the sinusoidal 6 lumen ¹¹⁸. However, electron microscopy analysis has shown that hepatocytes have microvilli 7 that project into the sinusoidal lumen through the fenestrations in the endothelium, allowing 8 contact between hepatocytes and circulating T cells in the lumen ¹¹⁹. Hepatocytes normally do 9 10 not express MHC class II molecules; however in clinical hepatitis, aberrant expression of MHC class II molecules has been demonstrated ^{120, 121}. It is therefore possible that MHC class II-11 expressing hepatocytes may stimulate CD4+ T cells and/or shape the antiviral immune 12 response of pre-activated CD4+ T cells. Additional studies in transgenic mice demonstrated 13 that CD8+T cells might be directly activated by hepatocytes. However, activation of CD8+ T 14 cells by hepatocytes appeared to favor an impaired cytotoxic CD8+ T-cell response and 15 reduced survival, possibly caused by a lack of co-stimulatory molecules ^{122, 123}. Thus, 16 presentation of viral antigens by hepatocytes may influence the anti-viral immune response 17 and appears to promote CD8+ T-cell helplessness. 18

19

20 Conclusions and Perspectives

21 Accumulating evidence indicates that HIV, HCV and HBV target DC function to disturb the 22 generation of a strong anti-viral innate and adaptive immune response, facilitating viral 23 persistence. All three viruses appear to employ similar strategies to attenuate the potent, 24 antiviral IFN- α response in pDCs. In addition, these viruses appear to affect the ability of the 25 mDCs to produce key cytokines, which are essential for the development and activation of an 26 effective T cell response. Not only do these viruses override the natural anti-viral activity of the 27 DCs but they also use the DCs as vehicles for widespread dissemination within the host.

1 In the future, key issues in improving our understanding of the interplay between 2 persistent viruses and DCs are the characterization of the intracellular compartments and molecular mechanisms required for virus acquisition, processing and presentation by DCs, the 3 identification of mechanisms regulating the balance between intrahepatic tolerance and 4 5 immunity and the role of DCs in aiding viral transmission during infection with HBV and HCV. Knowledge of these mechanisms will not only help in understanding viral pathogenesis but can 6 7 also be used to design strategies that manipulate the immune system towards generating a protective immune response that controls viral replication without the attendant 8 9 immunopathology.

Table 1. Subsets of human DCs 1

• •	
_ / .	
_	

	Myeloid subtypes (Stellate DCs)				
	Plasmacytoid DCs	Myeloid DCs	Langerhans	Interstitial DCs	Monocyte- derived DCs
Morphology	0	N.	XX	X	225
Localisation	Blood	Blood	Epidermal	Dermis and other tissues	in vitro
Phenotype	CD1a+ CD1c- CD11c ⁻ CD123 high CD304 +	CD1a+ CD1c+ CD11c ⁺ CD123 low CD304 -	CD1a ⁺ CD11c ⁺ Langerin ⁺	CD1a − CD11c ⁺ CD68+ Factor XIIIa	CD1a ⁺ CD1c+ CD11c ⁺ CD123 low
TLR expression	1, 6, 7, 9, 10	1,2, 3, 4, 5, 6, 8, 10	1, 2, 3, 6, 7, 8	1,2, 3, 4, 5, 6, 7, 8,	1,2, 3, 4, 5, 6, 8, 10
C-type lectin expression	DCIR BDCA-2	DCIR (MR) (DC-SIGN)	Langerin	MR DC-SIGN	MR DC-SIGN DCIR
Immunological function CD4+ T cell priming	+	+	+	+	+
CD8+ T cell priming	+	+	+	+	+
B cell activation	+	+	+/-	+	+
IFN-α production	+++	+	+	+	+

Abbreviations: BDCA, blood dendritic cell antigen; DCs, dendritic cells; DC-SIGN, dendritic-cell specific ICAM3 grabbing non-integrin; IFN, interferon; DCIR, dendritic cell immunoreceptor; MR, mannose receptor; TLR, Toll-like receptor

1 Table 2: Clinical and virological features of HCV, HBV, and HIV

	HCV	HBV	HIV
Structure	50 nm; enveloped nucleocapsid; positive single- stranded RNA genome	42 nm; enveloped nucleocapsid; partially double-stranded DNA genome	120 nm, enveloped nucleocapsid; positive single- strand RNA virus
Family	Flaviviridae	Hepadnaviridae	Retroviridae
Entry factors	Glycosaminoglycans, CD81, SR-BI, claudin-1, occludin-1	unknown	CD4, CCR4, CXCR5, DC- SIGN
Replication strategy	Synthesis of a complementary negative- strand RNA, using the viral genome as a template, from which genomic positive- strand RNA is produced	Reverse transcription of HBV RNA into a covalently closed circular DNA which serves as a template for HBV transcripts	conversion of the single- stranded HIV RNA to double- stranded HIV DNA by viral reverse transcriptase, followed by integration of HIV DNA within the host genome
Mutation rate	High (1 in 1 000 bases per year)	Low (1 in 100 000 bases per year)	High (1 in 10 000 bases par replication cycle)
Genotypes	6 main genotypes (1 to 6), with several subtypes within each genotype (more than 50 in total)	8 genotypes (A to H), with 22 subtypes	HIV-1 which include one major group (M) divided into nine subtypes (A to D, F to H, J, K) and two minor groups (O, N) HIV-2 which include 2 groups (A and B)
Transmission	Intravenous drug use, blood transfusions, perinatal	intravenous drug use, blood transfusions, perinatal, sexual contact	intravenous drug use, blood transfusions, perinatal, sexual contact
Infection site	Liver	Liver	CD4+ T cells
Public health impact Chronically infected individuals New infections/year Related deaths/year. Bate of co-infection with HCV	130 million 3 to 4 million 350 000	350 million 4 million 500 000 to 1.2 million 10 to 30%	35 million 3 million 2 million 10%
Infection outcome Spontaneous recovery Disease outcome	20% liver cirrhosis (20-30% of chronically infected patients) hepatocellular carcinoma (5% of patients with liver cirrhosis)	90% of adults, 10% of children liver cirrhosis (2-5% of chronically infected patients) hepatocellular carcinoma (5% of patients with liver cirrhosis)	0% acquired immunodeficiency syndrome (AIDS); susceptibility to life- threatening opportunistic infections
Available Therapy & recovery rates with therapy	pegylated interferon alpha i combination with ribavirin / HCV clearance in 50%-80% of individuals, depending on HCV genotype liver transplantation / systematic reinfection of the graft	interferon alpha, nucleoside and nucleotide analogues resulting in efficient control of viral infection liver transplantation/ prevention of graft reinfection using antiviral treatment and anti-HBs antibodies	highly active antiretroviral therapy (HAART: nucleoside analogue reverse transcriptase inhibitors, protease inhibitor and/or non- nucleoside reverse transcriptase inhibitor) No HIV clearance
Vaccine	Absent	Present Based on recombinant HBsAg which induce neutralizing HBsAg-specific antibodies and CD4+ and CD8+ T cell responses	Absent

	HCV	HBV	HIV	
DC number:				_
In blood	Decreased	Decreased	Decreased	
At infection site	Enriched (in liver)	Enriched (in liver)	Enriched (lymphoid tissue)	
Affected DC function:				Effect on downstream immune function/disease activity:
IFN-α production	Reduced	Reduced	Reduced	(1) suboptimal T and NK cell activation (2) reduced pDC and T cell survival
IL-12 production	Reduced	Reduced	Reduced	 (1) suboptimal differentiation of T helper (Th) type 1 cells (2) decreased IFN-γ production by CD8+T cell and NK cells
IL-10 production	Increased	Increased	Increased	Inhibition of (1) DC activation (2) Th type 1 cytokine production (3) CD8+ T cell function
IDO induction	not known	not known	Yes	(1) suppression of T cellproliferation and function(2) T cell apoptosis
T cell stimulation	Reduced/normal	Reduced/normal	Reduced	(1) decreased control of viral replication

1 Table 3: Effects of persistent viruses on DC number and function

1 Box 1: Viral immune evasion strategies

As a consequence of co-evolution with their hosts, viruses have developed various immune
 evasion strategies to ensure their own replication and survival (reviewed in ¹²⁴).

5

2

6 Antigenic variation

7 This is an important strategy evolved in particular by RNA viruses to remain evade immune 8 response of the host. Because of the infidelity of their polymerases, many mutations are 9 introduced in the viral genome during the course of replication, resulting in the existence of 10 many different genetic quasispecies in a single host. This makes it difficult for the host to 11 generate the staggeringly complex immune response that is required for virus elimination 12

13 Sequestration

14 Viruses infect non-permissive or semi-permissive host cells to store their genetic information 15 and, thereby, become invisible to the immune system of the host. These viruses stay "latent"

16 with absent or decreased transcription until the virus or cell becomes activated.

17

18 Blockade of antigen-presentation by APC

19 Collectively, viruses encode proteins have the capacity to interfere with almost any step in 20 antigen processing and presentation by APCs, such as prevention of proteasomal antigen 21 fragmentation and transport to the endoplasmic reticulum, interference with MHC I and II 22 molecules expression and localization, downregulation of the expression of co-stimulatory 23 molecules.

24

25 Cytokine evasion

26 Cytokines released by the host in response to viral infections coordinate and control the 27 processes of immune activation and proliferation. It is therefore not surprising that viruses 28 counteract these responses through encoding mimics or homologs of normal cytokines and 29 their receptors, which bind to or replace the normal cellular counterparts as well as interfere 30 with cytokine signaling within the host cell.

31

32 Inhibition of apoptosis

33 Apoptosis, or programmed cell death, is a relatively silent and non-inflammatory process to 34 eliminate virus-infected cells. Viruses encode a variety of proteins to block apoptosis at 35 essentially every step to delay cell death until the viral progeny have been formed and are 36 infectious.

1 BOX 2: The challenge to develop *in vitro* models for the study of HCV-DC interaction

2 In contrast to HIV and HBV, studies addressing the interaction of HCV with DC have been hampered for a long time because of the lack of a robust cell-culture system that allows the 3 production of recombinant infectious HCV. Various surrogate models have been used to study 4 5 the virus-host interaction, such as recombinant viral proteins, virus-like particles (VLPs) that 6 are generated by self-assembly of HCV structural proteins and closely mimic the properties of native virions. Furthermore, infectious pseudoviruses consist of unmodified HCV envelope 7 proteins assembled onto retroviral or lentiviral core particles and are replication incompetent ¹²⁵. 8 They have been used to study HCV entry into target cells. Finally, in 2005 a cell-culture system 9 10 based on the transfection of JFH1 mRNA (HCV genotype 2a strain) into a highly permissive human hepatoma cell line became available ¹²⁶⁻¹²⁸. Until now, studies addressing the 11 12 interaction of HCV with DCs are limited to the use of recombinant HCV derived from an HCV 13 genotype 2a strain that is highly adapted to a hepatic cell line. Of note, HCV strains of 14 genotype 1 are more prevalent and are associated with liver disease in most countries of the world ¹²⁹. Although low levels of infectious cell-culture derived HCV have been obtained from a 15 genotype 1a isolate with five adaptive mutations ¹³⁰, and progress has been made in the 16 construction of chimeric HCV genomes comprising JFH-1derived replicase proteins and 17 structural proteins from heterologous HCV strains ^{131, 132}, the challenge to develop an *in vitro* 18 system for higher virus production of other HCV genotypes and novel cell-culture systems 19 20 allowing the selection of HCV variants particularly adapted to DCs remains.

Figure 1: Function of dendritic cells (DCs) in viral immune response. Following uptake of 23 viral antigen, myeloid and plasmacytoid DC subsets (mDC, pDC) migrate to lymphoid tissue to 24 25 prime naïve CD4+ and CD8+ T cells. In addition, activated DCs produce a range of cytokines, 26 such as IFN-α, IL-12 and IL-15 that in turn activate natural killer (NK) cells and influence T-cell 27 survival and differentiation. Depending on the cytokine signal, CD4+ T cells differentiate into 28 Th1 or Th2 type CD4+ T cells. Th1 mediated IFN-y secretion stimulates the activation of 29 cytotoxic CD8+ T cells (CTLs) and IgG production in B cells. Th2 mediated cytokine production acts on B cells to simulate IgG production but also has the capacity to inhibit activation of Th1 30 type T cells. Virus-specific antibodies can be neutralizing, preventing viral re-infection. NK cells 31 32 and CTLs inhibit viral replication through secretion of IFN-y or lysis of viral infected cells through the release of cytotoxins (perforin, granzymes). In addition, pDCs are characterized by 33 their ability to produce large amounts of type I IFNs in response to many viruses and, thereby, 34 35 produces a first strong wave of IFN- α , which not only inhibits viral replication but also is a potent enhancer for NK cell-mediated cytoxicity. 36

Hepatic Sinusoid

Figure 2: Antigen presentation in the liver results in T cell tolerance. The liver sinusoid is 21 22 lined by a fenestrated endothelium (liver sinusoidal endothelial cells, LSEC). Kupffer cells (KCs) 23 and immature dendritic cells (DCs) are found in the sinusoids. Hepatic stellate cells (HSC) are 24 located in the sub-endothelial space, known as the Space of Dissé. T cells that recognize 25 antigen in the liver are exposed to immunosuppressive cytokines (IL-10 and TGF-B) that are 26 synthesized by KCs, LSECs and DCs. Interaction of naïve T cells with LSEC results in differentiation of T cells into CD4+ regulatory T cells and impaired cytotoxic CD8+ T cells, 27 followed by cell death. Hepatotropic viruses appear to be captured by DCs and/or LSECs in 28 process that probably involves DC-SIGN or DC-SIGNR (for HCV) or other not yet defined cell-29 30 surface molecules (for HBV) for subsequent transfer to the underlying hepatocytes or viral particles may be internalized by hepatic DCs and LSECs for processing and presentation to 31 naïve T cells (Adapted from ¹¹⁶ and ¹³³). 32

- 33
- 34
- 35
- 36
- 37

References

1

- 2 3 Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 1. 4 **392**, 245-52 (1998). 5
 - This article describes elegantly the basics of dendritic cell function.
- 2. Wu, L. & Liu, Y.J. Development of dendritic-cell lineages. Immunity 26, 741-50 (2007).
- 6 7 Steinman, R.M. & Hemmi, H. Dendritic cells: translating innate to adaptive immunity. 3. 8 Curr Top Microbiol Immunol **311**, 17-58 (2006). 9
 - This article gives an overview about the development and role of the different dendritic cell subests.
- Liu, Y.J. IPC: professional type 1 interferon-producing cells and plasmacytoid 11 4. 12 dendritic cell precursors. Annu Rev Immunol 23, 275-306 (2005).
- 13 5. Colonna, M., Trinchieri, G. & Liu, Y.J. Plasmacytoid dendritic cells in immunity. Nat 14 Immunol 5, 1219-26 (2004).
- 15 Smit, J.J. et al. The balance between plasmacytoid DC versus conventional DC 6. 16 determines pulmonary immunity to virus infections. PLoS One 3, e1720 (2008).
- 17 GeurtsvanKessel, C.H. et al. Clearance of influenza virus from the lung depends on 7. 18 migratory langerin+CD11b- but not plasmacytoid dendritic cells. J Exp Med 205, 19 1621-34 (2008).
- 20 Rehermann, B. & Nascimbeni, M. Immunology of hepatitis B virus and hepatitis C 8. 21 virus infection. Nat Rev Immunol 5, 215-29 (2005).
- 22 This article compares clinical, virological and immunological features of 23 hepatitis B and hepatitis C virus infection. Together with Ref. 11 an excellent 24 overview of the anti-viral adaptive immune response in persistent viral 25 infections is provided.
- 26 Guidotti, L.G. & Chisari, F.V. Immunobiology and pathogenesis of viral hepatitis. 9. 27 Annu Rev Pathol 1, 23-61 (2006).
- 28 10. Gandhi, R.T. & Walker, B.D. Immunologic control of HIV-1. Annu Rev Med 53, 149-72 29 (2002).
- 30 McMichael, A.J. & Rowland-Jones, S.L. Cellular immune responses to HIV. Nature 11. 31 **410**, 980-7 (2001).
- 32 12. Simon, V., Ho, D.D. & Abdool Karim, Q. HIV/AIDS epidemiology, pathogenesis, 33 prevention, and treatment. Lancet 368, 489-504 (2006).
- 34 13. Alter, M.J. Epidemiology of viral hepatitis and HIV co-infection. J Hepatol 44, S6-9 35 (2006).
- 36 14. Williams, R. Global challenges in liver disease. Hepatology 44, 521-6 (2006).
- 37 15. Bauer, D. & Tampe, R. Herpes viral proteins blocking the transporter associated with 38 antigen processing TAP--from genes to function and structure. Curr Top Microbiol 39 Immunol 269, 87-99 (2002).
- 40 Wu, L. & KewalRamani, V.N. Dendritic-cell interactions with HIV: infection and viral 16. dissemination. Nat Rev Immunol 6, 859-68 (2006). 41
- 42 McIlroy, D. et al. Infection frequency of dendritic cells and CD4+ T lymphocytes in 17. 43 spleens of human immunodeficiency virus-positive patients. J Virol 69, 4737-45 44 (1995).
- 45 18. Smed-Sorensen, A. et al. Differential susceptibility to human immunodeficiency virus 46 type 1 infection of myeloid and plasmacytoid dendritic cells. J Virol 79, 8861-9 (2005).
- 47 19. Canque, B. et al. The susceptibility to X4 and R5 human immunodeficiency virus-1 48 strains of dendritic cells derived in vitro from CD34(+) hematopoietic progenitor cells 49 is primarily determined by their maturation stage. Blood 93, 3866-75 (1999).
- 50 Fong, L., Mengozzi, M., Abbey, N.W., Herndier, B.G. & Engleman, E.G. Productive 20. 51 infection of plasmacytoid dendritic cells with human immunodeficiency virus type 1 is 52 triggered by CD40 ligation. J Virol 76, 11033-41 (2002).
- 53 21. Goutagny, N. et al. Evidence of viral replication in circulating dendritic cells during 54 hepatitis C virus infection. J Infect Dis 187, 1951-8 (2003).

- Rodrigue-Gervais, I.G. et al. Poly(I:C) and lipopolysaccharide innate sensing
 functions of circulating human myeloid dendritic cells are affected in vivo in hepatitis
 C virus-infected patients. *J Virol* 81, 5537-46 (2007).
- 4 23. Navas, M.C. et al. Dendritic cell susceptibility to hepatitis C virus genotype 1 infection.
 5 J Med Virol 67, 152-61 (2002).
- Liang, H. et al. Differential effects of hepatitis C virus JFH1 on human myeloid and plasmacytoid dendritic cells. *J Virol* (2009).
- 8 25. Shiina, M. & Rehermann, B. Cell culture-produced hepatitis C virus impairs 9 plasmacytoid dendritic cell function. *Hepatology* **47**, 385-95 (2008).
- 10 References 24, 25, and 82 provide first evidence that HCV impairs the 11 production of interferon α in plasmacytoid DCs.
- Ebihara, T., Shingai, M., Matsumoto, M., Wakita, T. & Seya, T. Hepatitis C virus infected hepatocytes extrinsically modulate dendritic cell maturation to activate T cells
 and natural killer cells. *Hepatology* 48, 48-58 (2008).
- Decalf, J. et al. Plasmacytoid dendritic cells initiate a complex chemokine and cytokine network and are a viable drug target in chronic HCV patients. *J Exp Med* 204, 2423-37 (2007).
- 18 28. Marukian, S. et al. Cell culture-produced hepatitis C virus does not infect peripheral
 19 blood mononuclear cells. *Hepatology* (2008).
- 20 29. van der Molen, R.G. et al. Functional impairment of myeloid and plasmacytoid
 21 dendritic cells of patients with chronic hepatitis B. *Hepatology* 40, 738-46 (2004).
- 30. van der Molen, R.G., Sprengers, D., Biesta, P.J., Kusters, J.G. & Janssen, H.L.
 Favorable effect of adefovir on the number and functionality of myeloid dendritic cells
 of patients with chronic HBV. *Hepatology* 44, 907-14 (2006).
- 25 31. Untergasser, A. et al. Dendritic cells take up viral antigens but do not support the early steps of hepatitis B virus infection. *Hepatology* **43**, 539-47 (2006).
- Lee, B., Sharron, M., Montaner, L.J., Weissman, D. & Doms, R.W. Quantification of
 CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and
 differentially conditioned monocyte-derived macrophages. *Proc Natl Acad Sci U S A*96, 5215-20 (1999).
- 31 33. Jensen, P.E. Recent advances in antigen processing and presentation. *Nat Immunol* 32 8, 1041-8 (2007).
- 33 34. Cambi, A., Koopman, M. & Figdor, C.G. How C-type lectins detect pathogens. *Cell Microbiol* 7, 481-8 (2005).
- 35 35. Moris, A. et al. DC-SIGN promotes exogenous MHC-I-restricted HIV-1 antigen 36 presentation. *Blood* **103**, 2648-54 (2004).
- 37 36. Smith, A.L. et al. Leukocyte-specific protein 1 interacts with DC-SIGN and mediates 38 transport of HIV to the proteasome in dendritic cells. *J Exp Med* **204**, 421-30 (2007).
- 39 37. Barth, H. et al. Scavenger receptor class B is required for hepatitis C virus uptake and cross-presentation by human dendritic cells. *J Virol* **82**, 3466-79 (2008).
- 41 38. Chiu, Y.L. et al. Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells.
 42 Nature 435, 108-14 (2005).
- 43 39. Peng, G. et al. Myeloid differentiation and susceptibility to HIV-1 are linked to APOBEC3 expression. *Blood* **110**, 393-400 (2007).
- 45 40. Tang, H. & McLachlan, A. Transcriptional regulation of hepatitis B virus by nuclear hormone receptors is a critical determinant of viral tropism. *Proc Natl Acad Sci U S A* 98, 1841-6 (2001).
- 48 41. Piguet, V. & Sattentau, Q. Dangerous liaisons at the virological synapse. *J Clin Invest*49 **114**, 605-10 (2004).
- 50 This article describes cell to cell transmission of retroviruses through the 51 virological synapse.
- 42. Geijtenbeek, T.B. et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. *Cell* **100**, 587-97 (2000).

- 143.Burleigh, L. et al. Infection of dendritic cells (DCs), not DC-SIGN-mediated2internalization of human immunodeficiency virus, is required for long-term transfer of3virus to T cells. J Virol 80, 2949-57 (2006).
- 4 44. Turville, S.G. et al. Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells. *Blood* **103**, 2170-9 (2004).
- Groot, F., van Capel, T.M., Kapsenberg, M.L., Berkhout, B. & de Jong, E.C. Opposing
 roles of blood myeloid and plasmacytoid dendritic cells in HIV-1 infection of T cells:
 transmission facilitation versus replication inhibition. *Blood* 108, 1957-64 (2006).
- 9 46. de Witte, L. et al. Langerin is a natural barrier to HIV-1 transmission by Langerhans 10 cells. *Nat Med* **13**, 367-71 (2007).
- 47. Gardner, J.P. et al. L-SIGN (CD 209L) is a liver-specific capture receptor for hepatitis
 C virus. *Proc Natl Acad Sci U S A* **100**, 4498-503 (2003).
- 48. Pohlmann, S. et al. Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR. *J Virol* 77, 4070-80 (2003).
- 1549.Lozach, P.Y. et al. DC-SIGN and L-SIGN are high affinity binding receptors for16hepatitis C virus glycoprotein E2. J Biol Chem 278, 20358-66 (2003).
- 1750.Cormier, E.G. et al. L-SIGN (CD209L) and DC-SIGN (CD209) mediate transinfection18of liver cells by hepatitis C virus. Proc Natl Acad Sci U S A 101, 14067-72 (2004).
- 1951.Ludwig, I.S. et al. Hepatitis C virus targets DC-SIGN and L-SIGN to escape20Iyosomal degradation. J Virol 78, 8322-32 (2004).
- Lai, W.K. et al. Expression of DC-SIGN and DC-SIGNR on human sinusoidal
 endothelium: a role for capturing hepatitis C virus particles. *Am J Pathol* 169, 200-8
 (2006).
- 53. Op den Brouw, M.L. et al. Branched oligosaccharide structures on HBV prevent
 interaction with both DC-SIGN and L-SIGN. *J Viral Hepat* **15**, 675-83 (2008).
- 54. Donaghy, H. et al. Loss of blood CD11c(+) myeloid and CD11c(-) plasmacytoid
 dendritic cells in patients with HIV-1 infection correlates with HIV-1 RNA virus load.
 Blood 98, 2574-6 (2001).
- 29 55. Pacanowski, J. et al. Reduced blood CD123+ (lymphoid) and CD11c+ (myeloid)
 30 dendritic cell numbers in primary HIV-1 infection. *Blood* 98, 3016-21 (2001).
- Grassi, F. et al. Depletion in blood CD11c-positive dendritic cells from HIV-infected
 patients. *Aids* 13, 759-66 (1999).
- 57. Chehimi, J. et al. Persistent decreases in blood plasmacytoid dendritic cell number
 and function despite effective highly active antiretroviral therapy and increased blood
 myeloid dendritic cells in HIV-infected individuals. *J Immunol* 168, 4796-801 (2002).
- 36 58. Soumelis, V. et al. Depletion of circulating natural type 1 interferon-producing cells in
 37 HIV-infected AIDS patients. *Blood* 98, 906-12 (2001).
- Section Cavaleiro, R. et al. Major depletion of plasmacytoid dendritic cells in HIV-2 infection, an attenuated form of HIV disease. *PLoS Pathog* 5, e1000667 (2009).
- 40 60. Ulsenheimer, A. et al. Plasmacytoid dendritic cells in acute and chronic hepatitis C virus infection. *Hepatology* **41**, 643-51 (2005).
- 42 61. Wertheimer, A.M., Bakke, A. & Rosen, H.R. Direct enumeration and functional assessment of circulating dendritic cells in patients with liver disease. *Hepatology* 40, 335-45 (2004).
- 45 62. Longman, R.S., Talal, A.H., Jacobson, I.M., Rice, C.M. & Albert, M.L. Normal
 46 functional capacity in circulating myeloid and plasmacytoid dendritic cells in patients
 47 with chronic hepatitis C. *J Infect Dis* **192**, 497-503 (2005).
- Kanto, T. et al. Reduced numbers and impaired ability of myeloid and plasmacytoid dendritic cells to polarize T helper cells in chronic hepatitis C virus infection. *J Infect Dis* 190, 1919-26 (2004).
- 5164.Nattermann, J. et al. Hepatitis C virus E2 and CD81 interaction may be associated52with altered trafficking of dendritic cells in chronic hepatitis C. Hepatology 44, 945-5453(2006).

- 65. Dolganiuc, A. et al. Hepatitis C virus (HCV) core protein-induced, monocyte-mediated
 mechanisms of reduced IFN-alpha and plasmacytoid dendritic cell loss in chronic
 HCV infection. *J Immunol* **177**, 6758-68 (2006).
- 4 66. Xie, Q. et al. Patients with chronic hepatitis B infection display deficiency of
 5 plasmacytoid dendritic cells with reduced expression of TLR9. *Microbes Infect* 11,
 5 515-23 (2009).
- Brown, K.N., Wijewardana, V., Liu, X. & Barratt-Boyes, S.M. Rapid influx and death of
 plasmacytoid dendritic cells in lymph nodes mediate depletion in acute simian
 immunodeficiency virus infection. *PLoS Pathog* 5, e1000413 (2009).
- 10 68. Meyers, J.H. et al. Impact of HIV on cell survival and antiviral activity of plasmacytoid dendritic cells. *PLoS One* **2**, e458 (2007).
- Kunitani, H., Shimizu, Y., Murata, H., Higuchi, K. & Watanabe, A. Phenotypic analysis
 of circulating and intrahepatic dendritic cell subsets in patients with chronic liver
 diseases. *J Hepatol* 36, 734-41 (2002).
- 15 70. Lai, W.K. et al. Hepatitis C is associated with perturbation of intrahepatic myeloid and plasmacytoid dendritic cell function. *J Hepatol* **47**, 338-47 (2007).
- T1. Zhang, Z. et al. Severe dendritic cell perturbation is actively involved in the pathogenesis of acute-on-chronic hepatitis B liver failure. *J Hepatol* 49, 396-406 (2008).
- 20 72. Longman, R.S., Talal, A.H., Jacobson, I.M., Albert, M.L. & Rice, C.M. Presence of
 21 functional dendritic cells in patients chronically infected with hepatitis C virus. *Blood* 22 103, 1026-9 (2004).
- 73. Donaghy, H., Gazzard, B., Gotch, F. & Patterson, S. Dysfunction and infection of
 freshly isolated blood myeloid and plasmacytoid dendritic cells in patients infected
 with HIV-1. *Blood* 101, 4505-11 (2003).
- 74. Chougnet, C.A., Margolis, D., Landay, A.L., Kessler, H.A. & Shearer, G.M.
 27 Contribution of prostaglandin E2 to the interleukin-12 defect in HIV-infected patients.
 28 Aids 10, 1043-5 (1996).
- 29 75. Chehimi, J. et al. Impaired interleukin 12 production in human immunodeficiency virus-infected patients. *J Exp Med* **179**, 1361-6 (1994).
- 31 76. Kanto, T. et al. Impaired allostimulatory capacity of peripheral blood dendritic cells
 32 recovered from hepatitis C virus-infected individuals. *J Immunol* 162, 5584-91 (1999).
- 37. Dolganiuc, A. et al. Hepatitis C virus core and nonstructural protein 3 proteins induce
 pro- and anti-inflammatory cytokines and inhibit dendritic cell differentiation. J
 Immunol **170**, 5615-24 (2003).
- 78. Chehimi, J. et al. Baseline viral load and immune activation determine the extent of
 reconstitution of innate immune effectors in HIV-1-infected subjects undergoing
 antiretroviral treatment. *J Immunol* **179**, 2642-50 (2007).
- 39 79. Conry, S.J. et al. Impaired plasmacytoid dendritic cell (PDC)-NK cell activity in viremic
 40 human immunodeficiency virus infection attributable to impairments in both PDC and
 41 NK cell function. *J Virol* 83, 11175-87 (2009).
- 42 80. Ahlenstiel, G. et al. Natural Killer Cells are Polarized towards Cytotoxicity in Chronic
 43 Hepatitis C in an Interferon-alpha-Dependent Manner. *Gastroenterology* (2009).
- Bain, C. et al. Impaired allostimulatory function of dendritic cells in chronic hepatitis C
 infection. *Gastroenterology* **120**, 512-24 (2001).
- Bolganiuc, A., Paek, E., Kodys, K., Thomas, J. & Szabo, G. Myeloid dendritic cells of
 patients with chronic HCV infection induce proliferation of regulatory T lymphocytes. *Gastroenterology* 135, 2119-27 (2008).
- Auffermann-Gretzinger, S., Keeffe, E.B. & Levy, S. Impaired dendritic cell maturation
 in patients with chronic, but not resolved, hepatitis C virus infection. *Blood* 97, 3171-6
 (2001).
- S4. Granelli-Piperno, A., Golebiowska, A., Trumpfheller, C., Siegal, F.P. & Steinman, R.M.
 HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can
 elicit IL-10 production and T cell regulation. *Proc Natl Acad Sci U S A* 101, 7669-74 (2004).

- Piccioli, D. et al. Comparable functions of plasmacytoid and monocyte-derived dendritic cells in chronic hepatitis C patients and healthy donors. *J Hepatol* 42, 61-7 (2005).
- 4 86. Tavakoli, S. et al. Peripheral blood dendritic cells are phenotypically and functionally 5 intact in chronic hepatitis B virus (HBV) infection. *Clin Exp Immunol* **151**, 61-70 (2008).
- 6 87. Kamga, I. et al. Type I interferon production is profoundly and transiently impaired in primary HIV-1 infection. *J Infect Dis* **192**, 303-10 (2005).
- 8 88. Mengshol, J.A. et al. Impaired plasmacytoid dendritic cell maturation and differential chemotaxis in chronic hepatitis C virus: associations with antiviral treatment outcomes. *Gut* **58**, 964-73 (2009).
- 1189.Beignon, A.S. et al. Endocytosis of HIV-1 activates plasmacytoid dendritic cells via12Toll-like receptor-viral RNA interactions. J Clin Invest 115, 3265-75 (2005).
- 13 90. Gondois-Rey, F. et al. Hepatitis C virus is a weak inducer of interferon alpha in
 14 plasmacytoid dendritic cells in comparison with influenza and human herpesvirus
 15 type-1. *PLoS ONE* 4, e4319 (2009).
- 16 91. Krug, A. et al. Herpes simplex virus type 1 activates murine natural interferon-17 producing cells through toll-like receptor 9. *Blood* **103**, 1433-7 (2004).
- 18 92. Lund, J., Sato, A., Akira, S., Medzhitov, R. & Iwasaki, A. Toll-like receptor 9-mediated
 recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. *J Exp Med* 198,
 513-20 (2003).
- 21 93. Xu, Y. et al. HBsAg inhibits TLR9-mediated activation and IFN-alpha production in plasmacytoid dendritic cells. *Mol Immunol* (2009).
- Martinelli, E. et al. HIV-1 gp120 inhibits TLR9-mediated activation and IFN-{alpha}
 secretion in plasmacytoid dendritic cells. *Proc Natl Acad Sci U S A* **104**, 3396-401
 (2007).
- 26 95. Dzionek, A. et al. BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type
 27 lectin, mediates antigen capture and is a potent inhibitor of interferon alpha/beta
 28 induction. *J Exp Med* **194**, 1823-34 (2001).
- Meyer-Wentrup, F. et al. Targeting DCIR on human plasmacytoid dendritic cells
 results in antigen presentation and inhibits IFN-alpha production. *Blood* 111, 4245-53
 (2008).
- Mellor, A.L. & Munn, D.H. IDO expression by dendritic cells: tolerance and tryptophan
 catabolism. *Nat Rev Immunol* 4, 762-74 (2004).
- Munn, D.H. et al. Inhibition of T cell proliferation by macrophage tryptophan
 catabolism. *J Exp Med* 189, 1363-72 (1999).
- 36 99. Fallarino, F. et al. T cell apoptosis by tryptophan catabolism. *Cell Death Differ* 9, 1069-77 (2002).
- Boasso, A. et al. HIV inhibits CD4+ T-cell proliferation by inducing indoleamine 2,3 dioxygenase in plasmacytoid dendritic cells. *Blood* 109, 3351-9 (2007).
- 40101.Manches, O. et al. HIV-activated human plasmacytoid DCs induce Tregs through an
indoleamine 2,3-dioxygenase-dependent mechanism. J Clin Invest **118**, 3431-9
(2008).
- 43 This articles provides evidence that immunodeficiency viruses induce 44 suppressive T cells through the induction of indoleamine-2,3-dioxygenase in 45 plasmacytoid dendritic cells.
- 46 102. Malleret, B. et al. Primary infection with simian immunodeficiency virus: plasmacytoid dendritic cell homing to lymph nodes, type I interferon, and immune suppression.
 48 Blood 112, 4598-608 (2008).
- 49 103. Boasso, A. et al. Regulatory T-cell markers, indoleamine 2,3-dioxygenase, and virus
 50 levels in spleen and gut during progressive simian immunodeficiency virus infection. J
 51 Virol 81, 11593-603 (2007).
- Larrea, E. et al. Upregulation of indoleamine 2,3-dioxygenase in hepatitis C virus infection. *J Virol* 81, 3662-6 (2007).
- 54 105. Chen, Y.B. et al. Immunosuppressive effect of IDO on T cells in patients with chronic 55 hepatitis B*. *Hepatol Res* **39**, 463-8 (2009).

2 107. Grossman, Z., Meier-Schellersheim, M., Paul, W.E. & Picker, L.J. Pathogenesis of 3 HIV infection: what the virus spares is as important as what it destroys. Nat Med 12, 4 289-95 (2006). 5 108. Mandl, J.N. et al. Divergent TLR7 and TLR9 signaling and type I interferon production 6 distinguish pathogenic and nonpathogenic AIDS virus infections. Nat Med 14, 1077-7 87 (2008). 8 109. Meier, A. et al. Sex differences in the Toll-like receptor-mediated response of 9 plasmacytoid dendritic cells to HIV-1. Nat Med 15, 955-9 (2009). 10 110. Crispe, I.N. The liver as a lymphoid organ. Annu Rev Immunol 27, 147-63 (2009). This article gives an overview over the unique environment and composition of 11 12 antigen-presenting cells in the liver. Antigen presentation in the liver often 13 results in tolerance due to the dominant presence of immunosuppressive 14 cyotkines and tolerogenic antigen-presenting cells. 15 111. Qian, S. et al. Murine liver allograft transplantation: tolerance and donor cell 16 chimerism. Hepatology 19, 916-24 (1994). 17 Sumpter, T.L., Abe, M., Tokita, D. & Thomson, A.W. Dendritic cells, the liver, and 112. 18 transplantation. Hepatology 46, 2021-31 (2007). 19 Royer, C. et al. A study of susceptibility of primary human Kupffer cells to hepatitis C 113. 20 virus. J Hepatol 38, 250-6 (2003). 21 114. Breiner, K.M., Schaller, H. & Knolle, P.A. Endothelial cell-mediated uptake of a 22 hepatitis B virus: a new concept of liver targeting of hepatotropic microorganisms. 23 Hepatology 34, 803-8 (2001). 24 Burgio, V.L. et al. Expression of co-stimulatory molecules by Kupffer cells in chronic 115. 25 hepatitis of hepatitis C virus etiology. Hepatology 27, 1600-6 (1998). 26 116. Crispe, I.N. Hepatic T cells and liver tolerance. Nat Rev Immunol 3, 51-62 (2003). 27 Radziewicz, H. et al. Liver-infiltrating lymphocytes in chronic human hepatitis C virus 117. 28 infection display an exhausted phenotype with high levels of PD-1 and low levels of 29 CD127 expression. J Virol 81, 2545-53 (2007). 30 Knolle, P.A. & Limmer, A. Neighborhood politics: the immunoregulatory function of 118. 31 organ-resident liver endothelial cells. Trends Immunol 22, 432-7 (2001). 32 119. Warren, A. et al. T lymphocytes interact with hepatocytes through fenestrations in 33 murine liver sinusoidal endothelial cells. Hepatology 44, 1182-90 (2006). 34 120. Dienes, H.P., Hutteroth, T., Hess, G. & Meuer, S.C. Immunoelectron microscopic 35 observations on the inflammatory infiltrates and HLA antigens in hepatitis B and non-A, non-B. Hepatology 7, 1317-25 (1987). 36 37 121. Franco, A. et al. Expression of class I and class II major histocompatibility complex 38 antigens on human hepatocytes. Hepatology 8, 449-54 (1988). 39 122. Bertolino, P., Trescol-Biemont, M.C. & Rabourdin-Combe, C. Hepatocytes induce 40 functional activation of naive CD8+ T lymphocytes but fail to promote survival. Eur J 41 Immunol 28, 221-36 (1998). 42 Bowen, D.G. et al. The site of primary T cell activation is a determinant of the balance 123. 43 between intrahepatic tolerance and immunity. J Clin Invest 114, 701-12 (2004). 44 Hilleman, M.R. Strategies and mechanisms for host and pathogen survival in acute 124. 45 and persistent viral infections. Proc Natl Acad Sci U S A 101 Suppl 2, 14560-6 (2004). 46 Barth, H., Liang, T.J. & Baumert, T.F. Hepatitis C virus entry: molecular biology and 125. 47 clinical implications. Hepatology 44, 527-35 (2006). 48 Lindenbach, B.D. et al. Complete replication of hepatitis C virus in cell culture. 126. 49 Science 309, 623-6 (2005). 50 Wakita, T. et al. Production of infectious hepatitis C virus in tissue culture from a 127. 51 cloned viral genome. Nat Med 11, 791-6 (2005). 52 Zhong, J. et al. Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci U S A 128. 53 **102**, 9294-9 (2005).

Coussens, L.M. & Werb, Z. Inflammation and cancer. Nature 420, 860-7 (2002).

1

106.

1References 126, 127 and 128 describe for the first time a cell culture system2that allows the generation of recombinant infectious hepatitis C virus. This3system provides a powerful tool for studying the viral life cycle.

- 4 129. Pawlotsky, J.M. Pathophysiology of hepatitis C virus infection and related liver 5 disease. *Trends Microbiol* **12**, 96-102 (2004).
- 130. Yi, M., Villanueva, R.A., Thomas, D.L., Wakita, T. & Lemon, S.M. Production of
 infectious genotype 1a hepatitis C virus (Hutchinson strain) in cultured human
 hepatoma cells. *Proc Natl Acad Sci U S A* **103**, 2310-5 (2006).
- 9 131. Gottwein, J.M. et al. Development and characterization of hepatitis C virus genotype 10 1-7 cell culture systems: role of CD81 and scavenger receptor class B type I and 11 effect of antiviral drugs. *Hepatology* **49**, 364-77 (2009).
- 12 132. Pietschmann, T. et al. Construction and characterization of infectious intragenotypic
 13 and intergenotypic hepatitis C virus chimeras. *Proc Natl Acad Sci U S A* 103, 7408-13
 14 (2006).
- 133. Racanelli, V. & Rehermann, B. The liver as an immunological organ. *Hepatology* 43, S54-62 (2006).

18 Acknowledgements

- 19 This work was supported by the Deutsche Forschungsgemeinschaft, the intramural research 20 program of the National Institute of Diabetes and Digestive and Kidney Diseases, NIH, the 21 CONECTUS program from University of Strasbourg, the Agence Nationale de la Recherche 22 and the Agence Nationale de Recherche sur le SIDA et les Hépatites Virales.
- 23 24 ToC
- 25 Viruses have developed multiple ways of avoiding the host immune system.