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Abstract. The estimation of the noise level in MR images is used to
assess the consistency of statistical analysis or as an input parameter
in some image processing techniques. Most of the existing Rician noise
estimation methods are based on background statistics, and as such are
sensitive to ghosting artifacts. In this paper, a new object-based method
is proposed. This method is based on the adaptation of the Median Abso-
lute Deviation (MAD) estimator in the wavelet domain for Rician noise.
The adaptation for Rician noise is performed by using only the wavelet
coefficients corresponding to the object and by correcting the estimation
with an iterative scheme based on the SNR of the image. A quantita-
tive validation on synthetic phantom with artefacts is presented and a
new validation framework is proposed to perform quantitative validation
on real data. The results show the accuracy and the robustness of the
proposed method.

1 Introduction

In MR image analysis, the estimation of the noise level in an image is a manda-
tory step that must be addressed to assess the quality of the analysis and the
consistency of the image processing technique. The noise variance is also an im-
portant measure for many image processing techniques such as denoising [3, 11]
or registration. Furthermore, procedures that employ statistical analysis tech-
niques, such as functional MR imaging or voxel-based morphometry, often base
their conclusions on assumptions about the underlying noise characteristics. Usu-
ally, the real and imaginary parts of the MR complex raw data are considered
corrupted by white additive Gaussian noise, where the noise variance is assumed
to be the same in both parts (real and imaginary) [7, 8]. By taking the magni-
tude of the complex data, the noise is transformed into Rician noise [1,7–9,13].
Conventionally, the Rician noise is i) described by a Rayleigh distribution in the
background [1, 7, 8, 13] (i.e. the signal of air in the background is considered to
be zero), and ii) approximated by Gaussian noise in the foreground when Signal
Noise Ratio (SNR) is high enough (> 3dB [11]). These models for background



and foreground noise distribution have been used in the majority of noise estima-
tion methods [1,12,13]. However, the Rayleigh model of the background can fail
when ghosting artefacts are present (i.e. non-zero signal) [13], and the Gaussian
approximation of foreground is no longer valid for images with low SNR [13].
Some automatic techniques have been proposed [1, 12, 13]. Usually, these meth-
ods use the histogram of the background and some properties of the Rayleigh
distribution. Recently, a new noise Rician variance estimation method based on
maximum likelihood (ML) estimation from a partial histogram was presented by
Sijbers [13]. More recently, Aja et al. [1] presented a set of new methods for noise
estimation based on local statistics. In this paper, an adaptation of the Median
Absolute Deviation (MAD) estimator in the wavelet domain is proposed for Ri-
cian noise. This robust and efficient estimator has been proposed by Donoho [5]
for Gaussian noise and since has been widely used in image processing. We pro-
pose to adapt this operator for Rician noise by using only the wavelet coefficients
corresponding to the object and then iteratively correcting the MAD estimation
with an analytical scheme based on the SNR of the image [9].

2 Noise in MR images

As mentioned previously, the distribution of noise can be modeled with a Rician
distribution [4, 7, 8, 13]:
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where σn is the standard deviation of Gaussian noise in the complex domain,
A is the amplitude of the signal without noise, m is the value in the magnitude
image and I0 is the zeroth order modified Bessel function. This model is used by
the majority of the noise estimation methods [1, 12, 13]. Most of these methods
can be classified as: i) methods that use background areas to estimate the noise
variance and ii) methods that use the image object itself.

– For the background-based methods, where the signal is usually consid-
ered as zero in background (i.e. SNR = 0dB), the Rician distribution is a
Rayleigh distribution [13]:
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Based on the properties of the Rayleigh distribution, the mean m̄b and the
variance σ2
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The assumption that SNR = 0dB in the background may not be valid in
the presence of ghosting artefacts [13], while the Rayleigh distribution as-
sumption can be corrupted by using reconstruction filters [4, 10], by the
suppression of the signal by the scanner [4, 10] or by zero-padding in the
Fourier domain [10]. Finally, the noise level in the background may not be
representative of the noise level inside the tissue [4, 10].

– For the object-based methods with high SNR (i.e. SNR > 3dB)
[7, 11], the Rician distribution can be well approximated using a Gaussian
distribution:
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This approximation enables us to use all the classical methods proposed for
Gaussian noise estimation. Nevertheless, for low SNR, this approximation is
no longer valid [7, 11,13].

3 Proposed method

In order to relax the assumptions performed by background-based methods (i.e.
no signal in the background) and the object-based methods (Gaussian noise
approximation), we propose an adaptation of the MAD estimator in wavelet
domain [5] for Rician noise.

MAD estimator: By using the usual notation for 3D wavelet decomposition:
LLL denotes the low sub-band containing the feature information whereas LHH,
LHL, LLH, HLL, HLH, HHL and HHH denote the high sub-bands containing
the detailed information. The highest sub-band HHH is essentially composed of
coefficients that correspond to the noise [5]. The fact that the highest sub-band
HHH is mainly composed of the coefficients corresponding to the noise has been
used by Donoho [5] to propose a robust estimation of noise variance. Based on
the MAD estimator, this method enables the estimation of the noise variance in
presence of Gaussian noise:

σ̂ =
median(|yi|)

0.6745
(6)

where yi are the wavelet coefficients of the HHH sub-band and σ̂ the estimation
of noise. As long as the yi coefficients corresponding to the object are considered
and the SNR is high enough, the Gaussian approximation of Rician noise leads
to σ̂n = σ̂.

Rician adaptation: To obtain an unbiased estimation of σn for all SNR values,
we propose to use the correction procedure introduced by Koay et al [9]. This
analytical correction is based on an iterative estimation of the SNR in presence
of Rician noise. In our case, the estimation σ̂, obtained using the MAD estimator
on the object, is used to initialize the procedure:

σ̂n =
√

σ̂2/ξ(θ) (7)



where θ is the SNR value and ξ is the correction factor, which is expressed as:
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where I1 is the first order modified Bessel function. The correction factor is
iteratively applied until convergence of the procedure or when a given number of
iterations t is achieved. The distance |θt−θt−1| can be used as stopping criterion.
The resulting iterative correction scheme can be written as:
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where mo is the mean signal of the object and σ̂ the first estimation from MAD
estimator. The correction factor ξ(θt) from the last iteration is finally used in
Eq. 7.

Object extraction: The first approximation, σ̂n ≈ σ̂, is solely based on the
wavelet coefficients corresponding to the object. To extract the object we take
advantage of the wavelet transform. Since the noise information is mainly con-
tained in the highest sub-bands, the LLL sub-band contains a less noisy version
of the image which can be used to facilitate the segmentation procedure. At the
first level of decomposition, the size of LLL and HHH are identical. Thus, at this
level of decomposition, we proposed to segment the object in the LLL sub-band
and to use the obtained mask to extract the yi coefficients corresponding to
the object in the HHH sub-band. The segmentation is performed using a sim-
ple K-means (k=2) classification. For image with a low level of noise, the MAD
estimation tends to be spoiled since the HHH sub-band is mainly composed of
information corresponding to the high gradient areas (i.e. edges) of the image.
To further increase the accuracy of the estimation at low noise levels, voxels with
the highest local gradient are excluded from the estimation (i.e. removed from
the segmented mask). Accordingly, we eliminate all those voxels whose the local
gradient magnitude is higher than the median local gradient magnitude in the
LLL sub-band.

4 Experiment on Synthetic data

Materials: To evaluate the different methods, synthetic T1-weighted MR data
with 20% of inhomogeneity from the Brainweb database [2] was corrupted with
different levels of Rician noise (2 to 15%). In this paper, 2% of noise is equivalent
to N (0, ν 2

100
), where ν is set to 255. As shown in [1], the size of the background

has an impact on the accuracy of the background-based methods. Smaller back-
grounds lead to more difficult estimations. In order to perfrom a fair comparison,
zero padding of the Brainweb volume of 181 × 217 × 181 voxels was performed
to obtain a volume of 256× 217× 256 voxels. Moreover, ghosting artefacts were
implemented by using a repeated filtered version of the original image. First, the
image is low-pass filtered with two gaussian kernels of different size (3 × 3 × 3
and 5× 5× 5). Then, the absolute difference of the two filtered images is added
to the original image with a half field of view offset (see Fig. 1, left).



Fig. 1. Left: Simulated ghosting artefacts on brainweb with 20% inhomogeneity and the
same image with saturation of the contrast to highlight the ghosting artefacts. Right:
Noise regions of interest obtained with automated quality control software tool [6].

Compared methods: For the experiments, we compared the following meth-
ods:

– the background-based method proposed by Sijbers [13]; denoted as ”ML”.
The Sijbers method was applied using a histogram with 1000 bins.

– the two background-based methods based on local statistics proposed in [1];
denoted as LMB for the Local Means in Background and LVB for Local Vari-
ances in Background. The size of the local neighborhoods and the number
of bins were 5 × 5 × 5 voxels and 1000 bins respectively.

– the object-based method based on local variances proposed in [1]; denoted
as LVO for Local Variances in Object. A local neighborhood of 3 × 3 × 3
voxels was used.

– the classical MAD estimator estimated on the object [5]. The object was
segmented in the wavelet domain without removing high gradient areas.

– the proposed robust MAD for Rician noise estimated on the object and
denoted as RMAD.

Quality measure: To estimate the accuracy of the different methods, the ratio
between the estimated standard deviation σ̂n and the applied standard deviation
σn is computed for all the levels of noise. Moreover, the Mean Absolute Error
over all the levels of noise is also used. The error for a given level of noise is
computed as:

error = 1 −
σn

σ̂n

(10)

All the experiments were repeated 10 times, each with a new instantiation of
noise, for each noise level and the average results are presented.

Results: Fig. 2 shows the results on the phantom with inhomogeneity and
ghosting artefacts. Compared to the MAD estimator, the ability of the RMAD
method to correctly estimate the higher levels of noise (i.e. where the Gaus-
sian assumption failed) can be attributed to the SNR based correction factor.
Moreover, the RMAD provided better estimations of the noise at low level by
removing the high gradients before the MAD computation. As expected, the
background-based methods are impacted by the ghosting artefacts. In fact, the



Fig. 2. Left: ratio of estimated vs. applied noise level, for the all noise levels applied
to the synthetic image, for the 6 techniques compared. Note that RMAD (black line)
estimation is closest to 1.0 for almost all noise levels.

assumption of zero signal in the background is spoiled. All these methods tend
to overestimate the noise level, especially the ML method. The LMB method ob-
tained very good results. Finally, the RMAD method obtained the best result.

5 Experiments on Clinical data

Material: The dataset used for the experiment is composed of 23 T1-w MR
volumes of 256× 256× 56 voxels. These data were acquired with a 1.5T Genesis
Signa GE Medical system and an 1 channel head coil. The parameters of the
sequence were: TR = 30ms, TE = 9ms, FOV=250 mm and bandwidth=122 kHz.

Background extraction: In order to estimate the noise level in the real images,
we used a region-based approach that is similar to the manual selection procedure
usually used in the clinical environment. The noise region of interest (ROI) used
to calculate the noise level was obtained by using the automated quality control
(aQC) software tool described in [6]. Based on the registration of each subject
with a template of ROIs (see Fig. 1, right), the AQc software provides ROIs
associated with noise regions. To determine the noise level, we used the region
anterior to the head which contains less artefacts [6].

Bronze standard: In our study, we have chosen to use the assumption that the
noise level for a given sequence on the same scanner should be constant. Based
on this idea, the noise regions extracted from the background of MR images are
used to estimated an average level of noise over all the data from a same site. To
estimate this average level of noise, the properties of the second-order moment
of a Rician distribution are used. The Bronze standard can be computed from
the mean of the squared values extracted from backgrounds of all the data d:
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where m̂2

b
(d) is the vector containing the squared value of noise extracted from

the background of data d and M̂2

b
is the concatenation of the squared signal

from all the data. Based on the same approach, the estimation of the noise level
for a given data d is obtained with the region-based method by using the mean
of the squared values extracted from the background of d.

Results Fig. 3 shows the results obtained for site 1. For all the data, RMAD
method provided a consistant estimation of the noise relative to the Bronze stan-
dard (small error) in a robust manner (small variance of error). The stability of
the proposed method leads to a smaller error than the region-based method that
was used to build the bronze standard. As assessed by experiments on synthetic
phantom, the MAD estimator computed on the object tends to underestimate
the noise level whereas the LVO method leads to an overestimation of the noise
level. The LVB method appears to follow the MAD estimation and the RMAD
estimation according to the data under process. The LMB method estimated in
the background is a robust and stable estimator but leads to a slight underesti-
mation. Finally, the ML method provided a good mean absolute error but was
accomplished with a high variability.

Fig. 3. Left: results of the compared methods for all the data. Right: mean absolute
error over all the data.

6 Conclusion

In this paper, a new method based on the robust MAD estimator for Rician
noise has been proposed and several state-of-the-art methods for Rician noise
estimation in MR image have been compared. Experiments on synthetic data
with simulated inhomogeneity and ghosting artefacts showed the efficienty of the
proposed object-based approach compared to the background-based approaches.
Experiments on real data have shown that the proposed RMAD method obtained
the best result in terms of accuracy and robustness. The background-based meth-
ods had the highest variability except the LMB method which provided a robust
noise estimation. These results show that the background in real data is spoiled
by artefacts, thus violating the assumption of no signal in background. Finally,



the proposed approach can be applied to situations where no background is
present such as fetal imaging or images where the background is artificially set
to zero by the scanner [4]. Moreover, the proposed approach can be potentially
adapted to work with non stationary noise such as those attributed to parallel
imaging (i.e. GRAPPA or SENSE).
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