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Abstract

Merkel cell carcinoma (MCC) is a rare but aggressive skin cancer involving Merkel cells. Recently, a new human polyomavirus
was implicated in MCC, being present in 80% of the samples analyzed. In virus-positive MCC, the Merkel cell polyomavirus
(MCPyV) is clonally integrated into the patients DNA, and carries mutations in its large T antigen, leading to a truncated
protein. In non-symptomatic tissue MCPyV can reside at very low levels. MCC is also associated with older age,
immunosuppression and sun exposure. However, the link with solar exposure remains unknown, as the precise mechanism
and steps involved between time of infection by MCPyV and the development of MCC. We thus investigated the potential
impact of solar simulated radiation (SSR) on MCPyV transcriptional activity. We screened skin samples of 20 healthy patients
enrolled in a photodermatological protocol based on in vivo-administered 2 and 4 J/cm2 SSR. Two patients were infected
with two new variants of MCPyV, present in their episomal form and RT-QPCR analyses on SSR-irradiated skin samples
showed a specific and unique dose-dependent increase of MCPyV small t antigen transcript. A luciferase based in vitro assay
confirmed that small t promoter is indeed UV-inducible. These findings demonstrate that solar radiation has an impact on
MCPyV mRNA levels that may explain the association between MCC and solar exposure.
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Introduction

Merkel cell carcinoma (MCC) is a highly aggressive cancer of

the skin involving neuroendocrine mechanoreceptor Merkel cells

[1], first described by Toker in 1972 [2]. Its incidence has

increased sharply over the past twenty years, from 500 to 1500

new cases in 2008 in the United States [3]. With a two-year

mortality rate of 28%, MCC is more severe than melanoma.

Although it is extremely rare in people younger than 50 years old

(,5%), MCC risk increases with age and is eleven times higher for

HIV-positive patients [4]. A higher risk is also associated with

immuno-deficiency. MCC, like melanoma, is associated with sun

exposure and affects preferentially individuals with light-colored

skin [5]. Additionally, 36% of MCC involve the face, the most sun-

exposed anatomical site.

In 2008, a new polyomavirus called Merkel cell polyomavirus

(MCPyV) was identified in 8 of the 10 MCC tumors studied [6].

MCPyV DNA is clonally integrated into the tumor genome and is

mutated in the large T (LT) antigen-encoding sequence. Viral

integration is proposed to occur early in MCC carcinogenesis,

before tumor expansion. Recent studies confirmed the presence of

high levels of MCPyV DNA in MCC tumors [7,8,9,10]. These

findings are consistent with reports of serology titers [11,12,13],

whereas low levels have been found in other tissues of healthy

controls [6,8,14,15]. Although recent data have significantly

advanced our understanding of the pathogenesis of this disease,

the molecular events involved in the progression from non-

pathogenic viral infection to MCC development remain unclear.

Similarly, the precise role of solar radiation, if any, in the context

of viral infection, remains to be elucidated.

Results

Photodermatological protocol and MCPyV positive-
samples

We established a photodermatological protocol to examine the

impact of solar radiation on MCPyV gene transcription in a non-

pathogenic context. We thus recruited twenty female volunteers

aged between 38 and 60, with phototype II or III skin type, who

had been referred for abdominal plastic surgery (Hôpital Sud,

Rennes, France). The photodermatological protocol consisted in

irradiating the abdominal zone with 2 J/cm2 and 4 J/cm2 solar-

simulated radiation (SRR), five hours before surgery (Fig.1) [16].

The SSR value of 2 J/cm2 corresponds to the minimal erythemal

dose (MED) for phototype II- skins [17]. Of the twenty patients (P1

to P20) included, four did not undergo irradiation (P1 to P4),
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constituting a control subgroup. After surgery, skin samples were

immediately collected and processed to obtain nucleic acid

samples.

We firstly used PCR to screen DNA samples for the presence of

MCPyV genome. We used primers specifically targeting the LT

antigen (LT1 and LT3) and the capsid structural-protein (VP1), as

previously described [6]. LT3 and VP1 primers amplified a specific

product of the expected size in two patient samples (P3 and P18),

whereas no such specific product was detected with LT1 primers

(Figure 2A). We then confirmed the presence of MCPyV in patients

P3 and P18 by specific PCR amplification, with newly designed

primer-sets targeting distinct regions, of the following MCPyV DNA

sequence: the ST antigen (STA), the LT antigen (LTA), a region

common to both the ST and LT antigen-sequences (SLTA) and the

capsid-sequence (VP1b) (Figure 2B). No viral-specific amplification

was observed for the other samples (data not shown). The human b-

globin gene, used as a control, was positive for all samples (P1 to

P20). Our findings show that patients P3 and P18, of 49 and 42

years old respectively, were infected by MCPyV. This corresponds

to 10% of the samples screened, consistent with previous

observations and providing further insight to sporadic presence of

MCPyV in skin of healthy individuals [14,18].

MCPyV genome is episomal in non-pathogenic infected
tissue

The status of the MCPyV genome in non-pathogenic samples

remains unknown. However, it may be predictive of the clinical

outcome or may modulate the potential effect of solar radiation.

We thus established a sequencing strategy, to identify potential

episomal form and relevant modifications to be compared to the

MCPyV sequence that is mutated and clonally integrated into the

tumors genome, although some copy virus are suspected to remain

episomal [19]. We thus selected conserved regions by MCPyV

sequence alignment using publicly available data (GenBank codes:

EU375803, EU375804, FJ173815, FJ464337). We then designed

overlapping sets of primers spanning the whole genome of the

virus (Figure 3A). Using this strategy, we amplified and sequenced

the entire viral genome present in both MCPyV-positive patient

samples (Figure 3B), suggesting that the virus is predominantly

episomal. LT antigen sequences did not carry any mutations that

would generate a truncated protein, consistent with its non-

integrated state. In addition, we identified several SNPs that were

systematically present and specific to each viral genome sequence

(ie: P3 or P18). Identical sequence was obtained for every skin

samples of each patient. These SNPs distinguish the two newly

identified related sequences and demonstrate a level of genetic

variability of the virus of about 2% (Figure 3C). These SNPs also

explain the absence of specific PCR amplification observed with

the LT1 primer set, and may thus also underlie discrepancies

observed in the number of MCPyV-negative MCC [9,20].

We estimated the number of MCPyV copies per cell and their

distribution over a 10 cm2 skin-area (represented by 11 non-

irradiated samples). We thus evaluated MCPyV DNA levels using

QPCR with three primer-sets (STA, SLTA and VP1b) and with the

human GAPDH gene as a reference. We found about 261024 to

461023 virus DNA copies per GAPDH copy for P18 (Table 1),

comparable results were obtained with UV-irradiated samples (data

not shown). Thus, as in non-MCC skin cancers [7,8,21], but unlike

MCPyV-positive MCC tumors, non-pathogenic skin infection is

associated with very low levels of virus copies, evenly distributed

over the abdominal zone, possibly affecting a sub-population of cells.

These findings also suggest that MCPyV may be present in non-

Figure 1. Photobiological protocol. The 20 volunteers were divided into two subgroups. Group 1: patients P1 to P4 did not received in vivo
irradiation. Group 2: patients P5 to P20 received 2 J/cm2 and 4 J/cm2 SSR irradiation five hours before abdominal plastic surgery. The irradiated regions
were distant one from each other and emitted radiations did not affect the surrounding skin. Around five skin patches were taken from each region.
doi:10.1371/journal.pone.0011423.g001

UV and MCPyV ST-Antigen
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pathogenic skin areas of patients with MCPyV-positive MCC. This

raises the question of what triggers the transforming events. One

possibility is that UV-rays play a part in this process.

The small t antigen mRNA level is modulated following
solar exposure

We investigated changes in MCPyV mRNA levels following

solar radiations administered to the P18 MCPyV-positive

volunteer. Using quantitative RT-PCR with specific primer-sets

(STA, LTA2 and VP1b) based on the previously identified

genome-sequence, we amplified small T (ST), LT antigen and

VP1 mRNA. Given that MCPyV mRNAs are less abundant than

the human mRNAs, a pre-amplification step was included, as

previously reported [19]. We showed that ST antigen mRNA

levels were significantly higher in skin samples exposed to

radiation at 4 J/cm2 than in non-irradiated samples or samples

exposed to 2 J/cm2 radiation (Figure 4A). This effect was not

observed for either LT antigen or VP1 mRNA. The interleukin 6

(IL6) mRNA, an UV-inducible gene used as a positive control, was

also significantly increased in a dose-dependent manner

(Figure 4A) ([22,23]. Comparable data were obtained with 3

independent pre-amplification experiments performed on at least

2 samples per skin area condition (0–2–4 J/cm2, leading to a total

of 6 reactions per irradiated condition). Taken together, these

results confirmed the specific effect of UV-irradiation on ST

mRNA with a mean increase of 7, defined by the IddCtI value.

The levels of induction of ST antigen observed were more variable

than for the cellular gene (IL6) as suggested by the error-bars data.

This effect is inherent to the pre-amplification process, when

starting with small amount of mRNA [24], and in our case to

potential variable numbers of infected cells analyzed per sample.

However, we analyzed HPRT and IL6 relative expression levels,

which proved to be similar between pre-amplified and non-

amplified samples (data not shown), to confirm that the pre-

amplification protocol was reliable and reproducible as it has been

previously shown [25]. We sequenced the amplified product on

both strands to verify that the PCR products obtained for each

positive amplification product corresponded solely to ST antigen

as suggested by the dissociation curve profile (data not shown).

The sequences obtained were identical and unique corresponding

to the ST antigen, confirming the specificity of the PCR product.

The MCPyV non-coding control region is UV-inducible in
vitro

Polyomavirus gene transcription is driven by a bidirectional

promoter located in the non-coding control region (NCCR) of the

viral genome (White et al. 2009). Detection of increased ST

antigen transcript levels in patient P18 following in vivo skin

irradiation suggests that the activity of MCPyV early promoter is

potentially regulated in a UV-dependent manner. To investigate

this possibility, we performed an in vitro UV-assay, as previously

reported for the JVC (Rutberg et el. 2003). Using P18 DNA

sample, we cloned the NCCR sequence that drives MCPyV early

gene transcription upstream from the luciferase reporter gene. We

examined the UV responsiveness of the MCPyV early promoter-

luciferase reporter following transfection of HaCaT human

keratinocyte cell line. UVB irradiation was performed forty hours

post-transfection with a dose of 50 mJ/cm2 and cells were

Figure 2. MCPyV positive-samples identified by PCR-screening. Agarose gels showing PCR products obtained from patient P3 and P18 skin
sample DNA. A, with published (Feng et al., 2008) primers LT1 (expected product at 440 bp), LT3 (308 bp), VP1 (351 bp) and b̃globin (268 bp); WM,
weight marker. B, with newly designed primers STA (115 bp), SLTA (108 bp), LTA (98 bp) and VP1b (109 bp); WM, weight marker.
doi:10.1371/journal.pone.0011423.g002

UV and MCPyV ST-Antigen
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harvested five hours after UVB irradiation [26,27]. The results

show that MCPyV regulatory region possess an intrinsic

transcriptional activity in HaCat cells (compared to the empty

vector) and that this activity was significantly induced after UVB

irradiation. A mean value of 1.8 fold increase is obtained with two

independent experiments and six replicates per condition (Fig.4B).

Discussion

MCC is a highly aggressive skin cancer associated with older

age, immunosuppression and sun exposure. MCC affect

preferentially individuals with light-colored skin and develop

in the face, the most sun-exposed anatomical site. Recently,

infection with MCPyV and clonal-integration of the virus into

the human genome of MCC strongly suggest that MCPyV

participates in the pathogenesis of the tumor. However, the

precise mechanism and steps involved between time of infection

by MCPyV and the development of MCC, as the impact of

solar exposure remain unknown. We thus analyzed non-

pathogenic skins of healthy Caucasian volunteers and UV-

irradiated area to address this question, making the hypothesis

that MCPyV gene expression could possibly be regulated in a

UV-dependant manner. The current in vivo study provides two

major informations. MCPyV is present in its episomal form in

infected but non-pathogenic skin and more importantly ST

antigen mRNA is specifically increased by usual solar radiations.

Due to the rarity of MCPyV in normal skin, we used an in vitro

assay to confirm that the MCPyV early promoter is indeed UV

inducible, five hours post-UV radiation. The level of induction

was found to be dependent on both the dose of UV delivered

and the time post-induction (data not shown), which suggest the

presence of a regulated process.

Figure 3. MCPyV genome is episomal in non-pathogenic skin samples. A, Schematic representation of the sequenced regions (overlapping
sequences 1 to 9) mapped on MCPyV circular DNA. B, Agarose gel of the PCR products obtained from patient P18 skin sample DNA using the
sequencing primer sets targeting sequence 1 to 9; WM, weight marker. Comparable results are obtained for patient P3 samples. C, Cladograms
classifying the MCPyV variants found in patients P3 and P18, and variants MCV350, MCV339, MKL-1 and TKS (respective GenBank codes: EU375803,
EU375804, FJ173815 and FJ46433.
doi:10.1371/journal.pone.0011423.g003

UV and MCPyV ST-Antigen

PLoS ONE | www.plosone.org 4 July 2010 | Volume 5 | Issue 7 | e11423



Taken together our finding report that the ST antigen mRNA

level is regulated in response to UV and that the NCCR is UV

inducible, which suggest that the increase in ST antigen mRNA

following UV irradiation is dependent on the transcriptional

machinery. Because a common promoter drives the transcription

of the ST and LT antigens, the absence of an increase of the LT

antigen mRNA suggests a concomitant activation of the splicing

machinery, leading to a specific increase in ST antigen transcript

levels five hours after irradiation. SV40 studies have shown, LT

antigen to be the major transforming protein involved in neoplasic

processes, deregulating p53 and retinoblastoma family members,

whereas ST antigen cooperates with SV40 LT antigen to induce cell

transformation [28,29]. SV40 ST antigen has also been shown to

inhibit the protein phosphatases 2A (PP2A), promoting entry into S

phase [30]. Given that MCPyV LT antigen is mutated after

integration into the MCC tumor genome, it is possible that MCPyV

ST antigen plays an unexpected major role in viral replication [31]

and in MCC development upon stimulation by solar radiation.

UV rays can modulate and mediate events in viral biology [32].

In the PyV family, the JCV promoter is finely regulated in a UV-

dependent manner [33], and UV-rays specifically alter LT and ST

transcription to promote replication of murine polyoma virus

[34,35,36]. UV rays have also been shown, through the activation

of the stress-responsive p38 kinase, to modulate the activity of

cellular transcription factors [37,38]. The viral machinery to

execute the viral transcriptional program and promote develop-

ment of the virus may recruit these transcription factors. In this

study, we demonstrate for the first time the biological impact of

single solar radiation in MCPyV regulation, thus providing a

potential explanation for the role of repetitive solar-exposure in the

pathogenesis of MCPyV-positive MCC. Further studies will now

be needed to elucidate the precise molecular mechanisms involved

including cis and trans acting regulatory elements and to

characterize the cross talks between cellular and viral machineries.

Materials and Methods

Ethics Statement
The Ethics Committee of Rennes Hospital, France, approved

the study (CCPPRB Nu04/36-517).

Volunteers
We recruited twenty healthy female volunteers, with skin

phototype II or III, as defined by the Fitzpatrick classification

system [39]. Participants with an average age of 42 years (range,

38–60 years) had all been referred for abdominal plastic surgery to

the plastic-surgery department of South Hospital, Rennes, France.

No patient had received UV radiation during the previous two

months, or had taken photosensitive compounds. Patients on

medical treatment or with striae on the region of the skin to be

excised were excluded from the study. Each volunteer was fully

Table 1. MCPyV DNA copy number.

P18 skin samples
MCPyV DNA copies (x10-4)
for one copy of GAPDH gene

Sample 1 8.6

Sample 2 19.0

Sample 3 8.2

Sample 4 11.0

Sample 5 5.1

Sample 6 2.1

Sample 7 9.0

Sample 8 42.4

Sample 9 14.0

Sample 10 5.5

Sample 11 27.2

Mean 13.8

Relative quantification by QPCR of MCPyV DNA copies in eleven non irradiated
skin samples from patient P18; normalization with GAPDH gene. Comparable
results have been obtained with irradiated skin samples (data not shown).
doi:10.1371/journal.pone.0011423.t001

Figure 4. ST antigen mRNA level increases significantly follow-
ing UV radiation. A, Relative quantification of small t antigen (STA) and
interleukin 6 (IL6) transcripts by RT-QPCR after a pre-amplification step,
using total RNA from patient P18 skin samples, after 2J and 4 J/cm2 SSR
in vivo irradiation, and in control samples. Each histogram bar represents
the mean value obtained from six independent QPCR reactions. The Y-
axis represents the absolute value of the ‘‘delta-delta-Ct’’ (threshold cycle).
Data were normalized relative to HPRT mRNA levels. The p-value was
calculated using student test. B, Relative luciferase activity in HaCaT cells
transfected either with control pGL3-basic vector or with pGL3-Mrkl-prom
plasmid, and irradiated with 50 mJ/cm2 UVB or not. Each histogram bar
represents the mean value obtained from two independent experiments
and six replicates for each condition. Raw data of luciferase assays were
normalized relative to the samples protein amounts. The p-value was
calculated using student test.
doi:10.1371/journal.pone.0011423.g004

UV and MCPyV ST-Antigen
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informed about the procedures to be carried out and gave written

consent before taking part in the photo-biological study. The study

took place in the dermatology department of the Pontchaillou

University Hospital, Rennes.

Photo-biological protocol - Skin irradiation
We used a UV polychromatic light source (Dermolum UM-W1,

Müller ElektronikH, Moosinning, Germany), equipped with a

Schott WG 305 filter, to generate solar-simulated radiation (SSR)

containing 5% UVB and 95% UVA. The simulator radiance was

100 mW/cm2 (Müller ElektronikH dosimeter).

The twenty patients were divided into two subgroups: group 1

consisted of patients P1 to P4 and group 2 consisted of patients

P5 to P20. Patients in group 1 were not exposed to SSR. Group

2 patients received SSR at doses of 2 J/cm2 (30 sec irradiation)

or 4 J/cm2 (1 min irradiation) on distinct areas (10 cm2 each) of

the abdomen five hours before plastic surgery. The dose of 2 J/

cm2 was chosen because it corresponds to the minimal erythema

dose (MED) of SSR for phototype II Caucasian skin. The

irradiated zones were distant one from each other, and emitted

SSR could not affect the surrounding skin that was hidden. Skin

patches (,10 mm2) of UV-exposed areas were taken immedi-

ately after abdominal surgery and transferred directly into

RNAlater (Qiagen) for further nucleic acid extraction. Non-

irradiated skin samples were taken as controls. Around five skin

samples were taken from each area (irradiated and non-

irradiated) [40,41].

Total RNA extraction
Skin homogenization was carried out with the PrecellysH224

device (Bertin), using ceramic beads (1.4 mm Ø, CK14), in the

presence of 350 ml lysis buffer (RA1 Macherey-Nagel) supple-

mented with 3.5 ml b-mercapto-ethanol. The device was set at a

speed of 6300 rpm, with a cycle duration of 23 seconds and an

interval time of 2 minutes between 2 cycles, at 4uC. Six cycles

were required for complete homogenization. Tri-reagent

(400 ml; Sigma) was added, followed by 150 ml chloroform.

The aqueous phase was recovered, mixed with 500 ml of 70%

ethanol and transferred to a NucleoSpinH RNA II column.

RNA was recovered from the column following the manufac-

turer’s instructions, although the wash volumes were increased

(RA2 = 600 ml; RA3 = 500 ml). The protocol included a strin-

gent DNAse-treatment of the RNA extracts. Recovered RNA

was quantified using the Nanodrop 1000 spectrophotometer

(Nanodrop TechnologyH, Cambridge, UK) and RNA integrity

was assessed using a 2100 Bioanalyser (Agilent, Palo Alto, CA,

USA).

Tissue DNA extraction
Skin sample DNA extractions were performed using a

Macherey-Nagel NucleoSpinH Tissue kit. Skin samples were

prepared by chopping with a sterile scalpel followed by Proteinase

K digestion overnight at 56uC. Purified DNA samples were

quantified using the Nanodrop 1000 spectrophotometer (Nano-

drop TechnologyH, Cambridge, UK).

Polymerase-Chain Reaction (PCR)
PCR experiments were carried out using AmpliTaq Gold DNA

Polymerase (Applied Biosystems). PCR products were obtained by

amplification of DNA (25 ng) using 500 nM of each primer, under

the following cycling conditions: 10 min at 94uC and 40 cycles of

30 sec at 94uC, 30uC at 60uC and 1 min at 72uC), with a final step

of 10 min at 72uC.

Reverse Transcription of extracted RNA
Reverse transcription was performed with 500 ng RNA using

Applied Biosystems High Capacity Reverse Transcription kit in a

final volume of 20 ml.

Pre-Amplification
An initial step of amplification was performed with the cDNA

samples obtained from reverse transcription using the Applied

Biosystems PreAmp Taqman Mix. cDNA (100 ng) was pre-

amplified through 14 cycles as described on manufacturer

protocol, in the presence of a pool of primers (0.06 mM), leading

to over 15,000 fold-amplification on average.

Quantitative PCR
We carried out relative quantitative PCR using the 7900HT

Fast Real-Time PCR System (Applied Biosystems) after a 1:5

dilution of the pre-amplified samples in 1X TE. MCPyV mRNA

sequences were detected with primers STA, LTA2 and VP1b

(specific to the small t antigen (STA), large T antigen (LTA2) and VP1

(VP1b) transcripts). Additional primers were used to target HPRT

and Interleukin 6 transcripts. Amplifications were obtained using

600 nM of each primer and the SYBR Green PCR master mix

(Applied Biosystems). Standard cycling conditions of 10 min at

95uC and 40 cycles (15 sec at 95uC, 1 min at 60uC) were used.

Particular attention was given to the quality of the dissociation

curves. Data were analyzed using the delta-delta Ct method [42].

Primer sequences are available under request.

Cloning of Merkel cell polyomavirus (MCV) promoter
sequence

MCPyV promoter sequence was amplified from DNA extract of

patient P18 skin sample. Two PCR experiments (nested PCR) were

carried out, both using Pfu DNA Polymerase (Promega). The first

PCR was performed on patient P18 DNA (50 ng), using the

following primers: Mrkl-seq9-F: 59-ACTCCTGTGGTGGCACT-

TAGTT-39 and Mrkl-seq-9R: 59-TCAGAGGGATGTTGCCA-

TAAC-39. The resulting PCR product was purified with Nucleospin

Extract II kit (Macherey-Nagel), according to the manufacturer’s

instructions. The second PCR was performed on the purified sample

(10 ng), using the following primers including KpnI and HindIII

restriction sites: MCV-promF: 59-(TCTGGTACC)CCCCCAT-

CCTGAAAAATAAA-39 and MCR-promR: 59-(TCTAAGCT-

T)TCTATATGCAGAAGGAGTTTGCAG-39. The cycling condi-

tions were: 2 min at 95uC and 37 cycles of 30 sec at 95uC, 30 sec at

60uC and 2 min/kb at 72uC, with a final step of 5 min at 72uC. The

MCV promoter sequence was then cloned in pGL3-basic Luciferase

Repoter Vector (Promega) between KpnI and HindII restriction

sites. Relevant clones were sequenced previous use.

Transfection, irradiation of HaCaT human keratinocyte
cells and luciferase assays

HaCaT human keratinocyte cells were grown in DMEM

medium (Gibco BRL, Invitrogen) supplemented with 5% Fetal

Bovine Serum (PAA cell culture company) and 1% Penicillin-

Streptomycin antibiotics (Gibco BRL, Invitrogen), at 37uC in a

controlled atmosphere provided with 5% CO2. Twenty-four hours

before transfection, 2.56104 cells were seeded in 12-well plates.

Cell transfection (with pGL3-basic vector or PGL3-MCV-prom

plasmid) was performed using Lipofectamine 2000 (Invitrogen),

according to the manufacturer’s protocol. Fourty hours later, cells

were irradiated with 50 mJ/cm2 UVB using the Stratalinker

apparatus [43]. Five hours after irradiation, cells were harvested

using Dual Luciferase assay Lysis Buffer (Promega) and the

UV and MCPyV ST-Antigen
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resulting lysate was homogenized. Luciferase assays were per-

formed on cell lysates using Dual Luciferase assay kit (Promega),

following the manufacturer’s instructions, and using FLUOstar

Omega luminometer (BMG Labtech). For normalization of

luciferase signals, the protein amount of each cell lysate was

measured using Bradford assay (Bio-Rad). Each experiment is

performed at least two times and each condition are performed six

times.

Statistics
Statistical tests were performed using Student T-tests (unilateral

test with inequal variances).
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