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Abstract 

 

In Magnetic Resonance Imaging image resolution comes limited by several 

factors such as hardware or time limitations. In many cases, the acquired 

images has to be upsampled to match on any specific resolution, in such cases, 

image interpolation techniques has been traditionally applied. However, 

traditional interpolation techniques are not able to recover high frequency 

information of the underlying high resolution data. In this paper, a new 

reconstruction method is proposed to recover some of this high frequency 

information by using a data adaptive patch-based regularization in combination 

with a subsampling coherence constraint. The proposed method has been 

evaluated on synthetic and real clinical cases and compared with traditional 

interpolation methods. The proposed method has shown to outperform classical 

interpolation methods compared.       

 

Keywords: MRI, interpolation, superresolution.  
 

 

Abbreviations:  

 

NLM: Non Local Means 

MNLM3D: Multiresolution Non Local Means 3D 

SNR: Signal to Noise Ratio 

PSNR: Peak Signal to Noise Ratio 

LR: Low Resolution 

HR: High Resolution 

SR: SuperResolution 

DTI: Diffusion Tensor Imaging 

fMRI: functional Magnetic Resonance Imaging 
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1. Introduction 

 

In medical imaging, the image voxel size comes limited by a number of factors 

such as imaging hardware, Signal to Noise Ratio (SNR), time limitations or 

patient`s comfort. In many cases, the acquired voxel size has to be decreased 

to fit with a concrete resolution requirement. In such situations, interpolation 

techniques have been traditionally used (Thévenaz et al., 2000; Lehmann et al., 

1999).  

 

Common interpolation techniques, like linear interpolation or spline-based 

methods, have been extensively used in the past to decrease voxel size and 

increase apparent data resolution due to its simplicity and low computational 

burden. These techniques assume that the existing points in the Low Resolution 

(LR) image may be represented using some kind of generic functions (nth order 

polynomials in case of B-Splines for example) with additional assumption on 

smoothness (i.e avoiding discontinuities on 1st order derivatives), followed by 

calculating the values of the points in High Resolution (HR) image using found 

coefficients. However, such techniques invent new points assuming that the 

existing ones (in the LR images) have the same value in the HR images which 

is only valid at homogeneous regions. As a result, interpolated images are 

typically blurred versions of its corresponding HR reference images. 

 

Only recently, SuperResolution (SR) techniques have emerged as an 

alternative to increase effectively the resolution of the reconstructed data (Carmi 

et al., 2006). In MRI, superresolution techniques have been previously applied 

to increase image resolution on functional MRI (fMRI) (Kornprobst et al, 2003) 

and Diffusion Tensor Imaging (DTI) studies (Peled and Yeshurun, 2001). 

Unfortunately, most of these techniques are based on the acquisition of multiple 

LR images with small shifts which is time consuming and therefore not 

adequate for typical clinical settings.    

 

As an alternative to multiple image SR techniques, single image SR techniques 

perform resolution enhancement using the expected degradation model (Zhang 

and Cham, 2008) or exploiting the normal pattern redundancy available on 
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image data (Ebrahimi and Vrscay, 2008; Xin Li, 2008; Protter et al., 2009; Elad 

and Datsenko, 2009). These later have recently shown very competitive results 

compared to classical interpolation methods. As for denoising, where the NL-

means demonstrated high abilities to denoise images (Buades et al., 2005), 

these patch-based interpolation techniques enable to significantly improve the 

classical results.  

 

The exemplar-based or patch-based methods take advantage of the self-

similarity of the image. In fact, instead of acquiring several images of the same 

object to increase the image resolution, the patch-based approaches consider 

that is possible to extract similar information by using the information 

redundancy within a single image.  The patch-based methods can be viewed as 

fractal approaches at the same scale (Ebrahimi and Vrscay, 2008). 

 

 As described in Ebrahimi and Vrscay (2008) and deeply detailed in Elad and 

Datsenko (2009), the examples/patches can be involved in a different way 

during image interpolation. The patches can be used to learn some priors on 

the image in to order to improve regularization procedures (Roth and Black, 

2005). The patches can also be used directly to reconstruct the image as in 

inpainting or texture synthesis (Criminisi, 2004, Efros et al, 1999). More 

recently, hybrid methods using examples within regularization framework have 

been proposed (Ebrahimi and Vrscay, 2008; Elad and Datsenko, 2009; Xin Li, 

2008) and demonstrate very high qualities. 

 

The method proposed in this paper shares some characteristics with single 

image SR techniques based on self-similarity using a regularization expression 

(Ebrahimi and Vrscay, 2008; Xin Li, 2008; Protter et al., 2009). However, by 

taking into account the specificities of the MR acquisition, the proposed method 

is based on different regularity and coherence assumptions typically met in MR 

imaging. Moreover, a robust coarse to fine scheme is involved to achieve the 

reconstruction procedure.  An extensive validation on synthetic and real MR 

datasets is proposed to demonstrate the ability of our proposed method to 

increase voxel resolution in MR data. 
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2. Material and Methods 

 

In MR imaging, voxels in LR data y can be related to the corresponding x HR 

voxels using this expression:  

nx
N

y
N

i

ip

1

1
                                                  (1) 

 

where yp is the observed LR voxel at location p, xi is each one of the N HR 

voxels contained within this LR voxel and n is some additive noise from the 

measurement process. This model assumes that LR voxels can be well 

modeled as the average of the corresponding HR voxel values. Moreover, the 

Rician noise typically present in magnitude images can be well-approximated 

within the imaged object as Gaussian distributed for typical clinical SNR values 

(SNR>3) (Nowak, 1999; Gudbjartsson and Patz 1995). 

 

The aim of any reconstruction/interpolation method is to find the xi values from 

the yj values which is a very ill-posed problem since there are infinite xi values 

that meet such condition. 

 

In classical interpolation techniques such as linear interpolation the xi values are 

calculated as a weighted average of the LR voxels y. 
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where the weights w are calculated as function of the Euclidean distance 

between the coordinates of the new voxels and the LR surrounding M existing 

ones. As can be noted, none of these methods takes into account the fact that 

existing LR voxels are the average of the underlying HR voxels.   
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Proposed method 

 

The method proposed in this paper is rooted on the application of a 3D variant 

of the Non-Local Means filter. The use of this method enforces the structure 

preserving rather than imposing any smoothness constraint. Besides, if the 

presence of noise is minimized on the LR image by applying an appropriate 

filter it can be imposed as a new constraint that the downsampled version of the 

reconstructed image x̂  has to be exactly the same as the original LR image y 

for all location p. Therefore, the used fidelity constraint can be written as: 
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1
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     yp                                        (3) 

 

This constraint has been previously applied in the SR context and referred as 

subsampling consistency (Banerjee and Jawahar, 2008). Due to the presence 

of noise, equation 3 cannot be directly used. To simplify the problem, the LR 

data is first denoised using a recently proposed robust denoising method 

(MNLM3D) for 3D MR images (Coupé et al., 2008b) based in the well known 

Non-local Means filter early proposed by Buades et al. (2005). It has been 

demostrated that such filter is able to remove noise effectively while affecting 

minimally the image structure. For low SNR MR data, where the Gaussian noise 

approximation is no longer valid, some Rician adapted denoising methods 

(Manjón et al., 2008; Wiest-Daessle et al., 2008) can be used. 

 

Finally, the proposed method uses as input data a pre-interpolated version of 

the LR filtered data. It is an iterative procedure based on the following two 

steps: 

 

1) Patch-based non-local Regularization 

 

To perform high quality image upsampling, a patch-based non-local 

regularization procedure is proposed. As shown in (Xi Lin, 2008, Protter et al., 

2009), the non-local means algorithm can be efficiently adapted to 

regularization tasks. In fact, voxels with similar local neighborhoods can be 
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considered as similar and averaged to recover local image structures. In our 

approach, we apply a patch-based regularization by using a voxel-wise 3D 

version of the NLM filter (Coupé et al., 2008a) with a preselection step adapted 

to the progressive reconstruction used. 
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Where t

px̂ is each voxel of the actual image at iteration t, )ˆ(
t

p
xN  and )ˆ(

t

q
xN  are 

image 3D patches around voxels p and q,  is a local search area surrounding 

the voxel being processed and C is a normalization constant. For further details 

see Coupe et al. (2008a).  

 

In our proposed non-local regularization, the preselection is based on the Mean 

Absolute Difference (MAD) of the mean values of compared patches. Patches 

with MAD smaller than Nh /3  were used in the averaging, where h is a 

filtering parameter related to the degree of smoothing and N is the number of 

voxels used in the averaging. This approach allows to perform a preselection 

based on this h parameter instead of patch local moments as suggested by 

Coupé et al. (2008a) which is better suited for our coarse to fine regularization 

purposes.              
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Where t

p  is the mean value of a 3D patch centered at voxel p at iteration t.  

 

By this way, the voxel under study is reconstructed using all similar voxels (in 

the patch distance sense) in the image or in a restricted search area.  Thus, the 

natural redundancy of information contained in the image is used to efficiently 

reconstruct the current voxel. Contrary to classical interpolation methods based 
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on a straight-forward approach of modeling the data using only the local 

neighborhood of a voxel, the patch-based non-local regularization is able to use 

the context of a voxel to use only relevant information from the search area. 

 

2) Mean correction: As shown in by Xu et al. (2008), the non-local means filter 

does not ensure the mean preservation of the reconstructed value. In our case, 

the mean preservation of every HR reconstructed area corresponding to a given 

LR voxel is a critical issue since the reconstruction of x̂  image must be 

accomplished under the constraint described in equation 3 in order to be a 

physically plausible solution. Thus, we proposed a mean correction step in 

order to ensure that the reconstructed HR image will be consistent with the 

original LR one.  

 

As the downsampled version of the reconstructed HR x̂  image has to be equal 

to the original LR image, the local mean value of the reconstructed HR voxels is 

corrected to fit with the value of the original LR voxel by adding the 

corresponding offset.  

))ˆ((ˆˆ yxDNNxx                                            (7) 

 

where D is a downsampling operator that transforms actual reconstructed HR 

data to the original LR and NN is a Nearest Neighbor interpolation operation 

that interpolates LR data to HR. 

 

This two steps (Regularization-Correction) are iteratively repeated until no 

significative difference is found between two consecutive reconstructions (MAD 

inferior to a given tolerance). A block diagram of the proposed method can be 

observed in figure 1. 
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Figure 1. Block diagram of the proposed method. 

 

3. Experiments and results 

 

3.1. Implementation details 

 

The proposed method requires an initial interpolation to start the reconstruction 

process. In our experiments, we used the 3th order B-Spline interpolation as 

implemented in MATLAB 7.4 (Mathworks Inc.).  

 

The described patch-based Non-local regularization scheme has 3 free 

parameters which are the radius of the search area v, the radius of the patch f 

and the degree of filtering h. Parameters v and f were set to 3 and 1 as 

suggested in Coupé et al. (2008) for denoising purposes which represents 

7x7x7 and 3x3x3 voxels 3D windows respectively.  

 

To adjust h parameter a decremental approach was used similar to the one 

used by Buades et al for Non-Local Demosaicing (Buades et al., 2009). A set of 

decreasing h values were used until no significative difference were found in the 

results between consecutive h values (h=[ /2, /4, /8, ...]). Each h value was 

used until no significative differences were found between two consecutive 

reconstructions and then the value of h is decreased to the half. This process is 

repeated until no significative differences among scales (values of h) are found. 

Here  represent the standard deviation of the imaged object y. In our 

experiments the tolerance was set to 0.002  which was found a good choice 

experimentally. In figure 2, an example of the evolution of Peak Signal to noise 

Ration (PSNR), and Mean Absolute Deviation (MAD) of the iterative process is 

presented to better show the way that the proposed method works. 
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Figure 2. On the left: evolution of the PSNR in function of the iterations (the jumps in the PSNR 

values are due to the different values of h). In the center the MAD value between each two 

iterations is shown (for a given h value). In the right the MAD in different scales (h values).  

 

3.2. Simulated data evaluation 

 

The first experiment consisted in reconstructing downsampled versions of a HR 

T1w volume of 181x217x180 voxels (voxel resolution 1 mm3) that corresponds 

to HR T1-w Brainweb phantom (Cocosco et al.,1997). This HR volume was 

downsampled in the z direction to simulate different slice thickness (2,3,5,7 and 

9 mm). These simulated LR data were then upsampled again to 1 mm3. The 

proposed method was compared to the Nearest Neighbor (NN), Trilinear, Cubic 

and B-Spline (3th order) interpolation methods as implemented on MATLAB 7.4. 

(Mathworks Inc). In this first experiment no noise was added to simplify the 

analysis of the results (we wanted to evaluate the reconstruction process not 

the denoising process). Peak Signal to Noise Ratio (PSNR) metric was used to 

evaluate the performance of the different methods. The results can be observed 

on table 1 and figure 2. As can be noticed the proposed method obtained the 

best results in all the cases. 
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The same experiment was repeated but this time using noisy LR data to find out 

how the noise and the filtering process affects the results. The LR data was 

corrupted by adding a Gaussian distributed noise with an amplitude similar to 

that obtained on real clinical datasets (4% of maximum intensity). This noisy 

data was then filtered using the MNLM3D method. Finally, all the upsampling 

methods were applied to these filtered data. Results are shown in table 2 and 

figure 4. Again, the proposed method obtained the best results in all the cases.  

 

Table 1.  PSNR values of the different methods compared for several slices thicknesses.  

Slice Thickness (mm) 2 3 5 7 9 

NN 31.33 27.59 23.93 22.13 20.85 

Linear 34.49 30.17 25.27 23.07 21.55 

Cubic 36.91 31.61 25.95 23.56 21.96 

B-Spline 37.80 32.40 26.06 23.55 21.94 

Proposed 41.28 35.42 28.44 24.90 22.66 

 

Table 2.  PSNR values of the different methods compared for several slices thicknesses (noisy 

case, 4%).  

Slice Thickness (mm) 2 3 5 7 9 

NN 29.81 26.82 23.57 21.89 20.68 

Linear 31.51 28.64 24.67 22.71 21.31 

Cubic 32.61 29.60 25.27 23.17 21.69 

B-Spline 32.93 30.09 25.38 23.17 21.69 

Proposed 34.54 32.21 27.95 25.08 22.99 
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Figure 3. From up to down: Upsampling results of image datasets with different slice thickness 

(1,3,5,7 and 9 mm). From left to right: Original HR data, NN interpolation, B-Spline interpolation 

and proposed method. As can be noted the proposed approach not only produces the best 

PSNR in all cases but also the visual appearance seems to be much better than other 

compared approaches. 
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Figure 4. Results of noisy data upsampling. The noisy (4% of Gaussian noise) LR data (voxel 

resolution = 1x1x3 mm
3
) was upsampled to have a 1 mm

3
 voxel resolution using the different 

compared methods. Both B-Spline and the proposed method were applied over the filtered 

data.      

 

 

The next experiment consisted in reconstructing an isotropically downsampled 

versions of the same HR T1-w volume again to 1 mm3 voxel resolution. This HR 

volume was downsampled to 2x2x2, 3x3x3, 4x4x4 and 5x5x5 mm3 and then 

reconstructed again to 1 mm3. In this experiment no noise was added. The 

proposed method was again compared to the NN, Trilinear, Cubic and B-Spline 

(3th order) interpolation methods. The results can be observed on table 3 and 

figures 5 and 6. As can be noticed, the proposed method again obtained the 

best results in all the cases. 
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Table 3.  PSNR values of the different methods compared for isotropic factors  

Factor  2 3 4 5 

NN 26.21 22.81 20.90 19.51 

Linear 28.48 24.90 22.28  20.73 

Cubic 31.33 26.46 23.55 21.70 

B-Spline 32.36 27.15 23.93 21.99 

Proposed 35.50 29.65 26.01 23.39 

 

 

Figure 5. Results of isotropic voxel upsampling. LR data (voxel resolution = 2x2x2 mm
3
) was up 

sampled to have a 1 mm
3
 voxel resolution using the different compared methods. It can be 

noticed that proposed method produces a much compelling result than other compared 

methods.    
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Figure 6. Results of isotropic voxel upsampling. LR data (voxel resolution = 4x4x4 mm

3
) was up 

sampled to have a 1 mm
3
 voxel resolution using the different compared methods. It can be 

noticed that proposed method produces a significative less blurry result than other compared 

methods.    

 

In order to facilitate reproducibility of the presented experiments the source 

code of the described experiments and the proposed method can be found at: 

http://webpage/page.html. 
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3.3. Real clinical data evaluation 

 

To evaluate the proposed approach on real clinical data, LR and HR T2-w data 

were used. The LR dataset was obtained using a T2-w volumetric sequence 

(240x240x53 voxels with a voxels resolution of 1x1x3 mm3 in a Philips 

Gyroscan 3 Tesla scanner (Netherlands). The HR T2-w data was acquired 

using the same sequence but using a voxel resolution of 1 mm3 (240x240x159 

voxels). Both, HR and LR data were filtered using the MNLM3D filter to remove 

random noise before upsampling. 

 

Two experiments were performed with this data. First a quantitative evaluation 

of the proposed method was done by upsampling a previously downsampled 

version of the HR T2-w data (1 mm3 to 1x1x3 mm3). In this way we were able to 

measure the PSNR of the proposed method (33.53 dB) and reference B-Spline 

interpolation (31.22 dB). In the second experiment, the LR T2-w data was 

upsampled using B-spline interpolation and the proposed method and visually 

compared with the reference HR T2-w data. In figure 7, the results of this 

qualitative test are shown for visual comparison. As can be noted the proposed 

method was able to better reconstruct the T2-w data in comparison with B-

Spline interpolation.  

 

Additionally, the proposed methodology was tested on a pathological dataset 

containing a brain tumor. In this case, a LR FLAIR-w volume (224x256x29 

voxels) with a voxel resolution of 0.81x0.81x6 mm3 was used. This dataset 

(named CEREBRIX) was downloaded from a public MR DICOM data repository 

(http://pubimage.hcuge.ch:8080/). This LR data was first filtered using the 

MNLM3D filter and then upsampled to 0.81x0.81x1 mm3 using the B-Spline and 

the proposed method and the results were qualitatively valuated visually. In 

figure 8, the reconstruction results using the compared methods can be 

observed. It can be easily seen that the upsampled volume using the proposed 

method is significantly less blurry and better defined than BSpline 

reconstruction.  
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Figure 7. Results of real clinical data upsampling. LR data (voxel resolution =1x1x3 mm
3
) was 

upsampled to have a 1 mm
3
 voxel resolution using the B-Spline and proposed methods. HR 

reference data is also displayed for visual comparison. Note that dark areas are invented near 

the ventricles in the axial orientation when using the B-Spline reconstruction. No such areas are 

visible when using our proposed method. A close up of posterior part of the saggital view is 

displayed to better show image details.    
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Figure 8. Results of real clinical data upsampling. Highly anisotropic LR data (voxel resolution = 

0.81x0.81x6 mm
3
) was up sampled to have a 0.81x0.81x1 mm

3
 voxel resolution using the B-

Spline and proposed methods. Top row: Nearest Neighbor interpolation. Middle row: B-Spline 

interpolation. Bottom row: Proposed method reconstruction. Note that our proposed method 

produces less blurry images and better defined boundaries.  
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4. Conclusion 

 

A new method for high quality MR image upsampling has been presented that 

allows to recover some HR data information from LR data. The proposed 

method has been demostrated, using synthetic and real data, to outperform 

classical interpolation methods. 

 

The improved performance of the proposed methodology can be understood 

under the consideration that the applied regularization has a physically plausible 

model which has been used to constrain the iterative reconstruction process. 

Furthermore the regularization performed using the Patch-based non-local 

scheme prevents the occurrence of the well-known blurring effect typically 

present in classical interpolation methods by enforcing local image structures.  

 

As the proposed method includes the iterative application of a NLM scheme, its 

computational burden is high. The typical processing time of a normal MRI 

volume is around 1 hour (it depends on the number of iterations needed to 

converge) using a multithreading implementation on quad core normal PC. 

However, a number of optimizations can be performed to reduce the processing 

time to few minutes. For example avoiding computations at the background 

since no useful information is obtained there.  

 

The application of the proposed methodology to upsampled quantitative MRI 

datasets has to be addressed clinically. Concretely, the application of this 

technique to upsample DTI studies could be of great interest. This and other 

possibilities will be addressed with further research. 
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