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Abstract  
 

DARC (Duffy Antigen Receptor for Chemokines) is unusual transmembrane 

chemokine receptor which (i) binds the two main chemokine families and (ii) does not 

transduct any signal as it lacks the DRY consensus sequence. It is considered as silent 

chemokine receptor, a tank useful for chemiotactism. DARC had been particularly 

studied as a major actor of malaria infection by Plasmodium vivax. It is also 

implicated in multiple chemokine inflammation, inflammatory diseases, in cancer and 

might play a role in HIV infection and AIDS. In this review, we focus on the interest 

to build structural model of DARC to understand more precisely its abilities to bind 

its physiological ligand CXCL8 and its malaria ligand. We also present innovative 

development on VHHs able to bind DARC protein. We underline difficulties and 

limitations of such bioinformatics approaches and highlight the crucial importance of 

biological data to conduct these kinds of researches.  
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Résumé  
 

Le DARC (Duffy Antigen Receptor for Chemokines) est un récepteur aux 

chimiokines inhabituel qui (i) lie les deux grandes familles de chimiokines et (ii) du 

fait de l’absence du motif DRY ne transduit pas de signal. Récepteur silencieux, il est 

un réservoir utile pour le chimiotactisme. DARC a été particulièrement étudié comme 

un acteur majeur de l'infection par Plasmodium vivax. Il est également impliqué dans 

des maladies inflammatoires, cancers et pourrait jouer un rôle dans l'infection par le 

HIV. Nous présentons l'intérêt de construire un modèle structural de DARC, pour 

comprendre plus précisément sa capacité à lier son ligand physiologique CXCL8 et 

son ligand paludique. Nous présentons des développements innovants portant sur des 

VHHs capables de lier le DARC. Nous soulignons aussi les difficultés et les limites 

des approches bioinformatiques et mettons en évidence l'importance cruciale de 

données biologiques pour mener à bien ce type de recherches. 
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DARC 

The history of human knowledge on DARC (Duffy Antigen Receptor for 

Chemokines) begins in 1950 with the discovery of a new blood groups system (the 

Duffy blood group system) named from the person who developed the first antibody 

against the so called Fya antigen [1]. A second antithetic antigen Fyb [2] was shortly 

after discovered. In 1955, it was shown that antigens of Duffy blood group system 

were missing in red blood cells (named Fy(a-b-)) from a large proportion of West 

African ascent population (RBC-WAAP) [3]. It was observed thereafter that these 

cells were resistant to invasion by Plasmodium vivax (see below). Other important 

steps were cloning of cDNA coding for the protein carrying the Fy antigens, the 

Duffy glycoprotein, the recognition that Duffy glycoprotein was a transmembrane 

receptor for chemokines leading to changing its name to DARC. 

In this short review, we will briefly overview knowledge on the immunogenic 

properties of DARC, relations of DARC with malaria, of DARC with chemokines 

inflammation and inflammatory diseases. We will quote present research which deals 

with the multiple roles of this somewhat enigmatic protein that, besides malaria and 

inflammation, is implicated in cancer and might play a role in HIV infection and 

AIDS. Then, we show the interests in the design of structural models for DARC 

analysis. We will present (i) how to build proper structural models of DARC [4], (ii) 

how to elucidate pertinent interactions with its ligands [5] and (iii) what might be the 

role of structural modelling in elaboration of new tools for DARC studies [6]. 

 

Duffy antigens.  

They have been defined by studying reactivity of patients immunized through 

transfusion or pregnancy. Fya/Fyb allotypic variants exist and correspond to a SNP in 
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exon 2 encoding a Gly42Asp substitution in the extracellular N-terminal domain of 

the Duffy glycoprotein [7, 8]). Two other antigens have been identified: (i) Fy3, 

which involves residues from the 3rd extracellular loop [9], is probably a 

conformational reader and (ii) Fy6, which was discovered after immunisation of mice 

with human red cells or engineered eukaryotic cells expressing DARC, is a linear 

epitope contained in the first extracellular domain. Fy6 is present both in Fya or Fyb 

allotype, and, only Fy(a-b-) cells do not react with anti Fy6. 

The mechanism of selective extinction of expression of Duffy related antigens 

on WAAP red cells have been elucidated. The Duffy negative phenotype of WAAP 

red cells (noted Fy(a-b-)) is due to homozygosity for a promoter polymorphism (-

46C) in which the binding site for the  transcription factor (GATA-1), required for 

DARC to be expressed on the cell surface of erythrocytes [10], is disrupted. This 

mutation is present in a Fyb genetic background. Importantly in Fy(a-b-) WAAP, 

DARC is normally expressed on cells in which DARC expression was already 

demonstrated for example, endothelial cells of post capillary veinules, epithelial cells 

of collecting ducts of the kidney, cerebellar Purkinje cells [11, 12]. Another promoter 

is likely operative in these tissues. 

 

DARC and Plasmodium vivax. DARC was characterized as an erythrocyte 

receptor for malaria parasite through in vitro studies and also in vivo experiments 

performed on American volunteering detainees [13, 14]. The hypothesis that DARC 

might be a receptor for P. vivax raised after it was noted that WAAP might be 

resistant to infection by P. vivax purportedly performed to treat neuro syphilis. All 

this does support the widely accepted hypothesis that P. vivax was the driving force 

for fixing the mutation silencing red cell expression of DARC. In this regards, it is 
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interesting to note that in Papua New Guinea, where P. vivax malaria is also endemic, 

heterozygous individuals for the same GATA-1 site mutation have been found [15] 

but on a Fya background. It is tempting to speculate that the same FY GATA-1 

mutation in Africans and Melanesians occurred independently in these two 

populations as a result of the same selection pressure.  

Plasmodium vivax Duffy binding protein (PvDBP) is a merozoite microneme 

ligand vital for blood-stage infection, which makes it an important candidate vaccine 

for antibody-mediated immunity against vivax malaria [16, 17]. Naturally acquired 

antibodies to DBP seem to confer protection from blood-stage P. vivax infection, 

supporting the development of a vaccine against P. vivax malaria [18]. However other 

studies also pinpointed that produced human antibodies might have low efficiencies 

underlining the difficulty of vaccine design [19]. Hence, alternative approaches to 

interfere with P. vivax merozoite with DARC on red cells are demanded. 

Consequently, analysis of interaction mechanisms between DARC and DBP is 

important; analysis of DBP variants and DARC genotypes gives also insights to the 

sequence – function relationship [20]. 

Very recently, studies have shown that in Madagascar, P. vivax can invade Fy(a-

b-) erythrocytes leading to disease [21]. Further studies are necessary to identify the 

genetic peculiarities of the parasite strain the receptors that enable this DARC-

independent P. vivax invasion of human erythrocytes. 

Beyond DARC and PvDBP it is worth to notice the existence of Duffy-Binding 

like (DBL) domains implicated in other types of malaria. Domains related to PvDBP 

are found in Plasmodium falciparum. DBL domains are conserved regions of 

erythrocyte membrane protein 1 (PfEMP1) family. VAR2CSA Duffy binding-like 

(DBL) domains, which bind chondroitin sulphate A in placenta, are interesting 
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candidates for the development of a vaccine against pregnancy-associated malaria 

[22]. Indeed, in spite of the extreme polymorphism of PfEMP1 DBL  domains, 

specific antibodies reducing risk of malaria in areas with high transmission rates were 

acquired [23]. DBLs family fold is supposed to be conserved. Consequently, the 

family is intensively studied to elucidate binding mechanisms [24-27].  

 

DARC and chemokines. DARC is a transmembrane receptor for a variety of 

chemokines of both CXC and CC classes, including angiogenic (ELR
+
) CXC 

chemokines, but not angiostatic (ELR
-
) CXC chemokines [28, 29]. DARC sequence is 

quite different from other chemokines receptors [30, 31]. It is a silent chemokine 

receptors (or interceptors) [29]. Besides, a clear distinction should be made between 

DARC expressed on red cells and DARC expressed in other tissues. Importantly, 

DARC is lacking the DRY consensus sequence that is necessary to activate a protein 

G dependant activation cascade after activation by ligand binding [8, 32-34]. DARC 

on red cells does not internalize. DARC might play the role of a buffer or a scavenger 

for chemokines and could reduce their concentration in blood stream [35]. By contrast 

DARC on endothelial cells behaves differently. It supports transcytosis of chemokines 

from luminal to extravascular space and favours leucocyte migration and development 

of inflammatory reactions [36]. A similar mechanism might operate in in vitro model 

of rheumatoid arthritis in which overexpression of DARC does favour inflammatory 

reaction [37]. DARC could play a role in inflammatory diseases of the kidney [38]. 

Heterodimerization of DARC with CCR5 might impair activation of 

intracellular signalling dependant on chemokine binding to CCR5 [39]. This 

observation definitely adds a level of complexity and makes the role of DARC 

difficult to understand. 
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Evidence strongly supports that DARC might play role(s) in the delicate 

interplay of chemokines and chemokines receptors (chemokines network). DARC is 

definitely considered to be important in a range of physiological and pathological 

conditions. 

 

DARC and HIV. HIV binding was early reported [40, 41]This binding, which is 

inhibitable by CXCL8 8 and anti FY6 antibody [41], might help the viral infection of 

CD4+ sensitive cells. Later results confirmed that red cell binding to HIV might 

favour HIV trans-infection of susceptible cells. However no difference was observed 

when comparing Fy(a+b+) and Fy(a-b-) cells [42]. Epidemiological studies did 

suggest that the Duffy-null state is associated with a survival advantage in HIV-

infected persons of African ancestry [41, 43], but this proposition is also still highly 

debated [44-46].  

 

DARC and cancer. Recently, a relation between DARC and various cancers 

was established, making DARC a hot topic. Hence, it seems that DARC and murine 

CXC Chemokine Receptor-2 Receptors have opposite role in murine melanoma tumor 

growth [47, 48]. Epidemiological studies showed that African Americans are 

suffering from prostate cancer earlier than Caucasians. Moreover, the course of the 

disease appears more aggressive for African American population. These observations 

suggested that DARC might play a role in cancer. These observations were backed up 

by crossing DARC null engineered mice with TRAMP mice which developed 

spontaneous prostate cancer [28]. The scavenger role of DARC for chemokines to 

excess in red cells could participate in reducing angiogenesis, and consequently the 

progression of prostate cancer, by clearing angiogenic chemokines from the tumour 
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microenvironment [28, 49]. Hypothesis has been discussed on the substantially higher 

levels of prostate cancer and associated mortality rates in men of African origin 

compared with Caucasian men. On the other hand, expression of DARC in breast 

cancer tumour cells does lower metastasis and aggressiveness of the tumour [50]. 

Again, interaction of DARC with chemokines is hypothesized to explain a putative 

role of DARC in cancer progression noticeably angiogenic chemokines that are 

obviously implicated in tumour neovascularisation. 

 

The different aspects of the research 

All these data clearly suggests that DARC is a particularly interesting and 

important protein. Various DARC mutants have been designed and expressed. 

Affinities with DARC natural ligand, CXCL8, and different antibodies [33, 51-58] 

confirmed predictions made about DARC topology [59]. This transmembrane protein 

as bona fide GPCR has 7 transmembrane segments with four extracellular loops 

(named Extra Cellular Domains or ECDs) and four intracellular loops (named Intra 

Cellular Domains or ICDs). The first ECD (ECD1) is a long Nterminal segment, 

while last ICD (ICD4) is a short cytosolic Cterminal.  

Structural information can help a lot to understand its function and implications 

in diseases [60]. However, few transmembrane protein structures (~ 650 structures, 

1% of the Protein Databank [61-63]) are nowadays available [64, 65]. Due to the 

membrane environment [66-69] that stabilises the 3D fold, it is particularly difficult to 

extract, to purify to crystallise and finally to solve transmembrane proteins structures 

by X-ray crystallography. Hence, structural modeling is an obligatory but difficult 

step. With a low number of available 3D structures, automatic homology modeling 

cannot be applied to GPCR or GPCR-like molecules even though it was attempted: at 
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best position of transmembrane membrane domains may be predicted but no solid 

information on structure of loops may be gained. Thus, pertinent structural models of 

transmembrane proteins must be a human supervised process using classical 

approaches coupled with various secondary structure predictions, refinement of 

sequence alignment, and if possible considering helix – helix and helix – lipid 

interactions. Importantly, experimental data are necessary for building relevant 

models [70]. 

In the next section, we will detail a concrete application and explain how 

experimental data were crucial for building pertinent structural models [4]. These 

models were particularly helpful to explain DARC interaction with its ligands. We 

will present the principle of docking methods applied to this kind of protein and the 

specific difficulties met when dealing with DARC [5]. Finally, we will discuss the 

interest of proposing structural models of camelids VHHs shown to bind a specific 

DARC epitope [6]. 

 

Building structural models 

Classically, a structural model can be elaborated through different strategies 

from homology/comparative modelling, threading ab initio or de novo approaches, 

depending on the sequence identity and the availability of structural homologous. 

Figure I shows a rough description of the sequence identity needed for each of these 

approaches. If the sequence identity is high, homology modelling could be used. In 

the twilight zone, when PSIBLAST is unable to detect any interesting sequences, 

threading approach could help to find distant homology by evaluating sequence-

template structure fold compatibility. In case of failure, ab initio modelling becomes 

the only possibility. Ab initio methods do not require any 3D template, but physico-
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chemical and/or statistical potentials. The main problem consists in finding the native 

protein structure, i.e. the 3D structure with a minimum free energy. Some ab initio 

approaches try to mimic protein folding to find this minimum. These approaches are 

essentially successful for peptides and very small proteins. Otherwise, they are not 

performed due to search complexity. De novo approaches combined these different 

methods starting from domain detection, looking for fragments with similar sequences 

in PDB. A large set of fragments is generally considered. The next problem consists 

in appropriately combining these fragments. The combinatory becomes rapidly 

prohibitive as the size of the protein increases. Consequently, sophisticated algorithms 

aiming at solving this combinatorial problem are required. These methods give good 

results but need an important computer power. These different approaches are 

available on meta-servers that mainly combine multiple results from different 

softwares and/or servers [71, 72]. It has to be noticed that all these approaches were 

developed for globular proteins.  

For the building of DARC of structural models, we started with comparative 

modelling. The procedure first consists in searching for homologous sequences in 

PDB. However, classical tools did not provide any convincing answer. The sequence 

identity between DARC and rhodopsin (PDB code: 1F88 [73]), the paradigm for 7-

TM fold, was very low, i.e., only 12% in the range of random alignment). 

Consequently, sequence alignment was not meaningful and no clear homology could 

be inferred. Moreover, DARC family members were too few to detect important 

conserved residues from divergent ones with the sole alignment. Consequently, the 

absence of real sequence divergence makes the alignment not truly informative. 

Actually, pertinent structural models could not be properly built with the sole 

sequence information of DARC. However, for DARC, important biological data were 
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available. Indeed, more than 40 different punctual DARC mutants were 

experimentally tested for affinity with natural ligands or some antibodies [9, 53, 74], 

they underline the potential accessibility of some residues. With this information, it 

was possible to guide the building of structural models. Figure II presents the main 

principle of the structural model building. 

DARC was divided into three main domains: (i) ECD1, (ii) one central domain 

encompassing the transmembrane helices and connection loops, and (iii) ICD4. 

Putative helical transmembrane regions were located with dedicated prediction 

softwares (DAS [75], TopPred 2 [76, 77], HMMTOP [78, 79], TMHMM 1.0 and 2.0 

[80], PHDtm [81, 82], TMpred [83], SOSUI [84-86], SPLIT [87, 88], Pred-TMR 1.0 

and 2.0 [89, 90], TMAP [91, 92], TSEG [93], TM-FINDER [94], UMDHMM
TMHP

 

[95], MEMSAT [96, 97], PRODIV-TMHMM [98] and MemBrain [99]). All these 

methods claim to be efficient with significant prediction rates when tested on 

benchmark datasets. Only the first helix is predicted with a large consensus. The 

fourth helix was particularly difficult to delimit. Other helices could also diverge by 

an impressive number of residues, i.e., 15 residues. The most recent prediction tools, 

e.g., MINNOU [100] were not necessarily the most efficient ones. Indeed, in some 

cases, PSI-PRED [101] mainly trained on globular protein, could give better results 

than dedicated approach, as seen in [102].  

In a second step, using a rough consensus definition of transmembrane regions, 

predicted helices were aligned with assigned transmembrane helical (DSSP software 

[103])segments of rhodopsin (PDB code 1F88 [73]). Strong efforts were dedicated to 

the prediction of ECD1 and ICD4 [104, 105]. Hundred models were generated using 

Modeller software [106-108]. Each model was then refined: (i) the side chains were 

repositioned using one of the most efficient approach, i.e., SCWRL [109]. We 
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performed simulated annealing for exploring connection loops conformations using 

GROMACS software [110, 111]. The residue accessibility was computed with 

Naccess software [112] and the results were compared to experimental data available. 

We focused on residues involved in antibody binding that are supposed to be 

accessible. The alignment was then modified accordingly. Twelve generations of 

alternative alignments were tested for finally obtaining two structural models that 

diverge by the topology of ECD1. (see Figure III [113]). In these two models, the 

accessibility values of important residues were large enough to allow binding. 

Since, novel approaches have been developed and adapted to transmembrane 

proteins. We revisited our models at the light of the most efficient new tools and 

compared with our results. For this purpose, we tested LOMETS (LOcal MEta-

Threading-Server [114]), a webserver that uses 8 different methods and ranks the 

results. Table I summarizes the different results obtained for MUSTER [115], SAM 

[116], PROSPECT2 [117], SP3 [118], PPA-I, HHsearch [119], SPARKS2 [120], and 

FUGUE [121]. The three first methods provide structural models with a medium 

confidence rate while the models constructed with the last methods are associated 

with a low confidence index. Only half of the proteins used as template are 

transmembrane proteins, half are globular proteins with often beta-sheets. Figure IV 

describes the main results obtained from LOMETS [114] and from PHYRE [122]. 

Figures IVa, IVd and IVg show the three templates found by LOMETS for the 

medium scored structural models. The first one is based on the famous human A2A 

adenosine receptor (PDB code 3EML [123]), while the two others are globular 

proteins, namely the COPI gamma-subunit (PDB code 1PDZ [124]) and cell vibrio 

mixtus mannosidase 5A (PDB code 1UUQ [125]). Figures IVb and IVc show the 

final structural model obtained from A2A adenosine receptor template. The fold 

http://zhanglab.ccmb.med.umich.edu/LOMETS
http://zhanglab.ccmb.med.umich.edu/LOMETS
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corresponds to a seven-segment transmembrane protein with ECD1 in an extended 

conformation. In both models, the first helix is well predicted, but many differences 

are observed in the positions of the following helices.  Nevertheless, these models are 

good starting points to build pertinent structural models. For the structural model 

based on COPI gamma-subunit (see Figures IVe and IVf), the difficulty to obtain 

transmembrane protein model is clearly illustrated. Finally, no structural model based 

on cell vibrio mixtus mannosidase 5A was obtained, i.e., the alignment being too 

poor. PHYRE, a powerful threading approach, proposed the well-known bovine 

rhodopsin structure as a template (PDB code 1U19 [126]) associated with 60 % 

confidence rate. However, in this structural model presented on Figure IVh, the TM 

helices were too long or too short helices, compared to what is classically expected 

for transmembrane protein. The 7-segment transmembrane topology was finally lost. 

These revisited models obtained with up-to-date methods show the importance 

of considering biological data to produce pertinent structural models. It also reinforces 

the validity of the structural models we constructed some years ago. 

 

Structural properties of DARC 

To explore the flexibility of the ECD loops, we performed simulated annealing 

simulations [127]. Interestingly, the procedure highlights the importance of residue 

D263 which was never really accessible in any structural models; this residue 

constrains the local fold by creating a bridge with ECD3. Analysis of simulations with 

Protein Blocks [104, 128] showed that that some regions in ECD1 tent to be more 

helical and other ones to be more extended. These results correlated well with the 

predictions done [105, 129, 130]. 
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The two extreme positions of ECD1 (see Figure III) could also reflect also the 

domain motions [60]. We performed normal mode analysis (NMA) using different 

webservices. This methodology has been recently re-popularized and successfully 

applied for examining dynamics of large systems and also for transmembrane proteins 

[reference]. Among the different webservers, WEBnm@ server [131] provides 

additional analysis dedicated to transmembrane protein.  For this review, we also 

tested Nomad-Ref [132] and ElNemo [133, 134]. In NMA, the lowest frequencies 

modes are associated with the largest amplitude of motions. a large domain motion of 

ECD1 that gets closer to the other ECDs was observed with the different NMA tools. 

A similar motion was indeed observed with Nomad-Ref [132] or ElNemo [133, 

134].The main difference with Webnm@ lies in the ranking of the motions with 

respect to the frequency that were slightly different depending on the tool. The three 

regions detected with simulated annealing (a first structured zone, a transition region 

and a last structured zone) are clearly involved in the motion. The median region 

plays a role of hinge between the two extremities of ECD1. Figure V illustrates the 

motions associated with the two of the lowest modes given by ElNemo [133, 134]. On 

the left side is indicated the hinge region. The movements are schematized in the two 

following Figures. In both, the flexible hinge region moves with respect to the two 

structured regions. 

Electrostatic potentials of DARC model and its natural ligand CXCL8 were 

calculated using the finite-difference Poisson-Boltzmann (FDPB) method [135]. Two 

distinct zones can be observed in potential interaction zones with CXCL8. The first 

one is highly negative and encompass the residues implicated in epitope Fy6. The 

second one is highly positive. CXCL8 also shows two regions with opposite features 

(one positive and the remainder negative, encompassing the loop 40s known to 
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interact with chemokine receptor). Our results highlight regions with significant 

electrostatic properties in agreement with experimental studies that underline the 

importance of electrostatics in the binding of chemokines [136, 137]. 

A following question is the potential use of such structural models for 

understanding the binding of DARC and its ligands. Docking methods are particularly 

appropriate to locate binding sites on both partners and their relative orientation, even 

though the use of models increases the risk of obtaining irrelevant structures of 

complex. Docking procedure roughly consists in moving the smallest partner 

(designed as “the ligand”) on the surface of the largest molecule (“the receptor”). For 

each position, a score (or energy) is computed. The position with the optimal score is 

finally selected. A source of errors comes from the inadequacy of scoring to represent 

binding energies. In addition, most docking at least in the first steps, consider the 

partners as rigid. This limitation is only alleviated in a final refining step when a 

subset of solutions has been already established. In the case of DARC, we previously 

underlined that ECD1 is highly flexible. Clearly, this property must be accounted.  

Consequently, we performed the study in two steps and we designed a docking 

approach that combines rigid and flexible docking. In a first step, DARC structural 

model is cut into ECD1 and the rest of the protein (see Figure VIa) to find correct 

positioning of CXCL8 on DARC without ECD1, and a flexible docking only with 

ECD1 and CXCL8 (see Figure VI). On one side, a flexible docking of ECD1 is done 

with structure of CXCL8 (see Figure VIb) thanks to ICM [138, 139] software. It is 

very difficult and complex approach with a very high computing consuming time. On 

the other side, a rigid docking is done with the transmembrane domain of DARC (see 

Figure VIc) thanks to ClusPro [140, 141] webserver. Each experiment give numerous 

possibilities, the docking conserved where selected on energetic properties of the 
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complex and also using biological data. Figure VII shows examples of results of rigid 

docking (see Figure VIIa and VIIb) and of final combination of rigid and flexible 

docking (see Figure VIIc and VIId). These results were quite encouraging. Finally, 

both results will be combined to perform a deeper search [60]. Further optimization 

needs to be done, but conserved results are in accordance with expected residues in 

contacts. 

 

Modelling of camelid VHHs 

DARC is implicated in numerous human diseases. Dedicated tools are 

demanded for analyzing DARC role and guiding therapeutic strategies. In this field, 

antibodies and their recombinant derivatives are of great use. The heavy chain-only 

antibodies found in camelids are composed of heavy chains and lack all light chains 

[142]. VHHs (or nanobodies), which correspond to the domain in the heavy chain-

only antibody, can be derived. In this domain is located the antigen recognition 

region. VHHs are easily cloned from lymphocytes from naive or immunized 

camelids; they can be expressed in E. coli with a good yield and have an excellent 

solubility [143]. Moreover, they have proved to be efficient as therapeutic and 

diagnostic agents [144, 145]. 

A dromedary has been immunized with ECD1 of DARC expressed in E. coli. 

As presented earlier, ECD1 carries several sites important to DARC functions and 

properties (binding to chemokines and PvDBP, Fya/Fyb allotypes, the Fy6 epitope). 

A VHH library from dromedary's lymphocytes was built and screened using also E. 

coli expressed proteins for DARC specific VHHs. Several clones were obtained, 

especially one named CA52. CA52 is able to recognize the glycosylated protein 

present on human cells, even if the constructs used for immunization and screening 
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was non glycosylated proteins. The linear epitope recognized by CA52 was identified 

and overlaps the well known Fy6 antigen. CA52 interferes with the CXCL8 binding 

to DARC and P. vivax infection of red blood cells [6]. 

To more deeply analyze CA52 and to get a glimpse into its putative interactions 

with DARC, we constructed a structural model of CA52 VHH. A classical 

comparative modelling approach was carried out as available VHH structures sharing 

a good sequence identity with CA52 are available. From a structural point of view, 

VHHs adopt a well-characterized topology composed of four very constant regions 

and three hypervariable regions (CDR1 to CDR3). These last ones correspond to the 

binding part of VHHs that recognize the epitope (here ECD1). Constant region fold 

corresponds to a series of -sheets that is found in all VHHs and gives the topology of 

the protein. Figures VIIIa and VIIIb shows an example of a VHH [146], in green the 

constant regions, and in yellow, orange and red, CDR1 to CDR3. Figures VIIIc 

highlight the protein interface which binds the epitope.  

Sequences related to CA52 were searched with PSI-BLAST software [147] 

applied on Protein DataBank [61]. Using default parameters of PSI-BLAST, one 

VHH (PDB code 1XFP [148]) was selected with a very good sequence identity 

(75%). However, all the structural models obtained presented a topology inversion 

between two loops. A careful analysis of PSI-BLAST results showed that CDR3 

regions were considered as non-informative (i.e., coiled-coil as detected by SEG 

[149]) although this CDR is the most important one for the binding. When SEG was 

disabled, PSI-BLAST search gave VHHs structural templates better matching for 

CDR3 (both in length and sequence identity). A first structure (PDB code 1OP9 

[146]) was selected (a sequence identity of 75% and a good alignment with CDR3). 

Figure VIIId underlines the huge impact of the fine analysis of VHHs. CDR3 of VHH 
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1XFP is shown in yellow and exhibits a classical -sheet, while in 1OP9 template 

structure, CDR3 of VHH (shown in red) has helical tendencies (mainly a succession 

of -turns). Moreover, these regions are totally differently positioned. This example 

illustrates the importance of a precise analysis of templates and of a good knowledge 

of bioinformatic tools.  

A very important point for guiding the structural modelling was the 

experimental characterization of an extra-disulfide bridge between Cysteines 33 and 

107. This disulfide bond is of major biological importance. We considered a second 

template to 1OP9, namely 1JT0 [150] that possesses a similar extra-disulfide bridge. 

The protein sequences were aligned with Clustalw2 software [151] and some manual 

changes were done. The model construction was performed with the Modeller 

software [107]. Final structural models showed few differences as constant regions 

strongly constrained the topology and the extra-disulfide bridge constraints strongly 

CDRs. Topology was assessed using ProCheck software [152]. Figure VIIIe shows 

the final model. CDR3 is composed of series of -turns (the disulfide bridge is in blue 

colour). Figure VIIIf shows the distribution of charges at the surface. CDR2 and 

CDR3 present a strong positive surface (blue colour) as the central part of CDR1. 

Molecular modelling of another VHH sequence that binds the same epitope but with 

lower affinity gives some hints about important residues. The presence of a positive 

surface in this region and the presence of a negative surface in the linear target 

peptide (see Structural properties of DARC section) are suggestive for important 

electrostatic interactions. 
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Conclusions and Perspectives 

Hence, in this short review, we have presented the biological importance of 

DARC protein and its multiple implications in human diseases. We have underlined 

the interest to use structural models to better understand this protein. The building of a 

structural model for a transmembrane protein is a very difficult task. Comparison with 

up-to-date methods highlights the crucial value of biological data to produce pertinent 

structural models, our approach remaining the most efficient one. Using these models, 

we have shown the capabilities of new and complex methodology combining classical 

rigid docking and novel flexible docking. Additional simulations must be done to 

confirm these preliminary results, but these last one are already quite encouraging, 

with a very good agreement with experimental data. Finally, we have opened new 

perspectives given by the use of structural models of camelid VHHs able to bind 

DARC. We plan to analyze each sequence of VHHs obtained in a similar way to 

understand more precisely the most important residues involved in the recognition of 

ECD1. 
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Figures 

 

Figure I. Structural modeling methodology in function of sequence identity. 
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Figure II. Principle of DARC structural model building. (a) Prediction of transmembrane segments, the DARC sequence is divided into 7 transmembrane segments and 8 

loops. (b) The rhodopsin structure is also cut into transmembrane segments and loops. (c) Each segment is aligned independently with its counterparts. ECD1 and ICD4 are 

treated separately with other approaches (see text). A global alignment is done and used to generate structural models. (d) Structural models are optimized and important 

residues are manually analyzed. The alignment is then manually modified and new structural models are generated. The process is done until most of the concerned residues 

are accessible. 
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Figure III. The two selected structural models. They are shown thanks [113] to PyMol software . (a) open form, (b) closed form. 
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Figure IV. Results of LOMETS and FUGUE webservers. (a), (d) and (g): 

structural templates used by LOMETS [114] for its medium quality structural models. 

(a): human A2A adenosine receptor (PDB code 3EML [123]), (d) COPI gamma-

subunit (PDB code 1PDZ [124]), (g) cell vibrio mixtus mannosidase 5A (PDB code 

1UUQ [125]). (b) and (c) two views of the structural model based on human A2A 

adenosine receptor (PDB code 3EML [123]), (e) and (f) two views of  the structural 

model based on COPI gamma-subunit (PDB code 1PDZ [124]). (h) the structural 

model based on bovine rhodopsin structure (PDB code 1U19 [126]) obtained by 

PHYRE [122]. 
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Figure V. Two low modes computed with ElNemo. (a) and (c) initial structure, 

the hinge is pointed by the arrows, (b-c) and (e-f) motions observed with these modes, 

the arrows indicated the nature of the observed movements. 
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Figure VI. Principle of our docking approach. (a) the structural model of DARC is split into two parts (ECD1 and transmembrane region). 

(b) flexible docking is performed between ECD1 and CXCL8. (c) rigid docking of CXCL8 is done with transmembrane domain of DARC. (d) 

best results of each approaches are combined and then optimized. 
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Figure VII. Two examples of docking results. (a) and (b) two views of an 

example of a rigid docking of monomeric CXCL8 (green color) with transmembrane 

domain of DARC (helices in red, loops in blue and beta-strand in yellow). (c) and (d) 

two views of an example of a combination of rigid and flexible docking of dimeric 

CXCL8 (green and orange color) with transmembrane domain of DARC. 
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Figure VIII. Camelid VHHs and structural model. (a) and (b) two views of an VHH, CDR1 is in yellow, CDR2 in orange and CDR3 is 

red, the rest is in green. (c) surface representation of the same protein. (d) Comparison between the two potential templates, noted (1) is the 

original one which corresponds to -sheet conformation (in yellow), while (2) is the correct one (in red). (e) Selected structural model, the extra-

disulfide bridge is in blue. (f) Electrostatics surface. 
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Table I. Results of LOMETS webserver. 
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