

Pathological findings and prostate-specific antigen outcomes after laparoscopic radical prostatectomy for high-risk prostate cancer.

Guillaume Ploussard, Laurent J. Salomon, Yves Allory, Stéphane Terry, Dimitri Vordos, Andreas Hoznek, Claude-Clément Abbou, Francis Vacherot, Alexandre de La Taille

▶ To cite this version:

Guillaume Ploussard, Laurent J. Salomon, Yves Allory, Stéphane Terry, Dimitri Vordos, et al.. Pathological findings and prostate-specific antigen outcomes after laparoscopic radical prostatectomy for high-risk prostate cancer.. BJU International, 2010, 106 (1), pp.86-90. 10.1111/j.1464-410X.2009.09080.x . inserm-00502462

HAL Id: inserm-00502462 https://inserm.hal.science/inserm-00502462

Submitted on 22 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Pathological findings and PSA outcomes after laparoscopic radical
2	prostatectomy for high risk prostate cancer
3	
4	Guillaume Ploussard, Laurent Salomon, Yves Allory, Stéphane Terry, Dimitri Vordos,
5	Andreas Hoznek,
6	Claude-Clément Abbou, Francis Vacherot, Alexandre de la Taille
7	INSERM U955 EQ07, Departments of Urology and Pathology, APHP,
8	CHU Henri Mondor,
9	Créteil, France
10	
11	Correspondence:
12	Dr A. de la Taille
13	INSERM U955 Eq07 Department of Urology
14	CHU Mondor
15	51, avenue du Maréchal de Lattre de Tassigny
16	94000 Créteil, France
17	Tel: 33149812254
18	Fax: 33149812568
19	Email: adelataille@hotmail.com
20	
21	Keywords : prostate cancer ; high risk ; radical prostatectomy ; biochemical
22	recurrence
23	
24	
25	
26	

27	
28	ABSTRACT
29	
30	Objective: The aim of our study was to review the biochemical recurrence-free
31	survival (RFS) rates of laparoscopic radical prostatectomy (RP) in patients with high
32	risk of disease progression as defined by preoperative d'Amico criteria.
33	
34	Patients and Methods: Between October 2000 and May 2008, 110 patients underwent
35	extraperitoneal laparoscopic radical prostatectomy and bilateral pelvic lymph node
36	sampling for high risk prostate cancer in our department. High-risk prostate cancer
37	was defined as follows: a PSA level greater than 20ng/ml, and/or a biopsy Gleason
38	score 8 or above, and/or a clinical AJCC T2c to T4 stage. Median follow-up was 37.6
39	months. Risk factors for time to biochemical recurrence were tested using log rank
40	survivorship analysis and Cox proportional hazards regression.
41	
42	Results: Prostate cancer was organ-confined in 35.5% of cases. Overall RFS was
43	79.4% and 69.8% at 1 and 3 years, respectively. The 3-year RFS rates for organ-
44	confined cancer versus extracapsular extension were 100% and 54.3%, respectively
45	(p<0.001). The 3-year RFS rates for tumor-free seminal vesicle versus seminal vesicle
46	invasion were 81.8% and 33.6%, respectively (p<0.001). The 3-year RFS rates for
47	negative surgical margins versus positive were 85.2% and 47.3%, respectively
48	(p=0.001). Compared with men with any single pathological risk factor or any 2 risk
49	factors, men with all 3 risk factors had significantly shorter time to PSA failure after
50	RP (log-rank test: p<0.001).

Conclusion: Among patients at increased risk of disease progression as defined by
preoperative d'Amico criteria, a third of men with organ-confined disease have
favorable prognosis. Men at high risk for early PSA failure could be better identified
by pathological assessment on prostatectomy specimens, and selected for phase III
randomized trials investigating adjuvant systemic treatment.

58 INTRODUCTION

60	Prostate cancer is the most common solid malignancy in men in EU, with 186,320
61	new cases diagnosed each year and the second cause of death attributable to cancer
62	with 28,660 deaths per year [1]. Despite the widespread use of prostate-specific
63	antigen (PSA) screening some patients are diagnosed with a locally advanced prostate
64	cancer. In these cases, treatment options remains unclear with no clear consensus.
65	D'Amico et al proposed a useful classification using clinical and pathological
66	parameters to classify relapse risk before treatment [2]. Patients with a PSA >20 ng/
67	mL, Gleason 8-10, T2c to T4 disease are considered to be at high risk, with recurrence
68	rates ranged from 50 to 100 percent after a local therapy alone especially if they are
69	young, healthy and with a long life expectancy. A nomogram from the Memorial
70	Sloan-Kettering Center has also been validated to predict biochemical recurrence-free
71	survival (RFS) after radical prostatectomy (RP) [3]. For patients with organ-confined
72	and high risk of disease progression prostate cancer, external beam radiation therapy
73	and RP are two recommended treatment options. One important advantage for RP is
74	that cancer aggressiveness is correctly evaluated on RP specimen. Thus, postoperative
75	nomograms can be used to better characterize high risk patients and predict the
76	probability of prostate cancer recurrence for each patient [4]. Pathological risk factors
77	for disease recurrence and disease specific survival after radical prostatectomy (RP)
78	include extracapsular extension, high Gleason score, positive surgical margins,
79	seminal vesicle invasion and positive lymph nodes [5]. Despite treatment, a significant
80	proportion of these patients will experience PSA-defined failure and cancer-specific
81	death indicating a need for more aggressive initial therapy. However, no adjuvant
82	standard treatment after surgery is clearly recommended for high risk and locally

83	advanced tumors. Immediate adjuvant radiotherapy decreased the risk of PSA
84	recurrence but at the cost of increased toxicity and with no metastasis-free or overall
85	survival benefit [6,7]. Adjuvant hormone therapy significantly improves survival in
86	patients with positive lymph nodes with benefit for immediate therapy [8,9]. In case of
87	negative lymph nodes, this survival advantage is not demonstrated. Recently,
88	neoadjuvant or adjuvant therapy for patients with high risk prostate cancer was studied
89	and demonstrated feasible with acceptable toxicity [10,11,12]. Therefore, stratifying
90	patients according to the prognosis is important for postoperative counseling and the
91	consideration of adjuvant therapy.
92	The purpose of the current study was to estimate the biochemical outcome after
93	laparoscopic RP for high risk of disease progression prostate cancer and to investigate
94	whether the number of pathological risk factor on prostatectomy specimens is
95	significantly associated with the time to PSA failure.
06	

MATERIALS AND METHODS

97

98

99

Study population.

Between October 2000 and May 2008, 110 patients underwent extraperitoneal 100 laparoscopic radical prostatectomy and bilateral pelvic lymph node sampling for high 101 102 risk prostate cancer in our department. High risk cancers were defined as follows: a 103 PSA level greater than 20 ng/mL, and/or a Gleason score of \geq 8-10, and/or clinical T2c to T4 disease regarding d'Amico criteria [2]. The patients have negative bone 104 scan and negative computed tomography (CT) scan. Baseline and follow-up 105 106 information were collected prospectively in our database including preoperative clinical and biological characteristics, patient demographics, surgical data and 107 postoperative parameters. The clinical stage was determined from the digital rectal 108 109 examination findings according to the AJCC staging system. A standard pelvic lymph node dissection (external iliac artery area) was performed in all patients. A mean of 110 7.4 lymph nodes were sampled. Nerve-sparing surgery was performed in 34 patients 111 (30.9%). Pathological Gleason score, surgical margin (SM) status, presence of 112 extracapsular extension (ECE), seminal vesicle invasion (SVI) and pelvic lymph node 113 114 positivity were recorded. All prostatectomy specimens were assessed by a referee genitourinary pathologist. Biochemical recurrence was defined as any detectable 115 serum PSA (greater than 0.2 ng/ml). Patients who had pelvic lymph nodes metastases 116 117 received immediate androgen deprivation therapy. Others patients who received adjuvant or neoadjuvant hormonal and/or radiation therapy before PSA failure which 118 was the primary end point in this study, were excluded from analyses. Men who 119 experienced PSA failure were managed according to standard practice. Table 1 lists 120 the preoperative characteristics of the 110 patients. Patients were classified at higher 121

122	risk of disease progression on PSA level alone in 61 patients (55.5%), on high
123	Gleason score alone in 31 patients (28.2%), on combination of these two parameters
124	in 9 patients (8.2%) and on clinical AJCC stage alone in 9 patients (8.2%). The mean
125	and median follow-up for all patients was 38.1 and 37.6 months, respectively (range:
126	1.1-92.2). The frequency of follow-up visits was standardized for all patients.
127	
128	Statistical analysis.
129	Preoperative clinico-biological parameters were studied according to time-to-PSA
130	failure. We used dichotomized values of preoperative PSA (20 or less versus greater
131	than 20ng/ml), prostate weight (30 or less versus greater than 30ml) and age (<60
132	versus >60 years old). A Cox proportional hazards regression was used.
133	For purpose of illustration, estimates of PSA outcomes were calculated using the
134	Kaplan-Meier actuarial method and graphically displayed. PSA failure was defined by
135	a PSA level > 0.2 mg/ml. The time to PSA failure was considered to be the time that
136	the first detectable value was measured. The day of surgery was reported as the
137	starting point of analysis. The analysis endpoint was biochemical recurrence-free
138	survival (RFS). Postoperative significant risk factors for time to biochemical
139	recurrence were examined using log rank survivorship analysis. All data were
140	analyzed using SPSS 13.0 software (Chicago, Illinois). The limit of statistical
141	significance was defined as p<0.05.
142	
143	
1.4.4	

RESULTS

147	
148	Pathological parameters on prostatectomy specimens (see Table2)
149	Of the 110 patients undergoing RP, the pathological findings were extracapsular
150	extension (ECE) in 71 (64.5%), seminal vesicle involvement (SVI) in 27 (24.5%),
151	positive surgical margin (R +) in 43 (39.1%) and pelvic lymph node metastases (N +)
152	in 4 (3.6%). Surgical margins were positive in 21.0%, 27.3%, 61.1% and 71.4% of
153	pT2, pT3a, pT3b and pT4 cancers, respectively.
154	Concordance between biopsy and postprostatectomy Gleason scores was 49.1%.
155	Biopsy upgraded pathological Gleason score in 16 patients (14.5%) and downgraded it
156	in 40 patients (36.4%). The rate of favourable disease (defined as pT2 cancer and a
157	Gleason score \leq 7) on RP specimens was 26.4%. Only 7 patients (6.4%) fulfilled all
158	favourable criteria, i.e. a PSA<20 mg/ml, a pT2 cancer and a Gleason score \leq 7 on RP
159	specimen.
160	
161	Time to PSA failure analyses
162	During a mean follow-up of 38.1 months, PSA failure occurred in 23 patients (20.9%)
163	of which 20 received salvage therapy (radiotherapy or hormonal therapy). Fourteen
164	patients were treated by radiotherapy and 6 men received androgen deprivation
165	therapy. Mean time to progression was 7.2 months. No patient died as a result of
166	prostate cancer before PSA failure.
167	Multivariate time-to-failure analysis on preoperative parameters showed PSA level
168	higher than 20 ng/mL (p=0.003; HR=7.14 [95% CI 1.93-26.3]) and high biopsy
169	Gleason score (p=0.023; HR=3.14 [95% CI 1.17-8.43]) to be independent predictors

170	of biochemical recurrence. Age (p=0.658; HR=0.82 [95% CI 0.34-1.95]), clinical
171	stage (p=0.362; HR=1.49 [95% CI 0.63-3.48]) and prostate weight (p=0.530;
172	HR=0.62 [95% CI 0.14-2.75]) were not significantly associated with biochemical
173	relapse.
174	Overall RFS was 79.4% at 1 year (95% confidence interval [CI]: 75.1-83.7%) and
175	69.8% at 3 years (95% CI 63.9-75.7%) (Figure 1).
176	
177	PSA failure stratified by pathological data (Figure 2)
178	The 3-year RFS rates for organ-confined cancer versus extracapsular extension were
179	100% and 54.3% (95% CI 46.3-62.3%), respectively (p<0.001). The 3-year RFS rates
180	for tumor-free seminal vesicle versus seminal vesicle invasion were 81.8% (95% CI
181	76.1-87.5%) and 33.6% (95% CI 20.4-46.8%), respectively (p<0.001). The 3-year
182	RFS rates for negative surgical margins versus R+ were 85.2% (95% CI 79.4-91.0%)
183	and 47.3% (95% CI 36.9-57.7%), respectively (p=0.001).
184	The estimated rates of RFS stratified by the number of pathological risk factors
185	present are illustrated in Figure 3. When these 3 pathological factors were associated
186	(SVI, R+, ECE), the 1-year and 3-year RFS rates were 42.2% (95% CI 29.5-54.9%)
187	and 15.8% (95% CI 2.8-28.8%). Statistically significant difference appeared
188	according to the number of these factors present (log-rank test: p<0.001).
189	None of the 9 patients with pT2 cancer and positive margin developed PSA
190	recurrence. Comparatively, the 1-year and 3-year RFS rates were 84% and 74.7% in
191	patients with pT3 cancer and negative margin. Difference did not reach significance
192	(log-rank test: p=0.185).

DISCUSSION

195	An accurate prediction of probability of disease recurrence is essential for proper
196	patient selection. Preoperatively, the identification of high risk prostate cancer can be
197	based on, at least, three well-defined predictors of the disease extent and outcome
198	after treatment: AJCC clinical T stage, serum PSA level, and Gleason score. Patients
199	with AJCC clinical stage T2c-T4 disease and/or a PSA level of more than 20ng/mL
200	and/or a biopsy Gleason score of 8 or more have a risk higher than 50% at 5 years of
201	post-treatment PSA failure. This risk group was established from a review of literature
202	and well defined by d'Amico et al. studying PSA failure and prostate cancer-specific
203	mortality [2,13]. In addition, PSA velocity greater than >2 ng/mL/year and more than
204	50% of positive biopsies can be considered [14,15]. D'Amico et al reported in a study
205	including 1,095 patients who underwent RP and who did not receive adjuvant therapy
206	that on multivariable analysis, preoperative PSA velocity >2ng/mL/year was
207	associated with an increased risk of cancer specific mortality and with an increased
208	risk of overall mortality [16]. Others preoperative nomograms or scores have been
209	developed and validated in internal and external studies, documenting a high level of
210	consistency [3,17]. However, despite a good predictive accuracy among different risk
211	groups, certain inconsistencies have been reported regarding high risk cases. In the
212	present series we studied PSA-defined follow-up and results of local therapy for
213	patients at high risk of cancer progression regarding preoperative d'Amico criteria [2].
214	Survival analyses were driven in order to identify different risk subgroups of PSA
215	failure according to final pathological assessment among patients suspicious for high
216	risk of biochemical failure.

218	In multivariate time-to-failure analysis, high biopsy Gleason score and serum PSA
219	were significantly associated with biochemical relapse in our cohort. Preoperative
220	PSA greater than 20ng/ml and a Gleason score 8 or above carried a 7.14 and 3.14-time
221	increased risk of recurrence, respectively. No other preoperative variables were
222	significantly associated with time to PSA failure. However, we did not study PSA
223	velocity in this series [16]. Interestingly, clinical AJCC stage did not appear as
224	significant predictor of biochemical recurrence in this subgroup of high-risk prostate
225	cancer, on the contrary of published data concerning low-risk and intermediate-risk
226	group [2,13]. Kupelian et al have already shown that clinical stage was not
227	independent predictor of PSA-defined failure in a population of patients with biopsy
228	Gleason score 8 or above [18]. Our data confirmed these results.
229	
230	Biochemical control rates were encouraging for these high risk patients. A third of
231	these patients have prolonged disease-free survival. Among the 110 patients, prostate
232	cancer was organ-confined in 35.5% of cases on final pathological assessment.
233	Biochemical RFS was excellent for this subgroup with no cases of recurrence after a
234	mean follow-up of 37.1 months (±23.2). No early PSA failure appeared in case of
235	organ-confined disease. Moreover, no patient with pT2 cancer and positive surgical
236	margin had PSA failure. Thus, the biology of organ-confined disease appeared
237	different compared with the behavior of pT3 cancers. In this series of high-risk PCa,
238	patients with pT3 cancers and negative surgical margins had poorer survival than
239	those with pT2 cancer and positive margin (74.7% versus 100% at 3 years after the
240	surgery). However, difference failed to show significance.
241	In case of biochemical recurrence, patients with positive surgical margins were

242 preferentially treated by salvage radiotherapy, whereas patients with non organ-

confined disease or early PSA failure received preferentially androgen deprivation
therapy.

245	As expected, seminal vesicle invasion and positive surgical margins were statistically
246	strong predictors of early biochemical recurrence [19]. The 3-year RFS rates for
247	tumor-free seminal vesicle versus seminal vesicle invasion were 81.8% and 33.6%,
248	respectively (p<0.001). The 3-year RFS rates for negative surgical margins versus R+
249	were 85.2% (95% CI 79.4-91.0%) and 47.3% (95% CI 36.9-57.7%), respectively
250	(p=0.001). The biochemical recurrence in patients with 3 combined pathological
251	adverse factors was extremely frequent and early with a 3-year RFS of 15.8%.
252	Therefore, men at high risk for early PSA failure could be identified on the basis this
253	pathological assessment. Not all patients with ECE, positive surgical margins or VSI
254	will fail biochemically postoperatively, but combination of these 3 parameters was
255	reported to be a strong predictor of early PSA failure. Compared with men with any
256	single pathological risk factor or any 2 risk factors, men with all 3 risk factors had
257	significantly shorter time to PSA failure after RP (log-rank test: p<0.001). However,
258	the overall risk of relapse may be underestimated in spite of the relative short follow-
259	up of our cohort. The PCa progresses slowly and a median follow-up of 3 years may
260	be considered as insufficient.

261

262 Despite the independent statistical significance of two preoperative clinico-biological 263 parameters (PSA level and high Gleason score) to predict time to postoperative PSA 264 failure, most of the variation in PSA follow-up was not accounted for on the basis of 265 the d'Amico criteria. For patients with organ-confined disease, the outcomes were 266 remarkably good with RP. Pathological criteria explained a significant amount of the 267 variation in the postoperative PSA data. Longer follow-up including more patients in

the higher risk categories would provide stronger conclusions. One reason of the good 268 cure rates might be that PSA failure was defined by a PSA level over 0.2 mg/ml 269 whereas in other series a "0.2 or greater" or a "0.1" cut-off was used [20]. The use of 270 such a cut-off might be too high when a 3-year RFS is studied and might have limited 271 detection. We'd also like to emphasize that the biochemical recurrence but not the 272 prostate cancer specific mortality has been chosen as criteria of disease progression. 273 The ideal end point on which to make treatment decisions is survival and PSA-defined 274 failure may not accurately reflect the likehood of prostate cancer-specific death. 275 However, early PSA failure is established to be associated with an increased risk of 276 277 progression to metastatic disease and prostate cancer-specific death [21]. If longer follow-up and rates of specific mortality confirm these results, adjuvant 278 therapy might not be mandatory for achieving adequate cure rates for the subgroup of 279 patients with organ-confined disease. On the contrary, men with two or three 280 pathological risk factors should be considered for phase III randomized trials 281 investigating adjuvant systemic treatment. Integrate taxane-based chemotherapy with 282 local treatment could be relevant to address microscopic hormone-refractory prostate 283 cancer cells that may be present at initial assessment in men with high-risk disease 284 [10,11,12]. 285 One limitation of our study is the bias due to the selection of men candidates for RP. 286 During the study period, 97 others patients have been diagnosed with localized PCa at 287 high risk of recurrence according to the d'Amico criteria. These patients have been 288 treated by radiotherapy in 40 cases and by androgen deprivation therapy in 57 elderly 289 patients. We excluded 47 patients who have been included into a prospective trial 290 investigating the role of adjuvant paclitaxel after RP. Adjuvant radiotherapy is not 291

292 performed for high risk PCa before PSA failure at our department and no patient has
293 received neoadjuvant therapy during the study period.

Our findings supported evidence that organ-confined disease, even in preoperatively 294 high risk patients can lead to excellent RFS outcomes after RP without adjuvant 295 therapy. Local therapy such as RP has to remain a standard of care for these high risk 296 patients. Pathological evaluation on prostatectomy specimens provides better 297 predictive assessment of high risk compared with only preoperative criteria. Despite 298 high accuracy and mandatory use for selecting men for clinical trials, high risk group 299 established according to the d'Amico criteria remains heterogeneous, including a third 300 301 of patients with excellent prognosis. Radical prostatectomy can help to distinguish patients who would benefit from adjuvant therapy and close surveillance, from those 302 who could be watched in a more spaced out way. 303

Finally, this series confirms that laparoscopic approach is a validated treatment of clinically localized but high-risk disease. Oncological results and positive surgical margins rates were in line with values published in open surgery series [22,23].

307

CONCLUSIONS

311	Three years after laparoscopic radical prostatectomy for high risk prostate cancer,
312	biochemical recurrence-free survival is 69.8%. Our findings support evidence that
313	organ-confined disease, even in preoperatively high risk patients can lead to excellent
314	RFS outcomes after RP without adjuvant therapy. Among these patients with high risk
315	disease defined by preoperative data, a third of men with organ-confined disease have
316	favorable prognosis. Thus, men at high risk for early PSA failure could be better
317	identified by pathological assessment on prostatectomy specimens, and selected for
318	phase III randomized trials investigating adjuvant systemic treatment.

REFERENCES

321	[1] Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics, 2008.
322	CA Cancer J Clin 2008;58(2):71-96
323	
324	[2] D'Amico AV, Whittington R, Malkowicz SB, Schultz D, Blank K, Broderick GA,
325	et al. Biochemical outcome after radical prostatectomy, external beam radiation
326	therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA
327	1998; 280: 969-974.
328	
329	[3] Kattan MW, Eastham JA, Stapleton AM, Wheeler TM, Scardino PT. A
330	preoperative nomogram for disease recurrence following radical prostatectomy for
331	prostate cancer. J Natl Cancer Inst. 1998; 90:766-71.
332	
333	[4] Kattan MW, Wheeler TM and Scardino PT. Postoperative nomogram for disease
334	recurrence after prostatectomy for prostate cancer. J Clin Oncol 1999; 17:1499-1507.
335	
336	[5] Roehl KA, Han M, Ramos CG, Antenor JA, Catalona WJ. Cancer progression and
337	survival rates following radical retropubic prostatectomy in 3,478 consecutive
338	patients: long-term results. J Urol 2004; 172: 910-914.
339	
340	[6] Thompson IM Jr, Tangen CM, Paradelo J, Lucia MS, Miller G, Troyer D, et al.
341	Adjuvant radiotherapy for pathologically advanced prostate cancer: a randomized
342	clinical trial. JAMA 2006; 296:2329-35.
343	

344	[7] Bolla M, van Poppel H, Collette L, van Cangh P, Vekemans K, Da Pozzo L, et al.
345	European Organization for Research and Treatment of Cancer. Postoperative
346	radiotherapy after radical prostatectomy: a randomised controlled trial (EORTC trial
347	22911). Lancet 2005 13-19; 366:572-8.
348	
349	[8] Messing E M, Manola J, Sarosdy M, Wilding G, Crawford ED, Trump D.
350	Immediate hormonal therapy compared with observation after radical prostatectomy
351	and pelvic lymphadenectomy in men with node-positive prostate cancer. N Engl J
352	Med 1999; 341: 1781-1788.
353	
354	[9] Messing E M, Manola J, Yao J, Kiernan M, Crawford D, Wilding G, et al.
355	Immediate versus deferred androgen deprivation treatment in patients with node-
356	positive prostate cancer after radical prostatectomy and pelvic lymphadenectomy.
357	Lancet Oncol 2006; 7: 472-479.
358	
359	[10] Kibel A S, Rosenbaum E, Kattan M W, Picus J, Dreicer R, Klein EA, et al.
360	Adjuvant weekly docetaxel for patients with high risk prostate cancer after radical
361	prostatectomy: a multi-institutional pilot study. J Urol 2007; 177: 1777-1781.
362	
363	[11] Sonpavde G, Chi KN, Powles T, Sweeney CJ, Hahn N, Hutson TE, et al.
364	Neoadjuvant therapy followed by prostatectomy for clinically localized prostate
365	cancer. Cancer 2007; 110:2628-39.
366	

367	[12] Dreicer R, Magi-Galluzzi C, Zhou M, Rothaermel J, Reuther A, Ulchaker J, et al.
368	Phase II trial of neoadjuvant docetaxel before radical prostatectomy for locally
369	advanced prostate cancer. Urology 2004; 63:1138-42.
370	
371	[13] Tsai HK, Chen MH, McLeod DG, Carroll PR, Richie JP, D'Amico AV. Cancer-
372	specific mortality after radiation therapy with short-course hormonal therapy or
373	radical prostatectomy in men with localized, intermediate-risk to high-risk prostate
374	cancer. Cancer 2006; 107:2597-603.
375	[14] Freedland S J, Humphreys E B, Mangold L A, Eisenberger M, Dorey FJ, Walsh
376	PC,
377	et al. Risk of prostate cancer-specific mortality following biochemical recurrence after
378	radical prostatectomy. JAMA 2005; 294: 433-439.
379	
380	[15] Ravery V, Chastang C, Toublanc M, Boccon-Gibod L, Delmas V, Boccon-Gibod
381	L. Percentage of cancer on biopsy cores accurately predicts extracapsular extension
382	and biochemical relapse after radical prostatectomy for T1-T2 prostate cancer. Eur
383	Urol 2000; 37: 449-455.
384	
385	[16] D'Amico A V, Chen M H, Roehl K A, Catalona WJ. Preoperative PSA velocity
386	and the risk of death from prostate cancer after radical prostatectomy. N Engl J Med
387	2004; 351: 125-135.
388	
389	[17] Cooperberg MR, Freedland SJ, Pasta DJ, Elkin EP, Presti JC Jr, Amling CL, et
390	al. Multiinstitutional validation of the UCSF cancer of the prostate risk assessment for
391	prediction of recurrence after radical prostatectomy. Cancer 2006; 107:2384-91.

392	
393	[18] Kupelian PA, Buchsbaum JC, Elshaikh M, Reddy CA, Zippe C, Klein EA.
394	Factors affecting recurrence rates after prostatectomy or radiotherapy in localized
395	prostate carcinoma patients with biopsy Gleason score 8 or above. Cancer 2002;
396	95:2302-7.
397	
398	[19] D'Amico AV, Whittington R, Malkowicz SB, Schultz D, Schnall M,
399	Tomaszewski JE, et al. A multivariate analysis of clinical and pathological factors that
400	predict for prostate specific antigen failure after radical prostatectomy for prostate
401	cancer. J Urol 1995; 154:131-8.
402	
403	[20] Pavlovich CP, Trock BJ, Sulman A, Wagner AA, Mettee LZ, Su LM. 3-year
404	actuarial biochemical recurrence-free survival following laparoscopic radical
405	prostatectomy: experience from a tertiary referral center in the United States. J Urol
406	2008;179:917-21
407	
408	[21] Freedland SJ, Humphreys EB, Mangold LA, Eisenberger M, Partin AW. Time to
409	prostate specific antigen recurrence after radical prostatectomy and risk of prostate
410	cancer specific mortality. J Urol 2006; 176:1404-8.
411	
412	[22] Catalona WJ, Smith DS. Cancer recurrence and survival rates after anatomic
413	radical retropubic prostatectomy for prostate cancer: intermediate-term results. J Urol
414	1998; 160:2428-34.
415	

416	[23] Han M, Partin AW, Pound CR, Epstein JI, Walsh PC. Long-term biochemical
417	disease-free and cancer-specific survival following anatomic radical retropubic
418	prostatectomy. The 15-year Johns Hopkins experience. Urol Clin North Am 2001;
419	28:555-65.
420	
421	
422	

423	LEGENDS
424	
425	
426	
427	Table 1. Baseline characteristics of the 110 patient study cohort.
428	
429	
430	Table 2. Pathological postprostatectomy parameters.
431	
432	
433	Figure 1. Biochemical recurrence-free survival after RP for high risk prostate cancer.
434	
435	
436	Figure 2. Biochemical RFS after RP stratified by the type of pathological risk factor
437	present.
438	
439	
440	Figure 3. Biochemical RFS after RP stratified by the number of pathological risk
441	factors (ECE, VSI, R+).
442	